A
02 Tapyar

MTANEIIIXTHMIO

OEXXAAIAYX

LXOAH OETIKQN EIIIXTHMQN

TMHMA ITAHPOP®OPIKHYE KAI THAEIIIKOINQNIQN

Autopatn Avayveopion Oxnpatov oe
Avaotaupwoeie kar Evnuepwong Kiwvoupeveov
Oxnpateov

Yapa@idng OepiotorAng

I[ITYXIAKH EPTAYXIA
YIIEYOYNOZX

Kovotavtivog KodopBatoog
Emixoupog Kabnyntrg

Aapia ¢tog 2023

A
2 FapyTit. b

MTANEIIIXTHMIO

OEXXAAIAYX

LXOAH OETIKQN EIIIXTHMQN

TMHMA ITAHPO®OPIKHYE KAI THAEIIIKOINQNIQN

Autopatn Avayveplon Oxnuatev oe
Avaotavpwoeig kar Evnuepwong Kivoupevev
Oxnpateov

Yapaidng OepiotorAng

UNIVERSITY OF

THESSALY

SCHOOL OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE & TELECOMMUNICATIONS

Automatic Recognition of Vehicles at
Intersections and Update using Licence Plates

Themistoklis Sarafidis

YIIEY®OYNOZX

Kovotavtivog KodopBdatoog
Emixoupog KaBnyntng

FINAL THESIS
ADVISOR

Konstantinos Kolomvatsos
Assistant Professor

Lamia 2023

«Me arouikn pou euBuvn kai yvwpilovrac 1ic kupwaels B, mou mpoBAérovral amé g
oiaraéeig tng map. 6 tou apbpou 22 tou N. 1599/1986, dnAwvw ori:

1. Aev mapabérw kouudartia BiBAiwv n apbpwyv 1 epyaciwv GAAwv autoAeéei xwpic va
Ta MEPIKAEIW O€ EI0AYWYIKA Kal XWPIS va avapépw 10 ouyypagéa, 1n xpovoloyia,
oehida. H autoAgéei mapdBeon xwpic sioaywyikd xwpic avagopd otnv mnyn, ivai
AoyokAomn. TNépav ¢ autoAeéei mapdBeang, AoyokAor Bswpeital Kai n mapdppaocn
gdagiwv amo Epya dAAwv, auutrepiAauBavouévwy Kai Epywv OULQOITNTWY LIoU, KABWS
Kal n mapabson aroixeiwv mou dAror ouvéeéav n emeéepydabnkav, xwpic avapopd
oTnv Tyn. Avagépw mavroTe e TANPOTNTA THV TTHYN KATW aTrod Tov TTivaka f ox€0Io,
omwg¢ oTa mapabéuara.

2. Aéxouar 01 n autoAeéel mapdBeon xwpic elIcaywyikd, akoua Ki av ouvodeUeTal
arrdé avaeopd aTnv 1nyn o€ KATTolo dAA0 onueio Tou Kelpévou N oto TEA0S Tou, Eival
avriypan. H avapopd otnv mnyn oTo TEAOC 1T.X. pIag mapaypdeou 1 pias oglidag, dev
OIkaloAoyei auppagn edagiwv Epyou dAAou auyypapéa, E0TW Kal TTAPAPPACUEVWY, Kal
mapouadiacn rous wg SIKN IoU gpyaaia.

3. Aéxouar Ot umrdpxel €TTIONS TTEPIOPIOUOS OTO UEYEOOS Kai OTn aUXVOTNTA TWV
TapaBeudTwy moU UTTopW va evidéw OTnv gpyacia pou eviog eloaywylkwy. Kabe
ueyadAo mapdbsua (.. o€ mivaka 1 mAaioio, KAT), TpoUTToBETEl €I0IKES PUBUITEIS, Kal
orav dOnuoaieveTal TPOUTTOBETEI TNV AdEIQ TOU OUyypa@éa i Tou ekOOTN. To idIo Kail ol
Tivakes Kai 1a ox€0Ia

4. Aéxoual OAES TIS GUVETTEIES OE TTEPITITWAN AOYOKAOTTAS 1 avTiypa@rg.

Hpepopnvia: 7/10/2023

O AnA.
Tapawi&ng OULoTOKANG

(1) «Ormroiog ev yvwaoer Tou dnAwver weudny yeyovora n apveitar fj amokpUmTel 1a aAnBiva e
Eyypapn utretbuvn dnAwon

ToU GpBpou 8 map. 4 N. 15699/1986 miuwpeitar ue QUAGkIon TouAdxiaTov Tpiwv unvwyv. Eav o
UTTaiTIOS QUTWY TwV TTPAEEWV

OKOTTEUE va TTPOCTTOPIOEl OTOV £QUTOV TOU 1 0 GAAov TTepiouaiakd opeAog BAGmrovrag 1pitov n
OKOTTEUE va BAGwel dAAov, Tiuwpeitar pe kGOeipén péxpr 10 Twv. »

IIEPIAHWH

Znpepa, KaBe nAeKTPOVIKY] OUOKeEUT £€Xel Karmowou eidoug adyopiBpo Texvntng
Nonpootvng (AI) va Tpéxelr oto mapacknvio. Bpiokopaote otnv emoxXn Tov
Zuotnuatev Meyddou Oykou Aedopevav (Big Data), tng Negoimoloytotikng (Cloud
Computing) xar tov ovotnpatov Al . H autopatn avayvoplon oxnuatov oe
Avaotavpnoeig kar Evnuépoong peom® mvakibemv autokivntov omnwg kKabe dAAn
e@appoyn Al maoxidel yia tnv tederotnta. Yuvexopeva Snpuioupyouvtal ved povtela
1N BeAtwwvovtal 1on kabiepopeva povteda, pe tnv avaykn yia ved IeLpapata Kal
£QUPIOYES VA TTAPAPEVEL APELWTN. Xe AUTI TN £pyacia Snpuioupynoape £va LUotnua
Autopatng Avayvopiong AUTOKIVIITOV — XPNOLHOIIOLOVTAS TO IIPO-eKIALGEUREVO
povtédo YOLOv8n oto ouvodo Oebopevov COCO 2017, OGnuioupynoape Kau
ekmaldevoape &va veo HovTédo Tng i0uag apXUTEKTOVIKNE Yud TNV avayvoplon
IMWVAKLOWV autokiviteyv. Xe ouvouaopod pe €va epyadeio Omtikng Avayvepiong
Xapaktipev (OCR) mapdyetat to teAlkd cuotnua, amd dkpo og akpo (end-to-end)
Yla pHovadiKki) OUOKEUT], TO 0moio avayvepidel oXrpata Kol Kataypag@el tov apltfuo
mvakidwv. Ta amotedéopata tng eKTEAEONS PALVOVTAL UIIOOXOHUEVA KAl TO GUCTI LA
Ba pmopovoe va emnektabel, oe Aertoupyld pe Xpron Ymoloyiotikou Negoug kau
aAdayn) amd Svateppatikd tpomo end-to-end extéAdeong oe eKTEALOT) 1€ UTTOAOYLOTLKI)
mapu@n (edge-computing). Yodpxer akopa Xopog yia BeAtioon tou povteédou Katd
tn Swadikaoia tng exkmaidevong. Xty EAAGSa, n Autopatny Avayvepron Oxnuatev og
Avaotaupnoeig kar Eviuépnong peoo ITwvaribov Autokivitev eival pia texvoloyia
IIOU pmopel va w@eAnoet Ty dnpoola aoc@dAeia 1) prmopet va xpnovporoinOel oav eva
£UITOPLKO epyaAeio yia Tn autopatornoinon didgopav umnpeoitewv. Me tn Xprnon tng
Texvntng Nonpoouvng kair ouykekpipeva tov Neupwvikov Aiktiev, kabnkovta
OmIOg 1) IAPAKOAOUONON AMOPAKPUOUEVRV 1] ONUOCLOV IEPLOX®V Yia MAPAIITWLIATA
Kat tig £10060ug SaokwV extacemv yia mibavi) eykAnpatikn Spaoctnplotnta Ba
£IMLAUOVTAL AUE0A KAl AITOTEASOPATIKA X®PLg ap@uBolia.

ABSTRACT

Nowadays, almost every device has an Artificial Intelligence (Al) algorithm
running in the background. It is the age of Big Data, Cloud Services, and Al
automation. Automatic Recognition of Vehicles at Intersections and Updates using
Licence Plates as every other Al-related application strives for perfection. As new
models and improved already established algorithms rise so does the need to
experiment with them. Here we created an Automatic Recognition System using
the pre-trained YOLOv8n on COCO 2017 and a new Licence Plate Detector with
the same archetype. Combined with an Optical Character Recognition (OCR) we
created an end-to-end single device system that recognizes Vehicles and extracts
their Licence Plates information. The results seem promising for being scaled to
Cloud and Edge, there was a lot of room for improvement. In Greece, Automatic
Recognition of Vehicles at Intersections and Updates using Licence Plates is
something that can benefit public safety and also be utilized as a commercial tool.
Monitoring remote or public areas for misconduct, and forests for trespassing
vehicles is a major concern that can be resolved using similar Al appliances.

Table of Contents

LI o 1A L 1
AB ST RACT .. cuiiiiiiiiiiitiitiieetietaittettesstosttasstassssssssssesstassssserssessssssssesssasssasssnsssnsssnssasssasernsesnsssnssnns 2
Yo T ot T o 1
Chapter 1 INtroduction tO IML/DL.......ccceiiiiiiiiiiiiiiiiiiiresssesesssesssesessssessssesesssssssssssssssssssssssssssssssssssnns 2
1.1 MAChINE LEAINING...ueiiiieiiieeecieee ettt ettt e e e st e e e e et e e e e e aae e e seastaeesesbaeeeenteeeeennsaeesennsenas 3
1.1.a) Algorithms used in Learning and MOdEISccceeciviiieeicieecee e 5
1.1.b) Evaluation MEtrics iN MLc.uieiiieeieeciee ettt e et te e e tee e st eetae e saa e e sraeeenreean 10
1.1.c) Organizing benefits and Limitations of MLccccociiiiieiiie e 15
1.2 DEEP LBAIMING ceeieiiiiitieee ettt ettt e s s s st e e e e e s s s st e ae e e e e s s sasaabeaaeeeeessannareaaeeeas 16
1.2.a) Models and APPLICAtIONSoceecuieeiieiiee e et e e ee e e e bae e e e 18
1.2.b) Limitations of DEEP LEAINING......c.cecciieeieieieeeee ettt ste e s ee e te e srae e saae e s raeeenree s 21
1.3 Machine Learning vs DEEP LEAININGcceicuiieiieiieee et e ettt e e evee e e evae e e nee e e e 23
Chapter 2 Programming Languages, Tools, and Librariesc.ccccceeveeiireiiieeierennireeereencenencereenenenns 25
D2 R oY=l o [o1 Yo] o) =TT USRIt 27
2.2 MOdEl ArCRItECEUI ...eiiiiieee et e e e e st e e e s bae e e e sbeaeessssraaeesanes 29
2.3 EVAlUGLION IMBLIICS .uvviiiieiiieeiciieee ettt ettt ettt e s tae e e s s bte e e e sbteeeesbeeeeesabeaeessantanaesnnes 32
Chapter 3 Autonomous Recognition of Vehicles and Plate Detection..........ccccceerveencerreennccrrennnnenns 34
0 B 7o (o 1V TSP UPPRN 36
3.2 LiCENSE Plate DELECLON ..viiuieeiiieeeieectee ettt etee et s e e stee s et eete e e saae e e bee e snseeebeeeneeesnseeennns 39
3.3 EXECULION @Nd OULPULS...cutiiieieiiiie ettt et e et e e e e e e e eata e e e s ntaaeeennaeeeean 44
3.4 Improvements and lIMitatioNS.cccveiieciiii et e e e e e raae e 54
000 T ol [1Yo T3 T 55

BIBLIOGRAPHYcteuiiiiiiiiiiiiineiiiiieiiiiiteiiiiteeiiiieaeiiiiesesistienesiisissssisstesssisstessssssessssssssenssssssennses 56

Introduction

We are living in an era, where technology continues to evolve and seemingly
without a stop. Every day, a new discovery and every day a new innovation. It has
been almost 60 years since Godron Moore speculated, that “ the number of
transistors on a microchip doubles roughly every two years” (Gustafson, J.L.
(2011). Moore’s Law. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston) by extending this speculation, we can deduce, among others,
that computing power increases equally. In those years, precision in circuit
crafting, algorithmic compleWe xity improved, storing power increased, faster
ways to transmit data were invented, CPU/GPU developed and overall
advancement in technology and the parts of a computer all led to an even bigger
growth in computing power, giving room to a theoretical computer science branch,
Deep Learning (DL) to implode and machine learning to climb in popularity to the
point that eventually became integral to many widely used software applications
and services.

Machine learning (ML) as a concept existed since the early 1950s, when Arthur
Samuel of IBM developed a computer program able to play checkers, which he
completed in 1955, using a minmax strategy which today is known as the minimax
algorithm (Samuel, 1952). ML became popular around 2006 when facial
recognition was achieved. As the problems became more sophisticated and the
amounts of data too big, the limitation of “traditional” ML practices first appeared.
This led to the unpopular DL concepts, which by that time the biggest
achievements under its name were Long Short-Term Memory speech recognition
and Restricted Boltzmann machines (RBMs), to rise. In the next 10 years, what
Roger Parloff described as “a Deep Learning revolution” (Parloff, R. (2016). Why
DL is suddenly changing your life. Fortune. New York: Time Inc) had transpired.
With the invention of the Internet of Things, Cloud Computing, the Deployment
of 5G, Augmented reality, and 3D Printing made Al appliances broadly available
and instantaneous.

Nowadays, almost every electronic device carries a circuit board can connect to
the internet, communicates with other devices, and produces data. Data once
extra, 1s now an intangible, yet potent resource. Through applied ML and with the
aforementioned technologies computers can detect and learn hidden patterns in
data. What’s more, complex tasks such as driving, can be automated. Object
detection and classification, Object Character Recognition, and Face detection all
can be achieved in real-time.

This Thesis is about automatic car recognition and harnessing relevant
information and aims not only to suggest all the possible use cases of the project
but also to give the readers a better understanding of the process. All the tools
used to achieve car recognition are explicitly stated. After reading this paper, a
person foreign to computer science should have a better grasp of the programming
languages that are used for the implementation of Object Detection routines,
algorithms used in ML, DL in general, and state-of-the-art models such as
ResNet[15], YOLO[16], R-Cnn[17], etc. Throughout explanations on their
strengths and weaknesses and also statistical analysis on their accuracy and other
key elements for their execution.

Chapter 1 Introduction to ML/DL

This Chapter is dedicated to explaining the general principles of ML, DL, and
Al that are used in the project, from the general meaning of classification problems
in ML, combined with the DL approach of feature extraction to produce the final
Al project. Resolving any confusion of the three similar in meaning, but different
fundamentally in approaching a problem, implementing a solution/model and also
in the overall accuracy, efficiency and cost while also going deep into explaining
how certain practices were used over others. The simple version to keep in mind
1s that ML, DL, and Neural Networks (NNs) are all parts of AI. NNs are considered
a subfield of ML and DL a subfield of NNs.

This proposed system is associated with Automatic Recognition of Vehicles at
Intersections and License Plate Detection. It includes state-of-the-art pre-trained
models, specifically YOLOvVS as it is best suited for our task, as its core structure,
while also building a new simple licence plate classifier using said model
structure. Creating the dataset for our license plate model, and creating Ground
Truth labels is a tiresome task that also is a part of the process and important
nonetheless. It is crucial to state explicitly our bounding boxes in order to ensure
that during the training phase, information that best describes Licence plates is
provided to the model. All while dealing with other problems that occur in real-
time applications such as incomplete License plate numbers, wrong predictions,
vizualization, and many more. Finally, the thought process will be discussed
behind certain choices. Reasoning why techniques such as finetuning or transfer
were not used.

Artificial Intelligence:
Mimicking the intelligence or
behavioural pattern of humans

or any other living entity.

Machine Learning:
A technique by which a computer
can "learn” from data, without
using a complex set of different
rules. This approach is mainly
based on training a model from
datasets.

Deep Learning:
A technique to perform
machine learning

inspired by our brain's
own network of
neurons.

Figure 1. Image describing the relation of AI, ML and DL. In between the ML and DL exist
NNs. (Bandyopadhyay, https://commons.wikimedia.org/wiki/File:AI-ML-DL.png)

1.1 Machine Learning

ML, as stated by IBM “is a branch of artificial intelligence and computer
science which focuses on the use of data and algorithms to imitate the way that
humans learn, gradually improving its accuracy“ (IBM Corporation, 2023).
Usually, the procedure towards the solution of the problem is already known or it
can be approached using a standardized process. ML has an exploratory nature.
It can be used for unsolved problems as long as there is data, that is what makes
1t such a useful tool. Note that algorithms cannot find solutions or relations which
do not exist.

The nature of the problem dictates which model is best suited for describing
that problem and each model has its own evaluation metrics. For example, in
Binary Classification problems, where the model is trained to point a value to a
class with two cases, yes/no, 0/1, open/close, accuracy is the most suited evaluation
metric since the aim is, for the model to correctly deduct which of the two cases
best describes the data it is given. With time, the problems ML tackles become
more complex since layers of predictions and calculations are added, in order to
train algorithms, training takes more time, making it harder to design algorithms
and leaving room for human error. What made ML so popular is that time-
consuming tasks that involve a lot of computations but are simple in nature can
be automated.

It has a vast field of appliances, through training on a dataset that describes
the problem and the use of statistical methods, well-crafted algorithms make
accurate predictions. The algorithms excel as the amount of data rises,
establishing a consistent, fast, and scalable tool for predictions. ML is usually
employed by companies, functioning as a reliable tool to analyze data, revealing
correlations between data, finding rules, spotting anomalies, and other useful
attributes on a dataset, all while improving its own predictions. It is important to
understand that ML is used when the solution is known, the task is relatively
simple or there is a known approach to investigating the data in order to solve the
problem. For example, ML recommendation systems used by famous enterprises
such as Netflix, Amazon, Facebook etc. employ the Big Data customers generate,
offering accurate recommendations and furthermore revealing hidden patterns in
the user’s preferences. The input data include past purchases, search histories,
favorite movies, demographic information, comments or posts etc.

~ 1 Y

Model Retraining .

Data Collection
Symietcs « cptnize ramews— sutomataly oot

ur training sets to nc e Ho dat mu 'l Synthetics — Mymllc daxa to mwgala the risk of
data breaches and r¢ tory fines
Synthetics — augment limited datasets and balance biased data

NE using condltionsi data generstion.
e
AN
)

Model Monitoring

A

Exploratory Data Analysis

ML Life Cycle with Evauae — meosurs dota quaiy and discover das corelasons

Console — safely share a rpun b sesicspaubaadiod

Data Annotation
Synthetics — boost training data examples using m
il

Gretel GPT that are pre-trained on
generalize, fight data drift, and improw

Synhetics — test model cutcomes uekng
synthetically-generated simulations of scenarios

Synthetics — stress test your prediction pipeline
PO

or by ampiying sampies bilon fodt Synthetic Data

i
Model Deployment

Synthetics — create demo data (o test your
model or application capabilities.

Model Training & Evaluation

gretel »

Synthetics + an optimization framework — generate optimized training datasets
that enable maximum downstream machine leaming task accuracy.

Figure 2. The life cycle of a ML Project. (by gretel.ai)

Although ML has found a lot of success in the business world, in scientific usage
there has been a decline in the past few years compared to the early 2010s.
Although it seems like an omnipotent tool, it has a lot of limitations. The most
important of those are Data, Biases, Overfitting, and other limitations that are
not associated with the ability to produce results but rather with the usage of Al.
Specifically, the ethical use of Al and ethical data collection.

It was estimated that 90% of the world's data was generated in the last two
years [18]. As long as there is a lot of data being produced by all kinds of
applications, ML algorithms, and models will continue to evolve as the need for
new ways to detect patterns efficiently exists. In the next chapters, we will explore
the most relevant models to our project, the different approaches into learning,

explain the different evaluation methods, and dive deeper into the limitations of
ML.

1.1.a) Algorithms used in Learning and Models

“Machine learning addresses the question of how to build computer programs
that improve their performance at some task through experience” (Mitchell, T. M.
(1997). Machine learning.)

Before we continue on, it is important that some terminology is clarified.
Models are programs that have been trained on a dataset, analyzed patterns, and
can make predictions on new unseen data. Those models are trained with specific
algorithmic processes based on the data that they possess. There are four types of
algorithms, Supervised, Semi-Supervised, Unsupervised, and RL. The key
difference between Supervised and Unsupervised is whether or not the data is
labelled or not. Semi-supervised is a good median between the two, having a
limited amount of labelled data and lots of unlabelled, leading to considerable
improvement in the accuracy of the models. Last but not least, many don’t include
RL as a type of learning and consider it another different category, since it is
associated with intelligent agents, is independent of data structure, and uses a
different approach that the algorithms use. But, considering it is a learning
process to maximize the accuracy of an action done by machines it perfectly fits
the criteria.

Our focus in this chapter is to explain in detail the above forms of learning, the
models produced, in which situations are adopted, and their evaluation metrics
and finally, we will explore the limitations of the ML approach of model building
to the core, demonstrating why ML was not used in our proposed system.

In Supervised Learning (SL), the data available are labelled. When feeding a
ML model data there is a huge difference between a tabular sequence of numbers
named ‘Matrix N’ and knowing that ‘Matrix N’ represents a specific Class i.e.
‘Daily Temperature’. Knowing the labels helps the creators have better control
over the model, raising accuracy in the predictions but as a result, the model is
prone to overfitting and biases. Commonly used algorithms are Regression types
and Classification types for the most part. The models created are as follows:

Linear Regression Models: These models are used to predict numerical
value, given a dataset that forms a linear relationship with the predicted value.
A

Y

Observed Value of |

Y for X,

Predicted Valueof |, 4
Y for X,

Intercept =

Fig.2. Basic Linear Regression model.

Linear Regression Models are usually prone to outlier errors. Depending on the
nature of the problem, outliers are excluded, but if that is not the case, through
data normalization or other methods regression models produce fast, accurate
results. For example, we could use a Linear Regression model to predict rent prices
given data on a house (pieces of furniture, rooms, parking spots, area, etc.).

Logistic Regression: These models are purposed with making categorical
predictions such as “0/1”. Expanding on the above example, a logistic regression
model could be used to categorize house pricing as “Reasonable/Not”.

Naive Bayes models: Using the Bayes’ Theorem and assuming that all the
features in the dataset independently contribute towards the class it is trying to
predict, models predict the probability of an input’s class. Sentimental analysis,
article classification, recommendation systems, and spam filtration are some of
the model's applications. For example, given some biometric information about a
human, Bayes Classifiers can be used to predict the sex.

Decision Tree models: Tree-based models are used both in Classification and
Regression problems. These models form a tree diagram, representing all the
possible outcomes, based on their linked decision process. The tree diagram
reveals the model’s behavior, making adjustments easier, with the trade-off of
being not very robust, finding the optimal tree is known to be an NP-complete
problem and ultimately prone to overfitting without using pruning. Notable
models are Gradient Boosting Regression [19], XGBoost [20], and LightGBM
Regressor [21]. Adding to the housing example, a decision tree model could be used
for both the prediction of the rent and afterward its category.

Random Forest models: In a dataset, where the results are generated by
decision tree models, having a model that predicts based on the results is known
as a Random Forest model.

Neural Networks: NNs are usually applied in DL algorithms, by mimicking
the synapses of the human brain using different kinds of layers and different kinds
of nodes, activation or loss functions, and optimizers, all hyperparameters
depending on a model, but more on NNs will be discussed on the DL Chapter.
Similarly with Supervised learning models the nodes have inputs, outputs,
weights, and biases. The key takeaway is that input data must be labelled to train
an NN. NNs are the kind of models used in our project and the kind of models used
globally for the most sophisticated and complex problems such as image
recognition/segmentation, Natural Language Processing (NLPs), etc.

The strength of Supervised Learning is in its efficiency/accuracy in classifying
or predicting data and its simple approach. It can be noticed that the models are
susceptible to overfitting and biases. The most important disadvantage is neither
of the aforementioned reasons but rather the need for labels and, consequently the
constant need for human monitoring. That is something unwanted in an
“autonomous task”.

In Unsupervised Learning (UL), the algorithms are tasked with finding
patterns from unlabelled data. This is achieved by learning inherent structures,
patterns, or relationships within of the data. There is still a need for human
intervention. Outputs need to be verified and interpreted so the model can be fine-
tuned. Without human interpretation of results, unsupervised tasks tend to lack
transparency into how data is clustered and have a higher risk of inaccurate

6

results. Unsupervised algorithms are used to a large extent for Clustering,
Association [22], and Dimensionality reduction tasks [23]. The models produced
are as follows:

Clustering Models: Assigning the unlabelled data to a cluster is the job of
these models. The number of cluster centers may vary depending on the data. The
models identify patterns and group the data, iterating until the cluster centers
stabilize and the algorithm converges. Some of the most popular models are K-
means [24], Hierarchical Clustering [25], DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [26], and Gaussian Mixture Models (GMM)
[27]. One example is, clustering purchases in an e-shop and using the results for
market segmentation.

Association Models: Models that use different kinds of rules to discover
associations between the input data. Commonly used for recommendation engines,
promotion optimization, and overall better product placement. For example, such
a model could be deployed on the same e-shop sales data, revealing relationships
between purchases such as computer parts usually purchased alongside cables.

Anomaly Detection: Inherently unsupervised learning is very competent in
detecting outliers, and points in data that deviate from a dataset’s norm. These
points, cause fluctuation in data, leading to inaccurate outputs in cases of
predictions, or used to indicate an event or observation that beckons actions.
Manufacturing, fraud detection, financial transactions, and system monitoring
are some of the fields that utilize anomaly detection.

Dimensionality Reduction Methods: Data is indeed the ‘fuel’ of models, but
too much data in reality can have a negative impact on the performance. Leading
to overfitting, difficulty in comprehension of model functions, hindrance in
visualization, and expensive training times. In those cases, dimensionality
reduction is a technique used to reduce the number of features or dimensions. The
models aim to reduce the amount of data while preserving the contents. Such
models are Principal Component Analysis (PCA) [28,30], Singular wvalue
decomposition (SVD) [29], Autoencoders [30,31] etc. For example, in the case of a
multinational company, before using the data in any model, PCA could be used to
lessen the burden of the model and avoid overfitting.

Being able to extract features from unlabelled data, and detect outliers while
being a scalable process, unsupervised learning is a powerful tool for predictions
and associations. Consequently, it needs huge amounts of data, making it
computationally expensive. Furthermore, data surplus makes interpretation of
the outputs confusing, and the learning process difficult to monitor while drawing
conclusions. Last but not least, with the absence of the Ground Truth labels,
evaluation can easily become subjective, making human intervention necessary to
validate the output results.

Semi-supervised learning (SSL) is a “median” approach, combining the
strengths of Supervised and Unsupervised Learning. The use of a small labelled
dataset, to classify and extract information on bigger unlabelled data, lowers the
overall cost. Having an SL model evaluate the outputs of a UL model reduces
human participation and, while being cautious with novelty detection during
exploratory analysis. These models can handle labelled data points with
traditional SL, making predictions, calculating loss, and updating weights using

7

gradient descent (GD). Such a model is FixMatch [32]. Usually, SSL is used to
solve complex problems, such as self-training, speech recognition, Image
classification, etc.

In conclusion, there can still be reliability issues since there is no method to
generate 100% accurate labels which leads to less well-grounded results than a
conventional SL model in terms of accuracy. The reduction in production costs is
noteworthy. The most significant weakness of this approach is the human factor
since fine-tuning and data selection procedures require skilled engineers.

Reinforcement Learning (RL) [33] i1s the field related to intelligent agents,
functioning similarly to SL, but ultimately there is a key difference in the learning
process. While SL uses sample data and weights to maximize the prediction
accuracy, RL models learn through trial and error and are defined by processes in
an environment, a “reward”, a policy, and their state. Given a goal/task, an
intelligent agent is trying to achieve the goal while maximizing its rewards, each
action depending on the current state of the environment. The rewards fluctuate,
depending on the state and the action taken which is calculated through the
“value” function. There is no need for labelled data since the models operate in an
environment and consider two actions, exploration and exploitation. Ultimately,
the agent learns through repetition, which actions to choose in order to maximize
1ts cumulative reward. The simplest daily example of an RL application is that of
an autonomous navigation system used by autonomous sweepers.

ﬂ vironment

j Re Warg
Interpreter
\Stae <R

Action

Agent

Fig.4 Depiction of a typical RL model layout.

There are three main types of learning in RL, policy-based, value-based, and
Actor-critic.

The Value-Based type is trying to find the optimal value function. The output
of the value function is the upcoming reward and the reward function estimates
the current reward. The agent prefers actions that maximize the value function.
Such algorithms are Q-Learning [34] and Deep Q-Learning (DQN) [35]. In the
autonomous sweeper example, our robot would prefer paths that yield the best
outcome while making the smallest route.

In the Policy-based approach, the agent will prioritize exploration and adjust
its policy based the reward function, adjusting the policy while learning. The most
used algorithms are Policy Gradient and Proximal Policy Optimization.
Expanding on our sweeper example, the robot would explore rather than choose

the “best” action, adjusting its behavior depending on the reward of the
exploration.

Last but not least, the Actor-Critic type is a combination of the two. The policy
plays the role of the “actor” and the value function of the “critic’. The policy
dictates the agent's choices while the value function evaluates the expected
cumulative reward. This forms a balance between exploration and exploitation. It
enables agents to learn based on the environment while keeping the best course
of action strategy available, thriving in dynamic environments.

All 1n all, the above summarizes quickly the basics of ML and the majority of
algorithms and existing models. In hindsight, they may seem a lot and some even
trivial to the object of the project, but keep in mind that DL is a subset of ML, and
in building a complex Al model all things must be taken into consideration for an
optimal result.

1.1.b) Evaluation Metrics in ML

As the term suggests, an evaluation metric are quantitative measures used to
assess the performance and precision of a statistical or ML model. Metrics are
usually visualized, provide useful insights during execution, and help compare
each model or algorithm. Specifically, metrics can measure and track the process
of predictive abilities, performance in unseen data, and learning. The selection of
a metric depends on the nature of the problem, data formats, and the outcome it
is intended to produce. There are two types of predictions ML models produce,
classification which can be numerical in the form of probability or binary form
representing a class, or regression which are continuous outputs.

To begin with one of the most important ones, which will be presented in our
model as well, 1s Confusion Matrix. Confusion Matrix is a squared matrix N*N,
where N 1s the number of all the prediction classes. In the case of a Binary
Classification model, the N 1s 2 whereas in the case of a Multiclass-Classification
problem, N will be the classes we are trying to predict. Creating the Matrix reveals
some important statistical data for each model. These data are:

True Positive(TP): Positive prediction, ground truth true.

True Negative(TN): Negative prediction, ground truth true.

False Positive (FP): Positive prediction, ground truth false.

False Negative(FN): Negative prediction, ground truth false.

Accuracy: Total number of predictions that were correctly divided by the total
amount of predictions.

Precision (positive predictive value): the number of positive predictions
correctly identified divided by the number of total positive predictions.

Recall (sensitivity): The number of True Positives predicted in all the True
Predictions.

Specificity: The number of True Negatives predicted in all Negative
Predictions.

Predicted condition Sources: Lraf
Total population Positive (FP) Negative (PN) Informedness, bookmaker informedness (EM) Prevalence threshold (PT)
ositive egative TER-FFR
=P +N g =TPR+TNR - 1 - YTPRAFPR_FPR
TPR—FPR
) False negative (FN), True positive rate (TPR),recall, sensitivity (SEN), False negative rate (FNR).
5 - True positive (TP), o)
= Positive (P) - type Il error, miss, probability of detection, hit rate, power miss rate
L= I
g underestimation = -TPE =1-FNR = _FFE =1-TPR
k)
= False positive (FP), : False positive rate (FPR), True negative rate (TNR),
3 : True negative (TN), i ,
° Negative (N) type | error, false alarm, probability of false alarm, evaluation measures fall-out specificity (tests)
< correct rejection
overestimation ! =P =1-TnR =T-1_Fpr
Positive predictive value(PPV) . i) o .
Prevalence False omission rate (FOR) Positive likelihood ratio (LR+) Negative likelihood ratio (LR-)
__F BECEIY _FN_ p _TPR _ FNR
“PEN I =g = 1- NPV =R = TR
k=
Accuracy (ACC) False discovery rate (FDR Negative predictive value Markedness (MK), deltaP (A
e ey (FOR) . ¢ SHErae Diagnostic odds ratio (DOR) = ER=
== = =1-PPV (NPV) = Ly = 1- FOR =PPV + NPV -1
Balanced accuracy F4 score Fowlkes—Mallows index (FM) Matthews correlation coefficient (MCC) Threat score (TS), critical success index
(BA) = TPRThR _ 2PPV=TFR _ 27P I _ (S, J d index = b
)= —— = PPV=TPR = P+ = /PPV=TPR =y TPR= TR PPV NPV —/FlR= FPR=FOR» FOR (CSI), Jaccard index = tp=pR=Tp

Fig. 1 Terminology and derivations from a Confusion Matrix
(https://en.wikipedia.org/wiki/Confusion_matrix).

The overall accuracy of a model is calculated as the sum of correct predictions
divided by the total predictions made. Frequently, accuracy alone is not the point
of interest, but the categories that the predictions fall in depending on the
problem. For example, in a model predicting if a patient has COVID-19, an FP
prediction doesn’t have the same consequences as an FN prediction, thus wanting
to minimize FP we would optimize the model in a way to maximize Recall and so

10

on. The Confusion Matrix is a versatile metric that provides clarity to the engineer
and helps with the visualization of the models. With this in mind, the matrix is
mainly on Classification models.

Deriving from the information extracted from a Confusion Matrix, Recall and
Precision are the metrics, models try to maximize. Unfortunately, because of the
Recall and Precision trade-off, improving one of the two comes at the expense of
reducing the other, it is impossible to for a method to strengthen both. F1- Score
(1) 1s the metric that finds the best precision and recall values. The formula is
presented in the following image.

2TP
F, = 2 % 1
1 2TP+ FP + FN 1)

The reason behind using a harmonic mean between the two values, and not an
arithmetic mean, is so that the result is not heavily influenced by outliers. For
example, in case of a Binary Classifier with Precision:0, Recall:1. Using an
arithmetic mean would give us a value of 0.5. Leading us to believe that the
model has some functionality. Instead, if we use F1-score the value is 0.
Correctly representing the uselessness of the model predictions. There are some
cases in which outliers are important to the process. For that the following
formula can be used instead.

precision * recall

Fp= (1+p7)~ 2)

(B2+precision) + recall

Fbeta (2) measures the effectiveness of a model with respect to a user who
attaches B times as much importance to recall as precision.

Area Under the Roc Curve (AUROC) is another popular metric that is used to
measure the performance of models. The terms used in the AUC-ROC curve are
TPR / Recall / Sensitivity at various threshold settings. Each Roc curve describes
the probability of a singular class.

1 1*

TRPR (Sensitivity)
TFR (Sensitivity

> . >
FFPR (1-Specificity} FFPR (1-Specificity}
Fig.1 Perfect model AUC =1 Fig.2 Useless model AUC = 0.5

11

AUROC represents the degree of separability. In Fig.1 we see a depiction of a
perfect model and in Fig.2 the depiction of a model that cannot distinguish the
class and makes random predictions. Typically, AUC above 0.7 is considered a fair
prediction, depending always on the problem. In the case of multi-class models,
we plot N number of AUROC curves where N number of Classes, using the One vs
All methodology.

Gini Coefficient is a metric derived from AUC ROC. It describes the ratio
between under the ROC curve and the diagonal line and the area above the
triangle. For more clarity, Gini (3) is calculated using the formula below:

Gini = 2 « AUC — 1 (3)

A value above 0.6 indicates a good prediction.

Moving forward from the Classification metrics, Root Mean Squared Error
(RMSE) (or Deviation) is the most famous evaluation metric used in Regression
models. It 1s quite sensitive to outliers, so preprocessing in the form of
standardization is advised, and punishing towards big deviations from the ground
truth, RMSE (4) is considered a robust tool.

RMSE = \/Z;L] (predicted—actual)? W

n

Again, there are different variations of RMSE depending on the data and
outputs. In the case of a model used on big numbers, a way to not penalize the
deviation as much is Root Mean Squared Logarithmic Error (RMSLE).
Additionally, RMSLE treats errors relatively, in numerical inputs of billions, the
error of a couple hundred points is almost irrelevant.

As opposed to classification models, in which an accuracy value of 0.8 is enough
to judge that our model is performing well as opposed to a random prediction
model with an accuracy of 0.5. The random model is treated as a benchmark.
Regression models however don’t have that guideline for comparison. R-Squared
(the coefficient of determination) metric compares our model with that of a model
predicting the mean value of our target from the train set. The formula (5) is:

R2= 7 — MSE (model) (5)

MSE (baseline)

Where MSE is our model Mean Squared Error against the real values and the
baseline model mean prediction against the real values respectively. The value of

12

the metric can be any real number, with 1 representing a perfect fit, negative
numbers worse prediction that the MSE (baseline), above 0.5, and bellow 1
indicate satisfactory outputs and numbers above one indicate an error in
computations.

In continuation, Adjusted R-Squared [36] has the additional functionality of
showing where the addition of extra features to the models is beneficial or harmful.
Looking at the formula, incrementing k reduces the denominator, increasing the
whole expression. In case, AR-Squared (6) doesn’t increase together with k, the
feature added doesn’t contribute towards the outputs.

Adjusted R® = 1—(1—R?) |—=—— (6)

n-— (k+1)

Last but not least, Cross-validation is more of a technique rather than a metric.
It is a resampling method that uses different portions of the input data to test and
train a model iteratively. Suppose that the input data are split into 10 pieces. Each
iteration produces a new model, which is trained on different 9 pieces in each
iteration and validated on the remaining one. This aims to flag problems like
overfitting and selection bias, by checking if all the 10 models are close in terms
of average accuracy. To be precise, the method described above is K-fold Cross-
validation.

‘ All Data

‘ Training data ‘ ‘ Test data

‘ Fold 1 H Fold 2 H Fold 3 ‘ Fold4‘ Fold 5 “\

Spiit1 | Fold1 || Fold2 || Fold3 | Fold4 || Fold5 |

Spiit2 | Fold1 || Fold2 || Fold3 | Fold4 || Folds |

Spiit3 Fold1 || Fold2 || Fold3 | Fold4 || Fold5 |

Spiit4 | Fold1 || Fold2 || Fold3 | Fold4 || Folds |

> Finding Parameterg

Spiit5 | Fold1 || Fold2 || Fold3 | Fold4 || Fold5 |/

Final evaluation { Test data

Fig.3 K-fold cross-validation depiction
In conclusion, in any project evaluation metrics is an essential aspect. The
metrics provide valuable insight into the model's performance and quality. The
ones used in classification problems, which is the type of the project, are Confusion
matrix, AUROC and overall accuracy.

13

1.1.c) Organizing benefits and Limitations of ML

ML excels in small, simple applications and doesn’t require big quantities of
data in order to produce accurate predictions. It can perform well with and without
labels and exploit outliers when needed, disregarding them elsewhere. ML is a
great tool and has a wide range of applications that are employed almost in every
industry. When it comes to high volumes of data, it is almost unavoidable for a
model to overfit and show biases. Especially when models, obtain part of their data
from humans. Some examples to demonstrate the big problem of bias are
Microsoft’s Tay Chatbot, Google Photos categorization of black people as gorillas
in 2015, Amazon's Hiring Al in 2018 which penalized the keyword “women” etc.

The key weakness lies within the learning approach. ML learns using the
labels/attributes and not so much the structure of a given object. Furthermore, ML
utilizes structured data, that can only be used for their respective specific purpose,
which limits its flexibility and usability. The production cost of structured data is
too high and there is not much reusability. In every new model build, the engineer
needs to adjust the model depending on the structure of the data, apply
preprocessing procedures, and fine-tuning for that specific purpose. This leads to
the next problem, human costs. ML models depend a lot on human intervention,
which 1s expensive and unwanted, especially in complex projects. As the
complexity rises, ML models are computationally hungry, requiring a lot of
processing power. All that with minimum transparency and interpretability to its
training process.

Lastly, there are the ethical problems. The two most important ones are
Violation of Privacy and Unethical use. As it is understood, models often categorize
human activities, data mine their preferences, and actions to offer high-quality
predictions. The main conflict falls into the category of ‘who is in possession’ of
that data, the safety of the data, and misuse of conduct by big companies.
Secondly, the cases where AI Chat models have been used for the production of
malware, weapons, and other harmful applications such as WormGPT.

In general, ML scales poorly no matter the approach but its usefulness is
undisputed. Ethics in Al is a field to be considered in the future since it is not
hindering the technology directly. The main reason ML fails is due to overfitting,
as a method it is not suited well for huge amounts of data. It is suited best for
small applications rather than complex ones.

14

1.2 Deep Learning

Once again, for reasons of comprehensibility, it is vital to understand that NNs
are the cornerstone of DL. Model are based using some type of NNs that focus on
understanding a task on a very “deep” level. So, DL is a subset of ML, which works
with NNs that consist of 3 layers or more layers. The term DL was introduced to
the ML community by Rina Dechter in 1986, and to artificial NNs by Igor
Aizenberg and colleagues in 2000, in the context of Boolean threshold neurons. A
pioneer in DL is Geoffrey Hinton, who in his career has countless contributions to
the field. NNs attempt to mimic the behavior of the human brain. In order to be
trained, large amounts of data are needed and as a result powerful processing
hardware i1s also required.

Input Layer Hidden Layer Output Layer Loss Function

Fig 1. A basic NN with three layers. (not including Loss Function)

DL is used to create a lot of today’s applications and services, that contribute
towards automation by eliminating physical tasks without human interference.
Some of the sort are autocorrect text editors, voice-command applications, self-
driving cars, face recognition, etc. In order to train NNs, data in raw forms is used,
such as raw text or images, forming weights and biases to produce a prediction.
The layout of a typical NN consists of an input layer, a hidden layer and an output
layer. There can be a NN with a single layer, but extra layers help with feature
extraction. Each layer contains interconnected nodes, build upon the previous
layer in order to refine the data extraction process. This process is called forward
propagation. For example, consider images of animals (cats, dogs and horses) in a
simple NN having a hidden layer with 3 nodes where each is trained and tasked
with recognizing one category of animal based on its facial features. The nodes
output a value which is a weighted probability, and it describes whether the input
fits the data that were trained to identify. The input and output are called visible
layers and all the between are called hidden layers. Another important process is
backpropagation, which like gradient descent is used to calculate errors in
predictions, and is used for fine-tuning the model. Combining Forward and back
propagation is what makes the Network learn.

The above series of steps describe the simplest model possible, where in reality
NNs are extremely complex. Building a model and finding new ways to build

15

models is what DL primarily focus on. In this chapter, we will investigate the
different types of DL NNs and their various applications.

16

1.2.a) Models and Applications

There are many types of NNs and even more models are built around them
daily. The rapid growth in number of the models is caused by the constant need
for improvement. Even if it is by a margin of 5%, it is enough to be called a new
model. DL models are generally used in the field of Computer Vision, Speech
recognition, and Natural language processing (NLP). Additionally, since DL is
tasked with making predictions in complex applications, a lot of layers from
different types of NNs just blend together. For example, our project falls into the
single category of Computer Vision as it is but if we wanted to add more
functionality to it, it would be hard for it to be categorized, i.e., self-driving cars.
The main focus of this chapter is to present some of the basic types of NNs. Their
respective properties differentiate them, and their applications.

Convolutional Neural Networks (CNNs) are composed of an input layer, an
output layer, and one or more hidden layers. Their key difference is that the
neurons are arranged in a three-dimensional form representing the width, height,
and depth of dimensions. This way, it allows for 3D inputs to be transformed into

an output volume.
ir— g | @
| (,; #5’: i b L
1‘ X ‘..‘. 1 e (3
— | S - 2 <
".D == E‘ ‘ O
Inpul image Cenvolutions Pecling Fuly Comected

Fig 1.2.1. Example of a CNNs function.

The hidden layers contain combinations of convolution layers, pooling layers,
normalization layers, and fully connected layers. CNNs are widely known for their
feature extraction ability, they are not only used in Computer Vision, in contrary
with popular belief, but in every field (NLP, speech recognition, processing
systems, etc.).

T et
R R

N
t
o ojo

Veartica! Edge
{absolute value)

Fig 1.2.2. Example of feature extraction using Convolutions (Vertical convolution)

Each model created using CNNs is not the same. There are key differences,
varying between the desired outputs and execution time, of course, both while
maximizing accuracy. For example, some models focus more on object detection
precision (ResNet) while others try to minimize execution time with the best
possible accuracy (YOLO). The most notable ones that were taken into
consideration for this project were YOLO, ResNet, VGG, Faster R-CNN, and SSD.

17

Following, Recurrent Neural Networks (RNNs) are a generalization of feed-
forward NNs that have internal memory. Used mainly for time series problems,
this model leverages the past outputs to predict each new input. In other words,
for every input of data, the output of the current input depends on the past
computation.

Fig 1.2.3. Example of an RNN structure.

Each output is copied and fed back to the RNN. RNNs have many applications
in stock market predictions, text processing (Grammar corrections, Co-writer bots,
Translations, etc.), and also as Sentiment Analysis. It performs best when
combined with sequential data. Each new sample of data is assumed to be
dependent on the past ones and that together with the iterative nature is this
model’s key feature. The disadvantages of RNNs are Gradient vanishing and
exploding problems, which translates into Poor Performance, Low Accuracy, Long
Training Periods for vanishing issues and identity Initialization, Truncated Back-
propagation, and Gradient Clipping for the exploding issues respectively.
Ultimately leading to difficulties in training RNNs. In order to solve the vanishing
gradient as an issue an improved type of RNN was created, Long Short Term
Memory (LSTM).

Lastly, Generative Adversarial Networks (GANS) are the last NN we will look
into, due to their useful applications. The main concept in a GAN is of two NNs
contesting one another in the form of a game. Given a training dataset, one NN
assumes the role of a generator and the other the role of a discriminator. The
model aims not to procure good examples on the trained data, but rather compete
in which NN performs better. The end results are synthetic data produced by the
generator which are able to fool not only the discriminator but the human eye as
well. Since the model is eventually able to produce realistic high-quality results,
from images to videos, it has a wide range of applications as a generative tool, and
that is only focusing on the generative NN. GANs started as a model to generate
data for unsupervised learning tasks but also proved useful for semi-supervised
learning, fully supervised learning, and RL.

18

man man woman

with glasses without glasses without glasses woman with glasses

Fig 1.2.4. Example of GAN-Generated Faces. (Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks, 2015.)

In Computer Vision, other than synthesis of new images, GANs can be used to
filter through unwanted noise in the data preserving the original. Such an
example is removing the rain from an image (H. Zhang, et al. 2020, Image De-
Raining)

These are only some of the ANNs that DL has to offer. Some are
straightforward like GANs and RNNs while others are memorable for their
complexity and lack of transparency during training (CNNs). One thing is for sure,
the appliances of these algorithms are vast and invaluable. It is important to note,
that there are other NN algorithms equally important, that this section only
scratched the surface of, namely Multilayer Perceptrons, Autoencoders, Modular
NNs, and Feed-forward NNs. Next, the focus will be shifted towards the various
limitations of DL.

19

1.2.b) Limitations of Deep Learning

DL has numerous capabilities as a tool, but it is far from perfect, it comes with
a lot of disadvantages no matter how impressive the results it produces. From
their data hungry nature to their fitting title as “black boxes” and their danger of
overfitting nonetheless. It is difficult to discern which is more important
depending on the problem, importance changes. What all NN have in common is
the need for enormous computation power, measured in flops (7), for its training.

FLOPS = cores * —2<&5 , [LOPS (7)

seconds cycle

To begin with the models limitations, NN models consist of numerous layers,
when building a new model and there is a need for a better performance at a
specific sub-task the first idea would be to add more layers, which is incorrect.
Adding more layers, may bring more functionality to the sub-task but it can also
burden the model with overfitting and ultimately reduction in accuracy. This falls
directly under the lack of interpretability. DL models, especially those with high
complexity and many layers are hard to understand the prediction process. Hence,
hard to pinpoint errors or biases, very important fault when the task is associated
with human lives. Those Errors can belong either to Data type or Structural type.
Data type errors caused by the Quality of data, noisy, incomplete or biased data
can affect the performance negatively. Additionally there can be insufficient
amount of data the NNs need, which is easily identified plotting each model's
learning rates. Structural type, omitting the lack of transparency, can also be
caused due to the complexity of the problem combined with the lack of prowess.
Any NNs in order to be trained require significant computational power as well as
for execution. This is not a task for an everyday computer, it requires powerful
GPUs and enormous amounts of memory, making it environmentally expensive.
In a recent research, it was estimated that in order to minimize the error to 5% of
the famous ImageNet model it would take “an additional 567x more computing
power” [3], suggesting that focus should be shifted towards algorithmic
improvement to reduce the computation intensity and ML’s computation efficiency
other than the current DL approaches.

Last but not least, what NNs learn are relationships between variables, which
may or may not have underlying connections or represent features. NNs lack in
contextual understanding, which can be very limiting. Finding ways to
contextualize raw information is something to be considered [4], while it could be
argued as implausible taking into consideration data biases.

20

Polynomial Exponential
Benchmark Error Rate

Computation Environmental | Economie Computation | Environmental | Economic
Required (flops) Cost (CO2) Cost (%) Required (flops) Cost (CO2) Cost ($)

Today: 9.00% 102 10° 108 1024 109 107

ImageNet Target 1: 5% 104 10% 10" 1ot 108 1ot

Target 2: 1% 10 1016 1016 10%2 1074 1075

Today: 38.7% 10+ 104 10° 102 10 10°

MS COCO | Target 1: 30% 102 10° 10° 1024 107 10°

Target 2: 10% 103 10t 101 10 1041 1032

Today: 9.4% 1022 10 10° 1022 1P 10°

SQuAD 1.1 Target 1: 2% 102 10t 10t 1071 1034 1

Target 2: 1% 104 1pte 1018 L0# 107 107!

Today: 5.4% 1024 10° 10° 1024 109 107

CoNLL 2003 | Target 1: 2% 104 1022 1022 105! 104 104

Target 2: 1% 10% 10 103 1020 10102 10103

Economic cost from [3]

In conclusion, there are three main issues with DL models. The high
complexity and lack of ambiguity when it comes to training, predictions and
overfitting. Secondly, an enormous quantity of data is required for training.
Lastly, training is computationally costly with no means of improvement,
currently. Also, a lot of research and practice is required to gain experience with
models and their operation functions. These are the walls faced when choosing to
work with DL and NNs.

21

1.3 Machine Learning vs Deep Learning

In computer science, terms are used interchangeably, leading to profane
confusion. By now, there should be no confusion, only the understanding of each
technology’s approach to building models, their core, use cases, outputs, and
limitations. Slowly leading to a more concrete conclusion to their key differences,
strengths, and weaknesses. As the need of DL and ML models is constantly rising
and will continue to grow, from an engineer’s perspective, there should be no
hesitation about which technique to choose for each presenting problem.

Traditional ML models are chosen when the data available is scarce and there
1s a foolproof path towards the solution. Which can also be translated as the
problem isn’t very complex in nature. Building and training small models is cheap
computationally and requires minimum human maintenance. Also, their accuracy
outperforms those of DL due to the lack of data. Mind that ML’s scalability is very
impotent. On the other hand, DL is chosen when the data available is enormous
in size and the tasks are rigorously complex. Can be used even if the
understanding of the problem’s domain is insufficient due to its extraordinary
exploratory capabilities. The technique stands out when it comes to dealing with
multidimensional problems (Images, NLP, speech recognition, etc.) provided that
one has enough high-end infrastructure to train it. DL will always outperform ML
model’s accuracy given enough data and is also easily scalable. They are harder to
fine-tune and very costly to build.

Both, ML and DL, lack clarity when it comes to how they produce results, but
being able to visualize the training process and predictions helps out a lot. From
that perspective, ML has an advantage over DL since it is employed for relatively
small problems.

All in all, it falls down to data, complexity, and available resources. DL is best
suited for handling high-complexity decision-making recommendations, speech
recognition, image classification, etc. in essence, large-scale problem-solving. On
the contrary, ML is suited for small simple decision making, recommenders,
predictions, classification, and dimensionality reduction. Fast and efficient when
errors are permissible and include no mortal threat.

22

Chapter 2 Programming Languages, Tools, and
Libraries

Onward with the hands-on stuff, an important role in creating the project is
the ability to choose among the right programming tools. In our case, it is obvious
enough that we are going to use High-Level languages to create the model. Using
a low-level programming language can have its perks in terms of compilation
speed and faster computations, but setting up the whole NNs structure would be
very time-consuming at the very least not taking into consideration the
complexity. Build-in garbage collector is one of the other convenient tools high-
level languages offer that is necessary for Al applications. Nowadays, aside from
the already established programming languages such as Python, dJava,
JavaScript, C++, C# there are others worth mentioning such as R, Scala, Julia,
and Ruby always taking into consideration the deployment boundaries of the
project. There are a lot of variables to contemplate when choosing a programming
language for any project such as the scale, available resources, etc. This
introduction aims to specify a majority of the existing programming languages,
used for Al applications. Briefly mention their core distinctive features, explaining
the thought process behind them.

Starting with Java which is a very powerful language, easy to write, easy to
debug and to top it off multiplatform. Especially prevalent in the mobile app
department as well, Java is a prominent candidate, with built-in garbage collector
and many many more tools like Swing, Standard Widget Toolkit, and many
libraries using Deeplearning4j (DL4) as their base. DL4 is a major open-sourced
DL library that is written on Java and used for a variety of applications such as
network intrusion detection, cybersecurity, anomaly detection in industries such
as manufacturing etc. Java is and will always be a core option to consider in every
kind of project, not only Al-related.

Next on the list is C++, truthfully C++ 1sn’t amongst the most popular of choices
but it is widely used throughout the industry. C++ has exceptionally fast
compilation and also 1s very efficient, in exchange for being a complex language.
OpenCV (OpenCV. (2015). Open Source Computer Vision Library), one of the most
important computer vision libraries available is written in C++. In most cases,
C++ 1s used together with other languages to build Al applications but not as the
core language, but rather having a supplementary role.

A relatively new programming language Julia is also a potent tool. Since its
first version in 2018, Julia has been growing rapidly with Al popularity. The main
reason Julia is preferred is because it contains a built-in package manager and
support for parallel and distributed computing, a valuable asset for any Al project.
Its main library of interest is Flux [37] a ML and AI stack. Julia is another
possibility to consider, using its built-in parallelism, offering easy scalability
combined with cloud computing. Unfortunately, the language still has room to
grow in terms of community and libraries, in contrast to the other alternatives.

The next language to take into consideration is LISP [38]. Like C++, LISP isn’t
used to develop modern AI applications but enables prototyping through its
effective processing of symbolic information. The different syntax LISP uses and

23

the lack of modern well-developed libraries is what makes other languages eclipse
LISP.

Last but not least, the most famous and the one we will be using, Python [39].
Python may be the slowest, when it comes to its execution time and compiling
time, from all previous choices but it comes with great advantages. From the easy
syntax, making writing clear code and debugging it relatively easy, to its wide
selection of packages and libraries backed up by an enormous and active
community. Additionally, it has a variety of API frameworks and IDEs to choose
from, it 1s versatile and flexible, and also easy to interact with other applications
and code. What Python lacks in speed it makes up for with its community and
packages. One of the many examples, Cython is a module that translates Python
code into C. It has its limitations but combined with other libraries such as Numpy
is able to produce several times faster compile and execution times, overcoming
Python’s own shortcomings.

In conclusion, it is not just one programming language dominant over the
others, as always each language comes with its own pros and cons. It is healthy,
for the whole Al development application field to have variety, in order for
progress and innovation to bloom. Moreover, the existence of modern libraries is
important to build an application and also an active community in order to
maintain it.

24

2.1 The Adopted Libraries

As mentioned, Python has a wide variety of libraries to choose from in order to
develop an Al model. Namely among the best is Numpy, Tensorflow, Ultralytics,
Pytorch etc. In order to develop a stable and reliable application, the existence of
libraries is important, and also for maintaining them operational and future proof.
Vehicle detection can be done in a stream processing manner, supposing we have
the necessary resources available, GPUs with high VRAM, ten thousand plus cores
and at least 300 TPUs, or by Batch Processing in our case.

First and foremost, since image processing is one of the most frequent task this
program is going to perform, OpenCV is one of the most important libraries.
Opening video files, capturing frame by frame, concatenating, perform pixel
related operation such as grayscaling, bitwise_not and threshold selection.
Although there are other libraries out there to consider like scikit-image,
SimpleCv or TensorFlow, due to its C++ base code, OpenCV in Python is unrivaled.

Continuing with Pandas [41] and Numpy [40], almost in every scientific
program there are always reasons for Pandas and Numpy to be used, and those
reasons are data processing. Pandas is a library built on Numpy, that specializes
in every form of data manipulation, from saving to manipulation, Pandas handles
tabular formats and performs operations efficiently. On the other hand, Numpy is
used exclusively for mathematical operations on arrays. Pandas is a data
processing library and Numpy is a computational library specialized in arrays,
both combined provide powerful data structured functions, that are used for data
analysis (Pandas) or scientific data computation (Numpy). Our extracted data will
be saved into .csv format file, holding important information such as frame
number, car ID, bounding boxes, confidence, license plate etc. Most Al public
libraries depend on those two libraries in Python for data related task.

We are going to need a library for model deployment and for that ultralytics
was used. Since we are going to use already existing archetypes rather than fine-
tune or deploy new ones, ultralytics is a good fit, simplifying the training process
into a few lines of code, while providing all the necessary information about our
model's training process such as Learning rate, gradient descent, etc. In case there
was any reason to modify the model Tensorflow or Pytorch would be the library of
choice. In particular, Pytorch since Tensorflow has some dependency problems and
is infamous for its incompatibility with other frameworks and APIs.

For training the license plate detector cuda acceleration was used but not for
prediction generation, since we wanted to test the inference speed.

Lastly, the dataset used for training the LSP was obtained through roboflow.
Roboflow [42] is a wrapper around the Roboflow REST API, providing abstract
methods for interacting with Roboflow in Python code. The Python package offers
methods for managing projects and workspaces, uploading and downloading
datasets, running inference on models, uploading model weights, and more.

With Python as the programming language of choice, there are plenty of ways
to go around all the different parts of our project. With that being said, in the next
chapter we will go into more detail about the models that were used.

25

2.2 Model Architecture

As seen on the previous chapter of DL, the most fitting algorithms for
Computer Vision, and object detection in particular, are CNNs. A traditional
object detection pipeline consists of three main stages, Region Proposal
Generation, Feature Extraction, and lastly Classification. Current modern models
have evolved and are either two-stage or one-stage type. A two-stage architecture
(1) produces region proposal (Region proposal network RPN), by importing ML
methods or DL, followed by (2) Object Classification on the features extracted by
(1) from the proposed regions. These algorithms achieve significantly higher
accuracy, at the cost of high inference speed. The performance of frames per second
1s less than that of one-stage detectors. Those models are Region CNNs, Faster R-
CNN or Mask R-CNN. On the other hand, One-stage detectors function the same
way without the RPN, this process is significantly faster and therefore can be used
in real-time applications. The drawback is that the algorithm prioritizes inference
speed but has a loss of accuracy when it comes to detecting small-shaped objects,
groups of objects, and odd-shaped (possibly blurred) objects. Some of the models
are YOLO, SSD, and RetinaNet. These types of models are generally the fastest,
structurally simple, and efficient when compared with multi-stage detectors.
Lastly, another important factor that we have to take into consideration is the
‘backbone’ of those models. The backbone of an NN is the core architecture that
supports the learning process and enables the network to extract meaningful
features from the input data. It dictates the performance of the network in DL
tasks, and choosing the right backbone is essential to its success. The focus of the
chapter is to investigate some of the popular models used in object detection.

P e — — —— — — — — —

Prediction Head

1

1

[_ Backbone 1 Neck 1 Region-free !
¢ 1

1

1

1

Region-based
Prediction Head

Fig. 2.2.1 Structural difference of One and Two Stage Detectors [8].

Starting with Faster R-CNN (Two-Stage) [5], produced by extending R-CNN
and Fast R-CNN models. Adding RPN which is a fully convolutional network for
generating proposals of bounding boxes and aspect ratios. Faster R-CNN
introduced the concept of anchor boxes, which are fixed bounding boxes depending
on the class and are widely used in almost every modern model. As depicted in
the picture, the two stages are RPN and Fast R-CNN. The backbone network is
usually a dense CNN, originally VGG-16 however it was observed that replacing
1t with ResNet offers significant improvement in performance.

26

Fast R-CNN * Map
N % Rol Pooling Fully Connected Layers

\\ o

Fig. 2.2.2 A Faster R-CNN structure.

The strength of R-CNN when combined with multi-layered backbone NN, i.e.
ResNet-101, offers the best possible Average Precision over Small, Medium, and
Large objects, of course at the cost of time. Suited better for medical diagnosis
related feature extraction problems.

Single-shot detector (one-stage) (SSD) was the first to achieve an accuracy that
rivals two-stage detectors [6]. Brief SSD has two components: a backbone model
and an SSD head. The backbone model is typically a network like ResNet, from
which the final fully connected classification layer has been removed. The SSD
head is just one or more convolutional layers added to this backbone and the
outputs are interpreted as the bounding boxes and classes of objects in the spatial
location of the activations of the final layers.

i
| Originalnredicmnla:per |

convd_x conS_x ‘ﬁ_,

comd_x 55D Layers
pooll

eonvl

Fig. 2.2.3 Single Shot detector structure.

YOLOv3(one stage) [9] has the advantage of being much faster than other
networks and still maintains accuracy. It allows the model to look at the whole
image at test time, so its predictions are informed by the global context in the
image. YOLO and other CNN algorithms “score” regions based on their
similarities to predefined classes, in our case that would be cars and license plates.
High scoring regions are noted as positive detections of whatever class they are
most likely to identify as. In practice, in a live feed of a railroad, YOLOv3 can

27

detect different kinds of vehicles depending on which region of the video scores
highly in comparison to the predefined classes of vehicles. In conclusion, the
accuracy of YOLOv3 increases the bigger the amount of data available for training,
perfect for traffic related applications since the number of different vehicles is
plentiful.

1] Convolutional 1x1 | Up Sampling Convolutional Set [| Comv2dix1 [Concatenate | Resicual

| Predictone | | Predictiwe | | Predictthree |

Convolutional 1+1
Convolutional 33
Convolutional 1x1

LNld

125 [EINoATo)y

LE | I " — -i"' = = —I[;—]"
L YWPW LY PP

Fig. 2.2.5 YoloV3 structure by [10].

x,

|

il

Convelutional 1x1
Convolutional 3=3

7
g
&
g
E

-]

To summarize, two stage detectors offer more precise outputs slowly compared
to other models and are more suited for Computer Vision applications in Medicine.
On the other hand, one-stage detectors offer decent results extremely fast, usually
depending on their vast amount of training time to cover for their hastiness. Since
our project aspires to be concurrent one-stage detectors are more suited for the
job, reducing the computational burden and having the optimal inferance speed.
Next on the list is to take a peek into the evaluation of the models and their
outputs.

28

2.3 Evaluation Metrics

In Object Detection, it is insufficient to know just about the class of the
1dentified object. There are other variables that quantify the performance of the
model such as the speed of the Training, the speed of the Inference, Average
Precision and Recall depending on the threshold of our problem, typically 0.5. Still,
those are just the tip of the iceberg, it is also important to know to what extent the
model can identify different-sized objects.

Computational Time (ms) Mean Average Precision

Architecture Feature Extractor
Training Inference AP AP,: APy APs AP, AP_
RetinaNet FPM ResNets) 7562 47.47 2713 444 28.0 1.0 248 642
RetinaMet FPN ResMet101 111.36 57.74 281 456 290 11 256 857
Retinalet FPM ResMNeXi101 156.57 67.91 286 464 291 12 260 867
RetinaMet FPN ResMet152 220.20 74.20 254 462 289 12 260 862
Retinalet FPN MobileMet 56.20 33.02 251 304 243 13 200 6573
RetinaMet FPNLite MobileNet\V2 50.21 26.12 246 382 236 11 180 558
Faster RCMM FPN ResMet50 86.23 48.00 2805 479 306 28 298 853
Faster RCMM FPMN ResMet101 119.52 58.10 309 4909 323 32 312 6860
Faster RCMM FPN ResMext101 161.86 66.21 36 508 33.0 34 320 &7.0
Faster RCMM FPM Res2MNet101 151.30 G3.78 j24 517 34.2 36 332 683
Faster RCMM FPMN ResMet152 210.20 75.30 N7 52 333 34 315 &7
FCOS FPN ResNets0 7514 42 25 272 453 272 22 47 621
FCOS FPN ResMet101 103.50 52.59 289 471 297 27 2685 ©B46
FCOs FPM ResMNeXi101 145.23 G0.87 200 478 294 30 268 643
YOLCOv3 DarkMNet-53 82.56 40.19 286 531 292 55 302 534

Fig 2.3.1 Example of evaluation metrics on Yolov3 and Faster RCNN in [11].

The evaluation metric used to extract the Mean Average Precision is
Intersection over Union (IoU). IoU is calculated by dividing the overlap between
the predicted and ground truth annotation by the union of these. As we can see
the Average Recall is not calculated, that is due to the nature of our predictions,
Recall doesn’t play an essential role as Precision in our case. In the case of Cancer
cell detection, it would be the opposite. Lastly, the meaning of the thresholds
dictates whether the predictions will be a True Positive or False Positive. As
previously mentioned, the typical IoU threshold is 0.5, when needed to be stricter
with the outcomes of the model 0.7~0.75 is considered a strict threshold.

Other important metrics we are going to keep track of can be categorized as
Box Loss, Objectness, and Classification oriented all using Mean Squared Error.
Box Loss represents the ability of the algorithm to detect the center of an object

29

and how well the predicted bounding box covers an object. Objectness is a measure
of the probability that an object exists in a proposed region of interest.

If the objectivity is high, this means that the image window is likely to contain
an object. Classification loss gives an idea of how well the algorithm can predict
the correct class of a given object. Keep in mind that these metrics are more
‘personalized’ to our task and cannot be adapted by all the other models.

To sum up, when it comes to traffic-related object detection, the evaluation
metrics used to measure a model's quality are its computational cost and Average
precision or Average Recall. There are also extra metrics to keep track of while a
model is iIn its training phase, that likewise help measure the quality of the
predictions and not so much as the model itself. All in all choosing metrics is
ultimately related to the application and the qualities of a ‘good’ model are
interchangeable.

30

Chapter 3 Autonomous Recognition of Vehicles
and Plate Detection

By now it was established that NNs projects are complex in nature and
expensive to train and run, but can offer a wide range of applications. Object
Detection specifically employ CNNs algorithms that are one of the most composite
of convolutional layers, normalization layers, Max Pooling layers, and Upsample
before producing predictions and can sum up to hundreds of layers. The fulfilment
process can be summarized in the simplified Flow Chart below. Our proposed
system 1s a single device end-to-end application, which can easily be scaled to edge-
computing with small adjustments.

Autonomous Recognition of Vehicles and Plate Detection Flow Chart

Fig 3.1. Flow chart of this Thesis research steps.

Throughout the intensive research, one can find not one way to implement a
similar project but multiple. It is in the eye of the beholder to choose his tools. In
our project first, we tested three famous models Faster R-CNN, SSD, and YoloV3
on the COCO 2017 dataset. The model benchmark process revealed that the YOLO
algorithm was the fastest to produce results, with 0.03 sec/per frame as opposed
to 0.08 SSD and 0.1 on Faster RCNN, and was chosen as the model to be the core
of the application.

31

—
Faster R-CNN

Ground Truth time elapsed:0.1044

bowl 0.761

partemgaReson 0-995 person 0.893

chair 0.894 el phoqe 0.

24 &

chair 0.516

G |

- |)

fl chair 0.797 B d

4 =
— \

wn ann s
YOLOv3
time elapsed: 0.0343

v B
Fig 3.2. The results of SSD, YOLOv3, and Faster R-CNN tests.

After the model was selected, research was conducted into YOLO. The latest
version YOLOvVS, even though it has been abandoned by its original researcher
Joseph Redmon due to his disapproval of the militarized appliances YOLO might
produce, has an active community and is slightly better than its predecessor
YOLOvV7, more details on the choice will be on the corresponding chapter for the
model.

For the Vehicle Recognition part the pre-trained weights were chosen instead
of training a new model. The license plate detector was trained anew on a dataset
that can be found publicly available online, using the YOLOv8 architecture and
yielded satisfying results. Functions were implemented for a variety of purposes,
for example runtime estimation, designated file creation, video splitting into
frames etc. that can help expand the project in the future.

32

3.1 Yolov8

YOLOvVS is the latest of the YOLO series models, it is exceptionally fast real-
time inference on single-device applications. It is important to understand that
the inference performance of a model depends on the hardware available and is
not something constant to be measured. YOLOvVS has five different-sized models,
the general accuracy of those is presented below.

MODEL Size (pixels) | mAPval 50- | Speed CPU | Speed A100 | Parameters | FLOPs (B)

95 ONNX (ms) | TensorRT (M)

(ms)

YOLOvV8n 640 37.3 80.4 0.99 3.2 8.7
YOLOvS8s 640 44.9 128.4 1.20 11.2 28.6
YOLOvV8m 640 50.2 234.7 1.83 25.9 78.9
YOLOvSI 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

The scores are from test runs on COCO 2017 dataset and are from single model
single scale type [12,47] and the model show high precision 0.84, recall 0.969 and
mAP 95.10% in Table III [44] compared to the older versions of YOLO algorithm.
Another very important benefit of YOLOv8 is that it can support various
backbones, such as EfficientNet, ResNet, and CSPDarknet, providing us with the
flexibility to choose the best model for our specific use case. In our case, the
backbone is default CSP-Darknet53. YOLOvVS is constructed in a way that offers
adaptive training, optimizing the learning rate and balancing the loss function
during training, which leads to better overall model performance. Additionally, it
employs advanced data augmentation techniques, MixUp [45] and CutMix [46] to
improve the robustness and generalization of the model. Lastly, most of the
aforementioned are pre-build ready to deploy for the purpose of the task, without
limiting the ability to customize the inner structure of the model when deemed
needed. For example, in the hypothetical scenario where our task was to train an
Automatic Broken Bone Al system, to lower human error and help junior doctors
with limited experience, we would need to change the backbone to the ResNet
family which is focused on Object Identification (in case of small fractures in the
hands) and also change to a “larger” model with more parameters and higher
inference such as YOLOvVSI to maximize average Recall. All of which can be done
with minimum code writing. The default structure of the model is depicted in (Fig.
3.1.1).

33

YOLOv8 @ RangeKing
Backbone Head voLovgHead 5
YOLOV8 7 4 /} il CloU
Backbone / £ - e [5 [7 /}7 7/] - Detect 22X dereg max |/~ +DFL
- / T—€ { J J Bl
2 { k ‘ y 4 ; W) I o} — / / /// - Detect | // v
& = S -fO—(a) © {af ——— P4 y B A >
'y - [W T oo — / Detect T
- 4 & —{"car }— — 4 P3
& 4 = ; Loss
V- 4 A
Details
model d pt I w (width_mult t
hrwsc in n 033 0.25 T 20
* = 033 0.50 20
Conv m 067 075 15
k=1,5=1, p=0, \ 100 180 50
L x 100 125 10
640x640x3
h it
| wre_oul 80hlei1eck SPPF Cony
shortcut=True
Conv 0 hewx0.5¢_out it 1 hewre) Cgr‘w ks, p.c
k=3, s=2, p=1 P1 B oy k=1,5=1,p=0
hew=05¢_out k=3, s=1, p=1 |
hwx0.5¢ out e ™ P. o ’ G
: axPoo!
320x320x64xv . Conv — 4 k,osn“:;‘:
hw=0.5¢_out Bottleneck k=3,s=1,p=1 |
| shortcut=? (e _v-” wie MaxPool2d
Conv 1 L h<w«<05c_out 8) |
Sl ooie n §
k=3, 5=2, p=1 P2 | hcwiiti5c out Bottleneck MaxPool2d BatchNorm2d
- shortcut=False | hxwxc
Bottleneck Tone 4
160x160x128x shortcut=? Kod) ot CORCRE T
| howee i
A (i Conv Conv SiLu
caf 2 . k=3, 521, p=1 k=1,s=1, p=0
shortcut=True, n=3xd Concat Lhewse .
hwx05(n+2lc_out Detect Anchortres Assigner: TAL
ABIE1605128x Co i Conv d Conv d kc"”“"ZdU . Bbox.
onv k=3,s=1,p=1 k=3,s=1,p=1 ol L
k=1,5=1,p=0, adi] adid cedxreg max Loss
= it
Conv caf e] Conv i Conv) Conv2d | cls.
k=3, s=2, p=1 P3 shortcut =7, n | hewxe_out k=3,5=1,p=1 k=3,s=1,p=1 k=1 (5,:‘ p=0 {ose
80x80x256x c2f 15 80x80x256xw |
shortcut=False, n=3xd P3 Detect
: | 80x80x768x
c2f 4 | B0xBOx256x j
shortcut=True, n=6xd Stride=8 CEiCl 14 80x80x256x
80x80x512x !
16
80x80x256x Conv
| Upsample 13 s pet =
Conv 5 40x40x512x A 256
k=3, 5=2, p=1 P4 :
C2f 12 40x40x512xw |
s shortcut=False, n=3xd Concat 4
x40x512xw .
. 40x40%512xwx(1+1)
c2f 6 40x40x512x Feaneat i 40x40%768x
shortcut=True, n=6xd Stride=16 ca) = . =
40x40x512xw shortcutaFalse, n=axd. [pa Detect
. 40x40x512xwxr
il . 40x40x512
k=3, 5=2, p=1 P *x40x512xv
- Upsample 10 |
| 20%20x512xwxr ¥ Conv 19
c2f 8 k=3, 5=2, p=1
shortcut=True, n=3xd 20%20%512xwxr
20%20x512x
| 20x20x512xwx
20%20x512xwx 20%20x512xwx ’
SEE 2 Stride=32 e - Concat 20
20%20x512xwx(1+1)
Note: c2f 21 20x20x512xwx |
heightxwidthxchannel hortcit=Falsa nmind Ps Detect
Backbone Head

Fig 3.1.1 YOLOvS8 diagram by user RangeKing (https://github.com/RangeKing).

YOLOvVS is distributed using the ultralytics library and in cooperation with the
roboflow library, without the need to use the API, we built and employed our
models. Ultralytics is a library similar to TensorFlow and PyTorch, but rather
centered on model deployment, and roboflow for acquiring the dataset to train the
LSP, apply preprocess and data augmentation operations, such as resizing,
random horizontal flips, rotations, zooms, shifts, and many more. It is impossible
for every single image scenario of a license plate to be captured, taking into
account all the different weather, and lighting conditions. Preprocessing is
essential for both technical and performance reasons and so is Augmentation.
Both increase the robustness of the model and improve accuracy. After creating
the models, they can be deployed directly by ultralytics or loaded into other

34

environments such as TensorFlow or PyTorch. Example of code loading YOLOv8n
and our LSP after it is trained.

coco_model = YOLO('y pt')

license_plate model = YOLO('lsp detector.pt')

Python

Example of code for feeding frames into the model and using OpenCV for frame
capturing.

cap = cv.
Frum=
ret= T
while ret and fnum < 15:

final results[fnum] = {}

fnum+=1

ret, frame = cap.read()
if ret:

print{"NEW FRAME \n\n')

outputs = coco model (frame)[0]

In conclusion, YOLOv8n is the model used for both Vehicle Detection and
license plate detection. It is clear that other than the superior inference speed, it
also comes with a lot of customization capabilities. The main libraries ultralytics
and roboflow are more centered on the distribution, making it possible to deploy
and train with a few lines of Python code, but that neither limits the capabilities
of the models themselves nor the programmer as it can be loaded and modified
freely.

35

3.2 License Plate Detector

For the training of the License Plate (LSP) Detector a Tesla T4 was used in
order to minimize the training time. It is not important or impactful to the
performance of the model, whether GPU or CPU is used for the training process,
the only thing that changes is the amount of time to train the weights.

Creating the LSP Detector in our project can be separated into three steps. The
first step is to obtain a dataset with license plates and inspect it. The dataset used
consists of 10126 raw images. Generally, it 1s a good practice to have at least a
thousand images per class. In our case, we will use the Augmented version of the
dataset, consisting of 21174 1images training 87%, 2049 validation set 8%, and
1020 test set 4%. The Augmentation techniques applied on the original testing
1mages only are the following:

- Flip: Horizontal

- Crop: 0% Minimum Zoom, 15% Maximum Zoom

- Rotation: Between -10° and +10°

- Shear: +2° Horizontal, +£2° Vertical

- Grayscale: Apply to 10% of images

- Hue: Between -15° and +15°

- Saturation: Between -15% and +15%

- Brightness: Between -15% and +15%

- Exposure: Between -15% and +15%

- Blur: Up to 0.5px

- Cutout: 5 boxes with 2% size each

from roboflow import Roboflow
rf = Roboflow(api_key=": .
project = rf.workspace(pr s").project("lic

dataset = project.version(4).downlo

loading Roboflow workspace.. .

loading Roboflow project...

Dependency ultralytics<=8.0.20 is required but found version=8.0.172, to fix: “pip install ultralytics<=8.0.20"

Downloading Dataset Version Zip in License-Plate-Recognition-4 to yolov8: 100% [998178198 / 998178198] bytes

Extracting Dataset Version Zip to License-Plate-Recognition-4 in yolov8:: lae%_l 48488/48488 [00:11<00:00, 4078.30it/s]

Fig 3.2.1 Code that downloads the chosen dataset.

The YOLO algorithm performs better with more data so it is advised to be
greedy. We will check for overfitting after the training is over. The next step is
training the model. As mentioned a Tesla T4 was used, publicly available by
Google collabs, in order to minimize the training time. The model was trained for
20 epochs. It is good practice to first train a model around 20~25 epochs, then see
how it performs and tune its hyperparameters.

20 epochs completed in 2.422 hours
Optimizer stripped from runs/detect/train/weights/last.pt, 6.2MB
Optimizer stripped from runs/detect/train/weights/best.pt, 6.2MB

Validating runs/detect/train/weights/best.pt...

Ultralytics YOLOv8.0.172 & Python-3.10.12 torch-2.0.1+cull8 CUDA:@ (Tesla T4, 15182MiB)
Model summary (fused): 168 layers, 3005843 parameters, @ gradients
Class Images Instances Box(P R mAPSe mAP50-95) : 160%| | c4/64 [00:19<00:00, 3.33it/s]
all 2046 2132 0.976 8.962 8.983 0.703

Speed: @.2ms preprocess, 2.2ms inference, @.8ms loss, 1.6ms postprocess per image

36

Fig 3.2.2 Final output of the training process.

The training took 2.4 hours and we can see that the estimated mAP50 1s 0.983
and mAP50-95 is 0.703. The models seem to be performing very well on the testing
data. Small notice that the last line “Speed: 0.2ms preprocess, 2.2ms inference,
0.0ms loss, 1.6ms postprocess per image” with the T4 inference is taking about
4ms per frame more or less, which means the LSP model could theoretically be
used for real-time application with 250FPS give or take. The reason we are
highlighting this information is that the final project is done without the T4 Tesla,
on a CPU that is significantly slower.

The final step is to evaluate the model. Conveniently most of the evaluation
metrics are automatically generated by the ultralytics and during training the
most crucial metrics were monitored automatically. There is no reason to tamper
with any of those automatic processes, in the first iterations but it is possible. The
configured values are performing well in general. For example, the learning rate
usually 1s the best at 0.01.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)

—] 0.96
1.25 4 1.2 4 results 12504 0.98 M\.
smooth : [’Q

1.201]] 0.941
1.0 1.225 0.96 4
115

084 1.200 4 0.92 1
1.101
1.175 1 0.94 1
1.05 1 0.6 0.90 1
1.00 \.""».,, 1130 \ 0.92 -
0.4 4 . 0.88 4

T T T T 1.125+4 T T T T T T
10 20 10 20 10 20 10 20 10 20

val/box_loss val/cls_loss val/dfl_loss metrics/fmAP50(B) metrics/mAP50-95(B)
0.700 4
1.4 0.7 \ 1359 0.981 0675 r“’”

1.30 4 0.97 4 0.650 1
1.3 A 0.6 1

1.251 0.96 - 0.6251

0.600
1.2 0.54 1.20 4

\\\‘. 0957 0.575 1
0.4 \.-. 115 0.550

T T T T T T 0.94 - T T T
10 20 10 20 10 20 10 20 10 20

1.1

Fig 3.2.3 Plots of the most important Eval Metrics of the LSP.

From the Evaluation metric plots we can clearly see that the training process
easily could be extended to 40-50 epochs since Box Loss was decreasing at the time
of interruption and in general no curve converged, which is considerably logical
result with such a small amount of epochs. We can safely assume that the model
1s not overfit by any means. The mAP seems to be promising. Interpreting
evaluation metrics can only get us so far since there isn’t any indication of the
model acting up, it is time to test it on real inputs. From the batch testing Fig
3.2.4, the results are impressive but then again, we need to test on new data.
Deliberately we chose a variety of video quality for the model to be measured on
and as suspected on low-quality videos the LSP didn’t perform well, but on
medium to high-quality videos, the LSP achieved a better overall outcome. That
happens because the YOLOvS8 algorithm works with 640-pixel inputs, and the
higher the quality the better it will perform. Additionally, we chose the ‘nano’
version, the smallest of the 5, which has the smallest number of parameters to

37

work with, that is the trade-off of choosing speed over accuracy. A factor to keep
in mind when deploying the project.

CarlLongPlateGen1007_jpg.

Cars257_png_jpg.rf.d8fc2c3

d 'e~a.';'ﬂ:ﬂ_, {tB2806adtiBeipeg_jpg.rf
- PR)

Fig 3.2.4 Test batch predictions of the LSP.

The LSP detector is set, we wrote a small program that takes a video, applies
the model frame by frame, and saves it as a new video. Through Images 3.2.5-8
the libraries are presented as well as the execution. The detector finds the
bounding boxes above the given threshold and using the OpenCV module the
vizualization is created. In the last image, we noticed that each frame takes
roughly 170~240 ms and up to 400 ms rarely, which is very slow and cannot be
used for real-time application, but that is because the LSP doesn’t utilize the GPU

and runs solely in the CPU of the system which is an Intel(R) Core(TM) 15-3350P
CPU @ 3.10GHz.

38

from pathlib import Path

import cv2 as cv

#run timer_class.ipynb

Fig 3.2.5 Libraries used.

cap = Vi ture(
empty=0

ret, frame = cap.read()
print(frame.shape)

H, W, f hape

/i p_out.mp4d', cv.VideoWriter_fourcc(*'MP4V'),int(cap.get(cv.CAP_PROP_FPS))

(1ese, 1920, 3)

Fig 3.2.6 Video selection, setting up the VideoWriter.

threshold = 0.5
while ret:
results = model(frame)[@]

for result in results.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = result

if score > threshold:
.rectangle(frame, (int(x1), int(y1l)), (int(x2), int(y (@, 255, @), 4)
v.putText (frame, results.names[int(class_id)].upper int(x1), int(yl - 18)),
cv.FONT _HERSHEY SIMPLEX, 1.3, (@, 255, 0) v.LINE_AA)

out.write(frame)
ret, frame = cap.read()

cap.release()
out.release()
cv.destroyAllWindows ()

Fig 3.2.7 Frame by frame LSP Detection and save.

preprocess, 157.8ms inference, 1.8ms postprocess per image at shape (1, 3, 384, 648)

@: 384x649 1 License_ Plate, 166.0ms
Speed: 4.8ms preprocess, 166.8ms inference, 2.8ms postprocess per image at shape (1, 3, 384, 640)

Fig 3.2.8 Example of time needed by the LSP Detector to process each image.

The LSP detector is done. We have a pre-trained model for Vehicle Recognition,
we created an LSP detector, it 1s time to combine the DL models with code and

39

finish the project. There are still a lot of variables to take into consideration. For
example, when applying the model at intersections there is the probability that in
rare cases LSP detector can confuse license plates with other objects, for that
precautions must be taken in the form of a stricter confidence when predicting.

40

3.3 Execution and Outputs

To establish that the LSP doesn’t accidentally detect any sign caption, we
decided to use redundancy in many forms, the pre-trained YOLOv8n will be used
to make vehicle predictions, and then on the predicted bounding boxes the LSP
Detector will be used. Next, we would need to extract the information from the
LSP detector with an Optical Character Recognition (OCR) tool and save it to
a .csv file along with some necessary information about the car, frame, and
confidence of the prediction.

The purpose of the final program is to successfully extract the necessary

information from a video, not visualize the results.
The execution process has three main steps. The first step is to use the pre-trained,
on COCO 2017, YOLOvV8n on each frame to detect Vehicle types and extract their
locations. Searching through its class attribute we find that class IDs of [2,3,5,7]
are Vehicle types. Furthermore, we employ a tracking algorithm for 2D multiple
object tracking in video sequences which is called SORT in order to assign each
Vehicle a unique ID.

while ret:

_ fnum+=1
~ final_results[fnum] = {}

_ ret, frame = cap.read()
_if ret:

print('NEW FRAME \n\n')

outputs = r.c:c:::r_model{ﬂ‘ame}[:-_-“'i]l

outputs = []

for output in outputs.boxes.data.t (variable) output: Unknown
x1,yl,x2,y2, score, class id = output

if int(class id) recognized:

outputs .append([x1,y1,x2,y2,score])

track_ids = mot_ tracker.update(np.asarray(outputs_))

Fig 3.3.1 Vehicle detection and assigning unique ID with SORT.

41

Step two, now that we have bounding boxes of images containing Vehicles we
cross-reference the predictions of the LSP with the predictions of the first model.
We prepared many utility functions that perform such actions, which are
contained in the video_functions.py file. The get_car() takes the tabular data and
tries to find a licence plate detected by the LSP model in the Vehichle predictions.
If there is a licence plate match, we proceed to the third step, extraction and
temporary save.

license_plates = license_plate model(frame)[@]

for license_plate in license_plates.boxes.data.tolist():
x1,y1,x2,y2, score, class_id = license_plate

x1_car,yl car,x2 car,y2 car,id car = get_car(license_plate,track_ids)

Fig 3.3.2 Cross-referencing Licence Plates and Vehicles.

After finding the connected Vehicles and Licence Plates, we need to preprocess
them Fig. 3.3.3-5. This part is necessary in order to increase the performance of
our OCR. The OCR module used is pytesseract, which recognizes character
patterns. The model was trained using scripts so in order to maximize the outputs,
it would be best for the images offered to be in a similar form and have white
background and black letters as much as possible. Cropping the images with the
licence plates, converting them into grayscale, applying a filter threshold for the
pixes, and then bitwise_not, before feeding them to the OCR. Grayscaling the
image covers the case of multicoloured licence plates and letters. Afterwards, the
croped licence plates are fed (Fig. 3.3.3-3.3.5) to the OCR, keeping the results that
have the highest score. The reasoning behind this is once more to widen the

horizon on all the possible cases with different multicoloured licence plates.

Fig 3.3.3 Grayscaled Licence Plate. Fig 3.3.4 After Pixel Threshold Licence
Plate.

Fig 3.3.5 Bitwise not Thresholded Image.

After running some quick tests in Fig 3.3.8, we noticed that the OCR predicted

42

NAI5NRU while the ground truth was NAISNRU. It is pretty common with OCRs
to mistake some characters for others. One of the drawbacks of using pytesseract
is that the images need to be further pre-processed. Making some further
adjustments, in particular image resize, we managed to correct the errors in Fig
3.3.9, at the cost of execution time. There are many different factors that we need
to take into consideration before processing any images. Some may need different
preprocessing methods in order to produce the best possible result and it is not
possible to account for every single of these factors. Some examples are the
different lighting conditions, noise of the image, angles etc.

licence_plate_croped = frame[int(yl):int(y2),int(x1):int(x2),:]

license_plate_croped_gray .cvtColor(licence plate croped, cv2.COLOR_BGR2GRAY)
_, license_plate_croped_thresh _threshold(license plate croped_gray,118,255,cv2.THRESH_BINARY_ INV)

license_plate_number, license_plate_score = read_license_plate(license_plate croped_gray)
license_plate_number2, license_plate_score2 = read_license_plate(license_plate_croped_rev_thresh)

Fig 3.3.6 Preprocess licence plates and character extraction.

If the character read by the OCR fits the licence plate criteria then it is saved
in the format frame nmr, car_id, car_bbox, license_plate_bbox,
license_plate_bbox_score, license_number, license_number_score. The plate with
the highest score should hold the correct licence plate number and between the
grayscale and the threshold-bitwise-not, we will choose the one with the highest
confidence score. After the execution for all the frames is completed, the results
are saved on a .csv output file, ready to be utilized for every kind of purpose. With
the .csv file we can either vizualize every detection, or use the confidence scores as
thresholds and vizualize only the most confident results, ultimately use it
combined with a database to store the activity in areas of interest.

43

¢ d license plate number2
float(license plate score2):
license_plate _number = license_plate_number2
license plate score = license plate score2

+ license plate number n e or license plate number2 i

1i
i

+ license_plate_number2 E N
license plate number = license plate number2
license plate score = license plate score2

it license_plate_number
elements+=1
new row = {“"frame nmr":fnum ,“car id":id car ,
" [x1_car,yl_car,x2_car,y2_car] ,
"1i) " xl,yl,x2,y2] ,
"1i) L e":score ,
"1i g er": license plate number,
"1i : ":(license plate score+@.0¢€

-1 =ilc
NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.
5488281 ‘ c c NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.
5488281 ‘ c c NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.
5488281 ‘ c c NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.
5488281 ‘ c c NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.
5488281 ‘ c c NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.
5488281 ‘ c c NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.
5488281 ‘ c c NAT5NRU a.
54882812 ‘ d c c NAT5NRU a.

5488281 ‘ c c NAT5NRU

54882812 ‘ d c c NAT5NRU

5488281 ‘ -78.. NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

NAT5NRU

v

S-S

[48 rows x 7 columns]
saving with pandas Library
Flapsed time is: 146.13 seconds

Fig 3.3.8 Test results (a) of the execution.

44

frame nmr car_id ... license number license number score

-1 -1.e ... -1 -1.000000

a NA13NRU 39.929711

(4} NA13NRU 9.929711

(5} NA13NRU 9.929711
NA13NRU 9.929711
NA13NRU 929711
NA13NRU 929711
NAT3NRU 929711
NA13NRU 929711
NA13NRU 9.929711
NA13NRU 9.929711
NA13NRU 9.929711
NA13NRU 9.929711
NA13NRU 929711
NA13NRU 9711
NAT3NRU 9711
NAT3NRU 9.929711
NA13NRU 9.929711
NA13NRU 9.929711
NA13NRU 9.929711
NA13NRU .929711
NA13NRU B.704285
NA13NRU B.704285
NA13NRU B.704285
NAT3NRU B.704285
NA13NRU B.704205
NA13NRU B.704205
NA13NRU B.704285
NA13NRU B.704285
NA13NRU B.704285
.- NA13NRU B.704285
25.80 .. NA13NRU B.704285
25.8 .. NAT3NRU B.704285
25.8 .. NAT3NRU B.704285
25.0 ... NA13NRU B.704205
25.0 ... NA13NRU B.704205
25.8 ... NA13NRU B.704285
25.8 .. NA13NRU B.704285
25.0 .. NA13NRU B.704285
25.80 .. NA13NRU B.704285

=

(W Y

P

100 =] T
I

Lt
=l

WoEn non

LSRR |

P B B B BRI R D D B
LN L%l

Ln

L L
CO =] O

1
1
1
1
1
1
1
1
1
1 25
1
1
1
1
1
1
1
1
1

L
O

[40 rows x 7 columns]
saving with pandas Library
Elapsed time is: 191.85 seconds
Fig 3.3.9 Test results (b) of the execution.

In Fig 3.2.3 the graph of different evaluation metrics were ploted, over the
validation set which was 1020 images and in Fig. 3.2.4 a batch of prediction was
presented as well. Over the 1020 images the LSP detector scored remarkable.

45

metrics/prec

000D DD D

o2 ® ®
]
o S
A= |
SR .]

o m o

D005 D

DD D mD
200D

o=

Fig 3.3.10 Evaluation scores of the LSP over training. (on validation set)

In Fig 3.3.11 is presented a prediction on a random image with a minimum of
0.45 confidence, the results of which are very good. It is important to remind that
the most important metric in our case is precision rather than recall and the
accuracy which is not presented is the confidence of the model in the prediction
since it is not a classification but a detection problem. In Fig 3.3.11 confidence is
0.78 or in other words 78% accuracy that this was a licence plate.

Fig 3.3.11 Detection on random image.
Lastly we will run some more tests on the final ‘whole’ version of our program,

changing our OCR from pytesseract to EasyOCR for better results over different
images. The change was made because pytesseract was providing insufficient
results. The images used were low quality 416x416 pixels and so the results are
expected to have low confidence, reminding that YOLOv8n needs high quality
images.

46

Fig 3.3.12 Input image 416x416 pixels

Fig 3.3.13 Execution outputs.

The important parts are marked for clarity reasons. The results are the default
1’ that marks an empty output .csv. The OCR detects the number correctly but
also recognizes a comma. Licence plates should not have special characters so we
remove them. We try to detect the UK licence plate format [43] which consists of
seven digits. Digits 1 and 2 are letters, digits 3 and 4 are numbers and digits 5,6
and 7 can be of any random letters. The confidence is very high taking into
consideration the quality of the image.

47

ORIGINAL READ -> [([[115, 85], [100@, 85], [1000.

Combined original -> RVOS KKE

FOUND UK FORMAT

--Format SUCCESSFUL, RV@SKKE 0.7611853800079817
Ocr read = RVOSKKE

Easyocr Execution

ORIGINAL READ -> [([[120, 88], [992, 88], [992

Combined original -> RVOS KKES

length disn't 7.

length disn't 7.

~—Format unsuccessfull, return None—-

finals contents should be = 1 <=
frame_nmr car_id

2] -1 -1.0

1 2] 1.0 [41.3664703

saving with pandas Library

Elapsed time is: 15.75 seconds

Fig 3.3.14 Input image 1181 x 664 pixels

1, 'RVOS KKE', ©.7611853800079817)]

» [120, 368]], 'RVOS KKES', 0.403078

car_bbox license_plate_bbox license_plate_bbox_score license_number license_number_score
i =il -1.000000 il -1.000000

38672, 1094.86... [172.6215362548828, 441.15924072265625, 341. RVOSKKE 0.761185

Fig 3.3.15 Execution outputs.

As we can see, 1t has 0.78 licence plate confidence and a 0.76 number score with
a higher quality clean image. Let’s also take a look at a lower-quality image in
which the model got confused.

48

e Lo >
Sefnmn M

- » o g T : o A b

Fig 3.3.16 Input image 416x416 pixels

1, 640, 640)

, 648, 640)

Fig 3.3.17 Execution outputs.

In the licence plate, the OCR confuses the letter I for 1. and so we get a false
positive. Although the licence plate bbox has a confidence of 0.94 the number score
is lower than 0.1, making it easy to disregard by applying a minimum threshold
on the value number score. Keeping in mind that the low confidence is due to the
low quality image, and the mistake is of logical nature since we take into
consideration the possibility of letter I in digit 3 might be a 1, confused by the
OCR. In order to further improve the program in the future a system where
tampering with results takes into consideration that the possibility of confusion,
is directly influenced by the confidence of the prediction.

49

This redundancy costs a lot of computational time but it is important in order
to ensure correct information extraction. Redundancy tends to avoid unwanted
scenarios and ensure a safer execution in exchange for computational time. Either
in the form of extra predictions or in the form of extra checks that additional
computational time will be sacrificed towards better results. We are sure of the
LSP detector execution and there is no doubt about the pretrained YOLOv8n
model.

50

3.4 Improvements and limitations.

During the planning phase of our proposed system, the main focus was feature
extraction functionality and execution/compilation speed, while also trying to
create flexible code that can be used in multiple scenarios. Being able to have a
lightweight model such as YOLOv8n, can make real-time inference possible. There
1s plenty of room for improvement when it comes to code optimization. The
proposed system was also limited by the hardware available.

To begin with the improvements, there is a lot of room to refine the LSP
Detector. Increase the epochs to 50~100, searching for the best number while
avoiding overfitting or even adding more images to the dataset all of which will
result in an accuracy increase. It is also possible to remove the LSP Detector as an
individual model and add its functionality to the main YOLOv8n due to the fact
that the first layers in both models have common features. The idea behind the
LSP Detector is for it to be the specialized network that detects licence plates in
Vehicle objects.

Next on the optimization list, there are different kinds of OCR performing
better in terms of accuracy and speed compared to pytesseract such as EasyOCR.
Pytessaract was chosen due to its end-to-end support for multiple languages,
offering flexibility when adjusting the feature extraction on different language
licence plates. It makes it possible to create a multilingual licence plate detection
application. EasyOCR might be offering better accuracy, but is computationally
expensive and cannot cover every factor that needs to be taken into consideration
when preprocessing the image. (Light conditions, blur, noise, angle etc.)

The limitations mainly consist of hardware requirements. As already stated
the LSP Detector was trained on a T4 Tesla in Google Colab and the predictions
were made locally on a singular computer. There were no cloud services available
to test for parallel execution of the program and check its functionality on real-
time inference. Running without GPU acceleration is very time-inefficient.
Another limitation is that the results produced by the DL models are not very
clean. In reality, there are a lot of processes working in the background, that build
an orderly presentable final output.

In conclusion, tools and models have their pros and cons depending on the
nature of the problem. The biggest limitation of the project was the lack of
hardware to further implement the capabilities of the algorithm as well as reduce
the time inefficiency of the test executions. Object detection is a very complex field
to be approached by many different scopes, and the project has a lot of room to
grow.

51

Conclusions

Automatic Recognition of Vehicles and Updates using Licence Plates can be of
great merit to the public, private businesses, the government and its respective
authorities. The project in general has room for improvement and can be further
developed to increase its functionality. Monitoring an area for trespassing or
traffic violations is a difficult and demanding task to cover using human resources,
especially in remote places. This problem can be solved by deploying Automatic
Recognition of Vehicles using Licence Plates and utilizing modern technology.
Keeping always in mind the Ethical part of data collection.

CNN Object Detection algorithms have a lot to offer towards recognition and
the YOLO model isn’t the only one fit for the job. As previously mentioned, there
are countless ways to approach the problem at hand. To maximize the usage of the
project, Cloud services are also needed and deployment on the Edge would be
preferable. Partly why, the inference speed was the most vital value parameter
with a lightweight algorithm during model selection. Though single-device end-to-
end is the current extent of the Algorithm, it is sustainable with a proper GPU.

Building the code using Python might not be the fastest option when compiling
and executing but it comes with the benefits of flexible code, an enormous active
community, constant breakthroughs and new tools. Vital elements towards
building a successful and long-lasting application.

Lastly, Automatic Recognition of Vehicles and Updates using Licence Plate's
strongest suit is as a Monitoring tool for Traffic Law Enforcement and data
collection. As Benjamin Franklin once said “An ounce of prevention is worth a
pound of cure” Monitoring forest entrances, intersections, school entrances, and
remote roads are all places where activities frequently contravene the law. The
deployment of the model can help enforce traffic rules, creating safer roads and
drivers' solidarity. As a data collecting tool, locating a stolen vehicle or tracking a
suspicious vehicle activity, provided enough coverage would simplify the process
drastically.

52

BIBLIOGRAPHY

53

[1] Zhang, H., Sindagi, V., & Patel, V. M. (2019). Image de-raining using a
conditional generative adversarial network. IEEE transactions on circuits
and systems for video technology, 30(11), 3943-3956.

[2] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434.

[3] Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F. (2020). The
computational limits of deep learning. arXiv preprint arXiv:2007.05558.

[4] Sharut Gupta, Stefanie Jegelka, David Lopez-Paz, Kartik Ahuja (2023).
Context is Environment

[5] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. (2016). Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal
Networks.

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, Alexander C. Berg. (2016). SSD: Single Shot
MultiBox Detector.

[7] Carranza-Garcia, M., Torres-Mateo, J., Lara-Benitez, P., & Garcia-
Gutiérrez, J. (2020). On the performance of one-stage and two-stage object
detectors in autonomous vehicles using camera data. Remote Sensing,
13(1), 89.

[8] Zhang Yue, Xie Fei, Huang Lei, Shi Jianjun, Yang Jiale, Li Zongan.(2021).
A Lightweight One-Stage Defect Detection Network for Small Object
Based on Dual Attention Mechanism and PAFPN.
https://www.frontiersin.org/articles/10.3389/fphy.2021.708097

[9] Joseph Redmon, Ali Farhadi (2018). YOLOuv3: An Incremental
Improvement

[10] Q. -C. Mao, H. -M. Sun, Y. -B. Liu and R. -S. Jia, "Mini-YOLOv3:
Real-Time Object Detector for Embedded Applications," in IEEE Access,
vol. 7, pp. 133529-133538, 2019, doi: 10.1109/ACCESS.2019.2941547.

[11] Carranza-Garcia, M., Torres-Mateo, J., Lara-Benitez, P., & Garcia-
Gutiérrez, J. (2020). On the Performance of One-Stage and Two-Stage
Object Detectors in Autonomous Vehicles Using Camera Data. Remote
Sensing, 13(1), 89. https://doi.org/10.3390/rs13010089

[12] Jacob Solawetz, Francesco." Roboflow Blog, Jan 11, 2023.
https://blog.roboflow.com/whats-new-in-yolov8/

https://www.frontiersin.org/articles/10.3389/fphy.2021.708097
https://www.frontiersin.org/articles/10.3389/fphy.2021.708097
https://blog.roboflow.com/author/jacob/
https://blog.roboflow.com/author/francesco/
https://blog.roboflow.com/whats-new-in-yolov8/

54

[13] Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer
vision with the OpenCV library. " O'Reilly Media, Inc."

[14] Vanessa Sochat, Aldo Culquicondor, Antonio Ojea, Daniel Milroy
(2023). The Flux Operator
[15] Christian Szegedy, Sergey loffe, Vincent Vanhoucke, Alex Alemi

(2016). Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning

[16] Mohammad Javad Shafiee, Brendan Chywl, Francis Li, Alexander
Wong (2017). Fast YOLO: A Fast You Only Look Once System for Real-
time Embedded Object Detection in Video

[17] Pinheiro, P., & Collobert, R. (2014, January). Recurrent
convolutional neural networks for scene labeling. In International

conference on machine learning (pp. 82-90). PMLR.

[18] https://www.statista.com/

[19] Gupta, S., Shrivastava, N. A., Khosravi, A., & Panigrahi, B. K.
(2016, July). Wind ramp event prediction with parallelized gradient
boosted regression trees. In 2016 International Joint Conference on
Neural Networks (IJCNN) (pp. 5296-5301). IEEE.

[20] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining (pp. 785-794).

[21] Sheridan, R. P., Liaw, A., & Tudor, M. (2021). Light gradient
boosting machine as a regression method for quantitative structure-
activity relationships. arXiv preprint arXiv:2105.08626.

[22] Slater, P. B. (2012). Comparative Bi-stochastizations and
Associated Clusterings/Regionalizations of the 1995-2000 US Intercounty
Migration Network. arXiv preprint arXiv:1208.3428.

[23] Mao, Y., Balasubramanian, K., & Lebanon, G. (2010). Linguistic
Geometries for Unsupervised Dimensionality Reduction. arXiv preprint
arXiv:1003.0628.

[24] Manthey, B., & Roglin, H. (2009, January). Improved smoothed
analysis of the k-means method. In Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms (pp. 461-470). Society for
Industrial and Applied Mathematics.

[25] Fisher, D. (1996). Iterative optimization and simplification of
hierarchical clusterings. Journal of artificial intelligence research, 4, 147-

https://www.statista.com/

55

178.

[26] Khan, M. M. R., Siddique, M. A. B., Arif, R. B., & Oishe, M. R.
(2018, September). ADBSCAN: Adaptive density-based spatial clustering
of applications with noise for identifying clusters with varying densities.
In 2018 4th international conference on electrical engineering and
information & communication technology GCEEiCT) (pp. 107-111). IEEE.

[27] Yu, G., Sapiro, G., & Mallat, S. (2011). Solving inverse problems
with piecewise linear estimators: From Gaussian mixture models to

structured sparsity. IEEE Transactions on Image Processing, 21(5), 2481-
2499.

[28] Fan, M., Gu, N., Qiao, H., & Zhang, B. (2010). Intrinsic dimension
estimation of data by principal component analysis. arXiv preprint
arXiv:1002.2050.

[29] Zhang, 7Z. (2015). The singular value decomposition, applications
and beyond. arXiv preprint arXiv:1510.08532.

[30] Marivate, V. N., Nelwamodo, F. V., & Marwala, T. (2007).
Autoencoder, principal component analysis and support vector regression
for data imputation. arXiv preprint arXiv:0709.2506.

[31] Baldi, P., & Lu, Z. (2012). Complex-valued autoencoders. Neural
Networks, 33, 136-147.

[32] Sohn, K., Berthelot, D., Carlini, et al. (2020). Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.

[33] Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of artificial intelligence
research, 4, 237-285.

[34] Chen, X., Zhao, Z., & Zhang, H. (2011). Power Allocation for
Cognitive Wireless Mesh Networks by Applying Multi-agent Q-learning
Approach. arXiv preprint arXiv:1102.5400.

[35] Ong, H. Y., Chavez, K., & Hong, A. (2015). Distributed deep Q-
learning. arXiv preprint arXiv:1508.04186.

[36] Helland, I. S. (1987). On the Interpretation and Use of R2 in
Regression Analysis. Biometrics, 43(1), 61-69.
https://doi.org/10.2307/2531949

[37] Innes, (2018). Flux: Elegant machine learning with Julia. Journal of
Open Source Software, 3(25), 602, https://doi.org/10.21105/j0ss.00602

https://doi.org/10.21105/joss.00602

56

[38] Steele, G. (1990). Common LISP: the language. Elsevier.

[39] Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace.

[40] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array
programming with NumPy. Nature 585, 357-362 (2020)

[41] McKinney, W., & others. (2010). Data structures for statistical
computing in python. In Proceedings of the 9th Python in Science
Conference (Vol. 445, pp. 51-56).

[42] Dwyer, B., Nelson, J. (2022), Solawetz, J., et. al. Roboflow (Version
1.0) [Software].

[43] https://en.wikipedia.org/wiki/Vehicle registration plates of the Un
ited Kingdom

[44] B. Gasparovié, G. Mausa, J. Rukavina and J. Lerga, (2023)
"Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOVS in Underwater
Environment: Is There Real Improvement?”

[45] Carratino, L., Cissé, M., Jenatton, R., & Vert, J. P. (2022). On
mixup regularization. The Journal of Machine Learning Research, 23(1),
14632-14662.

[46] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019).
Cutmix: Regularization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international conference on
computer vision (pp. 6023-6032).

[47] https://docs.ultralytics.com/tasks/detect/

https://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_United_Kingdom
https://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_United_Kingdom

