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(1)   «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με 
έγγραφη υπεύθυνη δήλωση  
του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο 
υπαίτιος αυτών των πράξεων  
σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή 
σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.» 

  

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της 
διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι: 

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να 
τα περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη 
σελίδα. Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι 
λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση 
εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς 
και η παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά 
στην πηγή. Αναφέρω πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, 
όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται 
από αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι 
αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν 
δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και 
παρουσίασή τους ως δική μου εργασία.  

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των 
παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε 
μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και 
όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι 
πίνακες και τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής. 



 
 

 





 
 
 

ΠΕΡΙΛΗΨΗ 

Σήμερα, κάθε ηλεκτρονική συσκευή έχει κάποιου είδους αλγόριθμο Τεχνητής 

Νοημοσύνης (AI) να τρέχει στο παρασκήνιο. Βρισκόμαστε στην εποχή των 

Συστημάτων Μεγάλου Όγκου Δεδομένων (Big Data), της Νεφοϋπολογιστικής (Cloud 

Computing) και των συστημάτων AI . Η αυτόματη αναγνώριση οχημάτων σε 

Διασταυρώσεις και Ενημέρωσης μεσώ πινακίδων αυτοκίνητων όπως κάθε άλλη 

εφαρμογή AI πασχίζει για την τελειότητα. Συνεχόμενα δημιουργούνται νέα μοντέλα 

ή βελτιώνονται ήδη καθιερωμένα μοντέλα, με την ανάγκη για νέα πειράματα και 

εφαρμογές να παραμένει αμείωτη. Σε αυτή τη εργασία δημιουργήσαμε ένα Σύστημα 

Αυτόματης Αναγνώρισης Αυτοκινήτων  χρησιμοποιώντας το προ-εκπαιδευμένο 

μοντέλο YOLOv8n στο σύνολο δεδομένων COCO 2017, δημιουργήσαμε και 

εκπαιδεύσαμε ένα νέο μοντέλο της ίδιας αρχιτεκτονικής για την αναγνώριση 

πινακίδων αυτοκίνητων. Σε συνδυασμό με ένα εργαλείο Οπτικής Αναγνώρισης 

Χαρακτήρων (OCR) παράγεται το τελικό σύστημα, από άκρο σε άκρο (end-to-end) 

για μοναδική συσκευή, το οποίο αναγνωρίζει οχήματα και καταγράφει τον αριθμό 

πινακίδων. Τα αποτελέσματα της εκτέλεσης φαίνονται υποσχόμενα και το σύστημα 

θα μπορούσε να επεκταθεί, σε λειτουργιά με χρήση Υπολογιστικού Νέφους και 

αλλαγή από διατερματικό τρόπο end-to-end εκτέλεσης σε εκτέλεση με υπολογιστική 

παρυφή (edge-computing). Υπάρχει ακόμα χώρος για βελτίωση του μοντέλου κατά 

τη διαδικασία της εκπαίδευσης. Στη Ελλάδα, η Αυτόματη Αναγνώριση Οχημάτων σε 

Διασταυρώσεις και Ενημέρωσης μεσώ Πινακίδων Αυτοκίνητων είναι μια τεχνολογία 

που μπορεί να ωφελήσει τη δημόσια ασφάλεια ή μπορεί να χρησιμοποιηθεί σαν ένα 

εμπορικό εργαλείο για τη αυτοματοποίηση διάφορων υπηρεσιών. Με τη χρήση της 

Τεχνητής Νοημοσύνης και συγκεκριμένα των Νευρωνικών Δικτύων, καθήκοντα 

όπως η παρακολούθηση απομακρυσμένων ή δημοσίων περιοχών για παραπτώματα 

και τις εισόδους δασικών εκτάσεων για πιθανή εγκληματική δραστηριότητα θα 

επιλύονται άμεσα και αποτελεσματικά χωρίς αμφιβολία. 

 

  



 
 

ABSTRACT 

Nowadays, almost every device has an Artificial Intelligence (AI) algorithm 

running in the background. It is the age of Big Data, Cloud Services, and AI 

automation. Automatic Recognition of Vehicles at Intersections and Updates using 

Licence Plates as every other AI-related application strives for perfection. As new 

models and improved already established algorithms rise so does the need to 

experiment with them. Here we created an Automatic Recognition System using 

the pre-trained YOLOv8n on COCO 2017 and a new Licence Plate Detector with 

the same archetype. Combined with an Optical Character Recognition (OCR) we 

created an end-to-end single device system that recognizes Vehicles and extracts 

their Licence Plates information. The results seem promising for being scaled to 

Cloud and Edge, there was a lot of room for improvement. In Greece, Automatic 

Recognition of Vehicles at Intersections and Updates using Licence Plates is 

something that can benefit public safety and also be utilized as a commercial tool. 

Monitoring remote or public areas for misconduct, and forests for trespassing 

vehicles is a major concern that can be resolved using similar AI appliances. 
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Introduction 

We are living in an era, where technology continues to evolve and seemingly 

without a stop. Every day, a new discovery and every day a new innovation. It has 

been almost 60 years since Godron Moore speculated, that “ the number of 

transistors on a microchip doubles roughly every two years” (Gustafson, J.L. 

(2011). Moore’s Law. In: Padua, D. (eds) Encyclopedia of Parallel Computing. 

Springer, Boston) by extending this speculation, we can deduce, among others, 

that computing power increases equally. In those years, precision in circuit 

crafting, algorithmic compleWe xity improved, storing power increased, faster 

ways to transmit data were invented, CPU/GPU developed and overall 

advancement in technology and the parts of a computer all led to an even bigger 

growth in computing power, giving room to a theoretical computer science branch, 

Deep Learning (DL) to implode and machine learning to climb in popularity to the 

point that eventually became integral to many widely used software applications 

and services.  

Machine learning (ML) as a concept existed since the early 1950s, when Arthur 

Samuel of IBM developed a computer program able to play checkers, which he 

completed in 1955, using a minmax strategy which today is known as the minimax 

algorithm (Samuel, 1952). ML became popular around 2006 when facial 

recognition was achieved. As the problems became more sophisticated and the 

amounts of data too big, the limitation of “traditional” ML practices first appeared. 

This led to the unpopular DL concepts, which by that time the biggest 

achievements under its name were Long Short-Term Memory speech recognition 

and  Restricted Boltzmann machines (RBMs), to rise. In the next 10 years, what 

Roger Parloff described as “a Deep Learning revolution” (Parloff, R. (2016). Why 

DL is suddenly changing your life. Fortune. New York: Time Inc) had transpired. 

With the invention of the Internet of Things, Cloud Computing, the Deployment 

of 5G, Augmented reality, and 3D Printing made AI appliances broadly available 

and instantaneous.  

Nowadays, almost every electronic device carries a circuit board can connect to 

the internet, communicates with other devices, and produces data. Data once 

extra, is now an intangible, yet potent resource. Through applied ML and with the 

aforementioned technologies computers can detect and learn hidden patterns in 

data. What’s more, complex tasks such as driving, can be automated. Object 

detection and classification, Object Character Recognition, and Face detection all 

can be achieved in real-time. 

This Thesis is about automatic car recognition and harnessing relevant 

information and aims not only to suggest all the possible use cases of the project 

but also to give the readers a better understanding of the process. All the tools 

used to achieve car recognition are explicitly stated. After reading this paper, a 

person foreign to computer science should have a better grasp of the programming 

languages that are used for the implementation of Object Detection routines, 

algorithms used in ML, DL in general, and state-of-the-art models such as 

ResNet[15], YOLO[16], R-Cnn[17], etc. Throughout explanations on their 

strengths and weaknesses and also statistical analysis on their accuracy and other 

key elements for their execution. 
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Chapter 1 Introduction to ML/DL 

This Chapter is dedicated to explaining the general principles of ML, DL, and 

AI that are used in the project, from the general meaning of classification problems 

in ML, combined with the DL approach of feature extraction to produce the final 

AI project. Resolving any confusion of the three similar in meaning, but different 

fundamentally in approaching a problem, implementing a solution/model and also 

in the overall accuracy, efficiency and cost while also going deep into explaining 

how certain practices were used over others. The simple version to keep in mind 

is that ML, DL, and Neural Networks (NNs) are all parts of AI. NNs are considered 

a subfield of ML and DL a subfield of NNs.  

This proposed system is associated with Automatic Recognition of Vehicles at 

Intersections and License Plate Detection. It includes state-of-the-art pre-trained 

models, specifically YOLOv8 as it is best suited for our task, as its core structure, 

while also building a new simple licence plate classifier using said model 

structure. Creating the dataset for our license plate model, and creating Ground 

Truth labels is a tiresome task that also is a part of the process and important 

nonetheless. It is crucial to state explicitly our bounding boxes in order to ensure 

that during the training phase, information that best describes Licence plates is 

provided to the model. All while dealing with other problems that occur in real-

time applications such as incomplete License plate numbers, wrong predictions, 

vizualization, and many more. Finally, the thought process will be discussed 

behind certain choices. Reasoning why techniques such as finetuning or transfer 

were not used. 

 
Figure 1. Image describing the relation of AI, ML and DL. In between the ML and DL exist 

NNs. (Bandyopadhyay, https://commons.wikimedia.org/wiki/File:AI-ML-DL.png) 
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1.1 Machine Learning  

ML, as stated by IBM “is a branch of artificial intelligence and computer 

science which focuses on the use of data and algorithms to imitate the way that 

humans learn, gradually improving its accuracy“ (IBM Corporation, 2023). 

Usually, the procedure towards the solution of the problem is already known or it 

can be approached using a standardized process. ML has an exploratory nature. 

It can be used for unsolved problems as long as there is data, that is what makes 

it such a useful tool. Note that algorithms cannot find solutions or relations which 

do not exist.  

The nature of the problem dictates which model is best suited for describing 

that problem and each model has its own evaluation metrics. For example, in 

Binary Classification problems, where the model is trained to point a value to a 

class with two cases, yes/no, 0/1, open/close, accuracy is the most suited evaluation 

metric since the aim is, for the model to correctly deduct which of the two cases 

best describes the data it is given. With time, the problems ML tackles become 

more complex since layers of predictions and calculations are added, in order to 

train algorithms, training takes more time, making it harder to design algorithms 

and leaving room for human error. What made ML so popular is that time-

consuming tasks that involve a lot of computations but are simple in nature can 

be automated. 

It has a vast field of appliances, through training on a dataset that describes 

the problem and the use of statistical methods, well-crafted algorithms make 

accurate predictions. The algorithms excel as the amount of data rises, 

establishing a consistent, fast, and scalable tool for predictions. ML is usually 

employed by companies, functioning as a reliable tool to analyze data, revealing 

correlations between data, finding rules, spotting anomalies, and other useful 

attributes on a dataset, all while improving its own predictions. It is important to 

understand that ML is used when the solution is known, the task is relatively 

simple or there is a known approach to investigating the data in order to solve the 

problem. For example, ML recommendation systems used by famous enterprises 

such as Netflix, Amazon, Facebook etc. employ the Big Data customers generate, 

offering accurate recommendations and furthermore revealing hidden patterns in 

the user’s preferences. The input data include past purchases, search histories, 

favorite movies, demographic information, comments or posts etc. 
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   Figure 2. The life cycle of a ML Project. (by gretel.ai) 

 

 

Although ML has found a lot of success in the business world, in scientific usage 

there has been a decline in the past few years compared to the early 2010s. 

Although it seems like an omnipotent tool, it has a lot of limitations. The most 

important of those are Data, Biases, Overfitting, and other limitations that are 

not associated with the ability to produce results but rather with the usage of AI. 

Specifically, the ethical use of AI and ethical data collection.  

It was estimated that 90% of the world's data was generated in the last two 

years [18]. As long as there is a lot of data being produced by all kinds of 

applications, ML algorithms, and models will continue to evolve as the need for 

new ways to detect patterns efficiently exists. In the next chapters, we will explore 

the most relevant models to our project, the different approaches into learning, 

explain the different evaluation methods, and dive deeper into the limitations of 

ML. 
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1.1.a) Algorithms used in Learning and Models 

“Machine learning addresses the question of how to build computer programs 

that improve their performance at some task through experience” (Mitchell, T. M. 

(1997). Machine learning.) 

 

Before we continue on, it is important that some terminology is clarified. 

Models are programs that have been trained on a dataset, analyzed patterns, and 

can make predictions on new unseen data. Those models are trained with specific 

algorithmic processes based on the data that they possess. There are four types of 

algorithms, Supervised, Semi-Supervised, Unsupervised, and RL. The key 

difference between Supervised and Unsupervised is whether or not the data is 

labelled or not. Semi-supervised is a good median between the two, having a 

limited amount of labelled data and lots of unlabelled, leading to considerable 

improvement in the accuracy of the models. Last but not least, many don’t include 

RL as a type of learning and consider it another different category, since it is 

associated with intelligent agents, is independent of data structure, and uses a 

different approach that the algorithms use. But, considering it is a learning 

process to maximize the accuracy of an action done by machines it perfectly fits 

the criteria.  

Our focus in this chapter is to explain in detail the above forms of learning, the 

models produced, in which situations are adopted, and their evaluation metrics 

and finally, we will explore the limitations of the ML approach of model building 

to the core, demonstrating why ML was not used in our proposed system. 

  

In Supervised Learning (SL), the data available are labelled. When feeding a 

ML model data there is a huge difference between a tabular sequence of numbers 

named ‘Matrix N’ and knowing that ‘Matrix N’ represents a specific Class i.e. 

‘Daily Temperature’. Knowing the labels helps the creators have better control 

over the model, raising accuracy in the predictions but as a result, the model is 

prone to overfitting and biases. Commonly used algorithms are Regression types 

and Classification types for the most part. The models created are as follows: 

 

Linear Regression Models: These models are used to predict numerical 

value, given a dataset that forms a linear relationship with the predicted value.  

 
   Fig.2. Basic Linear Regression model. 
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Linear Regression Models are usually prone to outlier errors. Depending on the 

nature of the problem, outliers are excluded, but if that is not the case, through 

data normalization or other methods regression models produce fast, accurate 

results. For example, we could use a Linear Regression model to predict rent prices 

given data on a house (pieces of furniture, rooms, parking spots,  area, etc.). 

Logistic Regression: These models are purposed with making categorical 

predictions such as “0/1”. Expanding on the above example, a logistic regression 

model could be used to categorize house pricing as “Reasonable/Not”.   

Naive Bayes models: Using the Bayes’ Theorem and assuming that all the 

features in the dataset independently contribute towards the class it is trying to 

predict, models predict the probability of an input’s class. Sentimental analysis, 

article classification, recommendation systems, and spam filtration are some of 

the model's applications. For example, given some biometric information about a 

human, Bayes Classifiers can be used to predict the sex. 

Decision Tree models: Tree-based models are used both in Classification and 

Regression problems. These models form a tree diagram, representing all the 

possible outcomes, based on their linked decision process. The tree diagram 

reveals the model’s behavior, making adjustments easier, with the trade-off of 

being not very robust, finding the optimal tree is known to be an NP-complete 

problem and ultimately prone to overfitting without using pruning. Notable 

models are Gradient Boosting Regression [19], XGBoost [20], and LightGBM 

Regressor [21]. Adding to the housing example, a decision tree model could be used 

for both the prediction of the rent and afterward its category. 

Random Forest models: In a dataset, where the results are generated by 

decision tree models, having a model that predicts based on the results is known 

as a Random Forest model. 

Neural Networks: NNs are usually applied in DL algorithms, by mimicking 

the synapses of the human brain using different kinds of layers and different kinds 

of nodes, activation or loss functions, and optimizers, all hyperparameters 

depending on a model, but more on NNs will be discussed on the DL Chapter. 

Similarly with Supervised learning models the nodes have inputs, outputs, 

weights, and biases. The key takeaway is that input data must be labelled to train 

an NN. NNs are the kind of models used in our project and the kind of models used 

globally for the most sophisticated and complex problems such as image 

recognition/segmentation, Natural Language Processing (NLPs), etc. 

The strength of Supervised Learning is in its efficiency/accuracy in classifying 

or predicting data and its simple approach. It can be noticed that the models are 

susceptible to overfitting and biases. The most important disadvantage is neither 

of the aforementioned reasons but rather the need for labels and, consequently the 

constant need for human monitoring. That is something unwanted in an 

“autonomous task”. 

 

In Unsupervised Learning (UL), the algorithms are tasked with finding 

patterns from unlabelled data. This is achieved by learning inherent structures, 

patterns, or relationships within of the data. There is still a need for human 

intervention. Outputs need to be verified and interpreted so the model can be fine-

tuned. Without human interpretation of results, unsupervised tasks tend to lack 

transparency into how data is clustered and have a higher risk of inaccurate 



7 
 

results. Unsupervised algorithms are used to a large extent for Clustering, 

Association [22], and Dimensionality reduction tasks [23]. The models produced 

are as follows: 

Clustering Models: Assigning the unlabelled data to a cluster is the job of 

these models. The number of cluster centers may vary depending on the data. The 

models identify patterns and group the data, iterating until the cluster centers 

stabilize and the algorithm converges. Some of the most popular models are K-

means [24], Hierarchical Clustering [25], DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise) [26], and Gaussian Mixture Models (GMM) 

[27]. One example is, clustering purchases in an e-shop and using the results for 

market segmentation.  

Association Models: Models that use different kinds of rules to discover 

associations between the input data. Commonly used for recommendation engines, 

promotion optimization, and overall better product placement. For example, such 

a model could be deployed on the same e-shop sales data, revealing relationships 

between purchases such as computer parts usually purchased alongside cables. 

Anomaly Detection:  Inherently unsupervised learning is very competent in 

detecting outliers, and points in data that deviate from a dataset’s norm. These 

points, cause fluctuation in data, leading to inaccurate outputs in cases of 

predictions, or used to indicate an event or observation that beckons actions. 

Manufacturing, fraud detection, financial transactions, and system monitoring 

are some of the fields that utilize anomaly detection. 

Dimensionality Reduction Methods: Data is indeed the ‘fuel’ of models, but 

too much data in reality can have a negative impact on the performance. Leading 

to overfitting, difficulty in comprehension of model functions, hindrance in 

visualization, and expensive training times. In those cases, dimensionality 

reduction is a technique used to reduce the number of features or dimensions. The 

models aim to reduce the amount of data while preserving the contents. Such 

models are Principal Component Analysis (PCA) [28,30], Singular value 

decomposition (SVD) [29], Autoencoders [30,31] etc. For example, in the case of a 

multinational company, before using the data in any model, PCA could be used to 

lessen the burden of the model and avoid overfitting. 

Being able to extract features from unlabelled data, and detect outliers while 

being a scalable process, unsupervised learning is a powerful tool for predictions 

and associations. Consequently, it needs huge amounts of data, making it 

computationally expensive. Furthermore, data surplus makes interpretation of 

the outputs confusing, and the learning process difficult to monitor while drawing 

conclusions. Last but not least, with the absence of the Ground Truth labels, 

evaluation can easily become subjective, making human intervention necessary to 

validate the output results. 

 

Semi-supervised learning (SSL) is a “median” approach, combining the 

strengths of Supervised and Unsupervised Learning. The use of a small labelled 

dataset, to classify and extract information on bigger unlabelled data, lowers the 

overall cost. Having an SL model evaluate the outputs of a UL model reduces 

human participation and, while being cautious with novelty detection during 

exploratory analysis. These models can handle labelled data points with 

traditional SL, making predictions, calculating loss, and updating weights using 
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gradient descent (GD). Such a model is FixMatch [32]. Usually, SSL is used to 

solve complex problems, such as self-training, speech recognition, Image 

classification, etc.  

In conclusion, there can still be reliability issues since there is no method to 

generate 100% accurate labels which leads to less well-grounded results than a 

conventional SL model in terms of accuracy. The reduction in production costs is 

noteworthy. The most significant weakness of this approach is the human factor 

since fine-tuning and data selection procedures require skilled engineers. 

 

Reinforcement Learning (RL) [33] is the field related to intelligent agents, 

functioning similarly to SL, but ultimately there is a key difference in the learning 

process. While SL uses sample data and weights to maximize the prediction 

accuracy, RL models learn through trial and error and are defined by processes in 

an environment, a “reward”, a policy, and their state. Given a goal/task, an 

intelligent agent is trying to achieve the goal while maximizing its rewards, each 

action depending on the current state of the environment. The rewards fluctuate, 

depending on the state and the action taken which is calculated through the 

“value” function. There is no need for labelled data since the models operate in an 

environment and consider two actions, exploration and exploitation. Ultimately, 

the agent learns through repetition, which actions to choose in order to maximize 

its cumulative reward. The simplest daily example of an RL application is that of 

an autonomous navigation system used by autonomous sweepers. 

 
   Fig.4 Depiction of a typical RL model layout.     
There are three main types of learning in RL, policy-based, value-based, and 

Actor-critic. 

The Value-Based type is trying to find the optimal value function. The output 

of the value function is the upcoming reward and the reward function estimates 

the current reward. The agent prefers actions that maximize the value function. 

Such algorithms are Q-Learning [34] and Deep Q-Learning (DQN) [35]. In the 

autonomous sweeper example, our robot would prefer paths that yield the best 

outcome while making the smallest route. 

In the Policy-based approach, the agent will prioritize exploration and adjust 

its policy based the reward function, adjusting the policy while learning. The most 

used algorithms are Policy Gradient and Proximal Policy Optimization. 

Expanding on our sweeper example, the robot would explore rather than choose 
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the “best” action, adjusting its behavior depending on the reward of the 

exploration. 

Last but not least, the Actor-Critic type is a combination of the two. The policy 

plays the role of the “actor” and the value function of the “critic”. The policy 

dictates the agent's choices while the value function evaluates the expected 

cumulative reward. This forms a balance between exploration and exploitation. It 

enables agents to learn based on the environment while keeping the best course 

of action strategy available, thriving in dynamic environments. 

 

All in all, the above summarizes quickly the basics of ML and the majority of 

algorithms and existing models. In hindsight, they may seem a lot and some even 

trivial to the object of the project, but keep in mind that DL is a subset of ML, and 

in building a complex AI model all things must be taken into consideration for an 

optimal result.  
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1.1.b) Evaluation Metrics in ML 

As the term suggests, an evaluation metric are quantitative measures used to 

assess the performance and precision of a statistical or ML model. Metrics are 

usually visualized, provide useful insights during execution, and help compare 

each model or algorithm. Specifically, metrics can measure and track the process 

of predictive abilities, performance in unseen data, and learning. The selection of 

a metric depends on the nature of the problem, data formats, and the outcome it 

is intended to produce. There are two types of predictions ML models produce, 

classification which can be numerical in the form of probability or binary form 

representing a class, or regression which are continuous outputs. 

To begin with one of the most important ones, which will be presented in our 

model as well, is Confusion Matrix. Confusion Matrix is a squared matrix N*N, 

where N is the number of all the prediction classes. In the case of a Binary 

Classification model, the N is 2 whereas in the case of a Multiclass-Classification 

problem, N will be the classes we are trying to predict. Creating the Matrix reveals 

some important statistical data for each model. These data are: 

True Positive(TP): Positive prediction, ground truth true. 

True Negative(TN): Negative prediction, ground truth true. 

False Positive (FP): Positive prediction, ground truth false. 

False Negative(FN): Negative prediction, ground truth false. 

Accuracy: Total number of predictions that were correctly divided by the total 

amount of predictions. 

Precision (positive predictive value): the number of positive predictions 

correctly identified divided by the number of total positive predictions. 

Recall (sensitivity): The number of True Positives predicted in all the True 

Predictions. 

Specificity:  The number of True Negatives predicted in all Negative 

Predictions. 

 
Fig. 1 Terminology and derivations from a Confusion Matrix     

(https://en.wikipedia.org/wiki/Confusion_matrix).  
 

The overall accuracy of a model is calculated as the sum of correct predictions 

divided by the total predictions made. Frequently, accuracy alone is not the point 

of interest, but the categories that the predictions fall in depending on the 

problem. For example, in a model predicting if a patient has COVID-19, an FP 

prediction doesn’t have the same consequences as an FN prediction, thus wanting 

to minimize FP we would optimize the model in a way to maximize Recall and so 
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on. The Confusion Matrix is a versatile metric that provides clarity to the engineer 

and helps with the visualization of the models. With this in mind, the matrix is 

mainly on Classification models.  

Deriving from the information extracted from a Confusion Matrix, Recall and 

Precision are the metrics, models try to maximize. Unfortunately, because of the 

Recall and Precision trade-off, improving one of the two comes at the expense of 

reducing the other, it is impossible to for a method to strengthen both. F1- Score  

(1) is the metric that finds the best precision and recall values. The formula is 

presented in the following image. 

 

 
 

𝐹1 =  2 ∗  
2𝑇𝑃

2𝑇𝑃+ 𝐹𝑃 + 𝐹𝑁
                                        (1) 

 
 

The reason behind using a harmonic mean between the two values, and not an 

arithmetic mean, is so that the result is not heavily influenced by outliers. For 

example, in case of a Binary Classifier with Precision:0, Recall:1. Using an 

arithmetic mean would give us a value of 0.5. Leading us to believe that the 

model has some functionality. Instead, if we use F1-score the value is 0. 

Correctly representing the uselessness of the model predictions. There are some 

cases in which outliers are important to the process. For that the following 

formula can be used instead.  

 

 

  𝐹𝛽 =  (1 + 𝛽2) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
                                (2) 

 

 

 

Fbeta (2) measures the effectiveness of a model with respect to a user who 

attaches β times as much importance to recall as precision. 

Area Under the Roc Curve (AUROC) is another popular metric that is used to 

measure the performance of models. The terms used in the AUC-ROC curve are 

TPR / Recall / Sensitivity at various threshold settings. Each Roc curve describes 

the probability of a singular class.  

 
 Fig.1 Perfect model AUC = 1 Fig.2 Useless model AUC = 0.5 
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AUROC represents the degree of separability.  In Fig.1 we see a depiction of a 

perfect model and in Fig.2 the depiction of a model that cannot distinguish the 

class and makes random predictions. Typically, AUC above 0.7 is considered a fair 

prediction, depending always on the problem. In the case of multi-class models, 

we plot N number of AUROC curves where N number of Classes, using the One vs 

All methodology.  

Gini Coefficient is a metric derived from AUC ROC. It describes the ratio 

between under the ROC curve and the diagonal line and the area above the 

triangle. For more clarity, Gini (3) is calculated using the formula below: 

 

 

 

 𝐺𝑖𝑛𝑖 =  2 ∗  𝐴𝑈𝐶 − 1                                                       (3) 

 

 

 

A value above 0.6 indicates a good prediction. 

Moving forward from the Classification metrics, Root Mean Squared Error 

(RMSE) (or Deviation) is the most famous evaluation metric used in Regression 

models. It is quite sensitive to outliers, so preprocessing in the form of 

standardization is advised, and punishing towards big deviations from the ground 

truth, RMSE (4) is considered a robust tool.  

 

 

𝑅𝑀𝑆𝐸 =  √∑𝑛
𝑖=1

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑎𝑐𝑡𝑢𝑎𝑙)2

𝑛
                              (4) 

 

 

Again, there are different variations of RMSE depending on the data and 

outputs. In the case of a model used on big numbers, a way to not penalize the 

deviation as much is Root Mean Squared Logarithmic Error (RMSLE). 

Additionally, RMSLE treats errors relatively, in numerical inputs of billions, the 

error of a couple hundred points is almost irrelevant. 

As opposed to classification models, in which an accuracy value of 0.8 is enough 

to judge that our model is performing well as opposed to a random prediction 

model with an accuracy of 0.5. The random model is treated as a benchmark. 

Regression models however don’t have that guideline for comparison. R-Squared 

(the coefficient of determination) metric compares our model with that of a model 

predicting the mean value of our target from the train set.  The formula (5) is: 

 

 

𝑅2 =  1 −  
𝑀𝑆𝐸 (𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
                              (5) 

 

Where MSE is our model Mean Squared Error against the real values and the 

baseline model mean prediction against the real values respectively. The value of 
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the metric can be any real number, with 1 representing a perfect fit, negative 

numbers worse prediction that the MSE (baseline), above 0.5, and bellow 1 

indicate satisfactory outputs and numbers above one indicate an error in 

computations. 

In continuation, Adjusted R-Squared [36] has the additional functionality of 

showing where the addition of extra features to the models is beneficial or harmful. 

Looking at the formula, incrementing k reduces the denominator, increasing the 

whole expression. In case, AR-Squared (6) doesn’t increase together with k, the 

feature added doesn’t contribute towards the outputs. 

 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 =  1 − (1 − 𝑅2) [
𝑛−1

𝑛−(𝑘+1)
]                      (6) 

 

 
Last but not least, Cross-validation is more of a technique rather than a metric. 

It is a resampling method that uses different portions of the input data to test and 

train a model iteratively. Suppose that the input data are split into 10 pieces. Each 

iteration produces a new model, which is trained on different 9 pieces in each 

iteration and validated on the remaining one. This aims to flag problems like 

overfitting and selection bias, by checking if all the 10 models are close in terms 

of average accuracy. To be precise, the method described above is K-fold Cross-

validation. 

 

Fig.3 K-fold cross-validation depiction  

In conclusion, in any project evaluation metrics is an essential aspect. The 

metrics provide valuable insight into the model's performance and quality. The 

ones used in classification problems, which is the type of the project, are Confusion 

matrix, AUROC and overall accuracy. 
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1.1.c) Organizing benefits and Limitations of ML 

ML excels in small, simple applications and doesn’t require big quantities of 

data in order to produce accurate predictions. It can perform well with and without 

labels and exploit outliers when needed, disregarding them elsewhere. ML is a 

great tool and has a wide range of applications that are employed almost in every 

industry. When it comes to high volumes of data, it is almost unavoidable for a 

model to overfit and show biases. Especially when models, obtain part of their data 

from humans. Some examples to demonstrate the big problem of bias are 

Microsoft’s Tay Chatbot, Google Photos categorization of black people as gorillas 

in 2015, Amazon's Hiring AI in 2018 which penalized the keyword “women” etc.  

The key weakness lies within the learning approach. ML learns using the 

labels/attributes and not so much the structure of a given object. Furthermore, ML 

utilizes structured data, that can only be used for their respective specific purpose, 

which limits its flexibility and usability. The production cost of structured data is 

too high and there is not much reusability. In every new model build, the engineer 

needs to adjust the model depending on the structure of the data, apply 

preprocessing procedures, and fine-tuning for that specific purpose. This leads to 

the next problem, human costs. ML models depend a lot on human intervention, 

which is expensive and unwanted, especially in complex projects. As the 

complexity rises, ML models are computationally hungry, requiring a lot of 

processing power. All that with minimum transparency and interpretability to its 

training process. 

Lastly, there are the ethical problems. The two most important ones are 

Violation of Privacy and Unethical use. As it is understood, models often categorize 

human activities, data mine their preferences, and actions to offer high-quality 

predictions. The main conflict falls into the category of  ‘who is in possession’ of 

that data, the safety of the data, and misuse of conduct by big companies. 

Secondly, the cases where AI Chat models have been used for the production of 

malware, weapons, and other harmful applications such as WormGPT. 

In general, ML scales poorly no matter the approach but its usefulness is 

undisputed. Ethics in AI is a field to be considered in the future since it is not 

hindering the technology directly. The main reason ML fails is due to overfitting, 

as a method it is not suited well for huge amounts of data. It is suited best for 

small applications rather than complex ones. 
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1.2 Deep Learning 

Once again, for reasons of comprehensibility, it is vital to understand that NNs 

are the cornerstone of DL. Model are based using some type of NNs that focus on 

understanding a task on a very “deep” level. So, DL is a subset of ML, which works 

with NNs that consist of 3 layers or more layers. The term DL was introduced to 

the ML community by Rina Dechter in 1986, and to artificial NNs by Igor 

Aizenberg and colleagues in 2000, in the context of Boolean threshold neurons. A 

pioneer in DL is Geoffrey Hinton, who in his career has countless contributions to 

the field. NNs attempt to mimic the behavior of the human brain. In order to be 

trained, large amounts of data are needed and as a result powerful processing 

hardware is also required. 

 
  Fig 1. A basic NN with three layers. (not including Loss Function) 

 

DL is used to create a lot of today’s applications and services, that contribute 

towards automation by eliminating physical tasks without human interference. 

Some of the sort are autocorrect text editors, voice-command applications, self-

driving cars, face recognition, etc. In order to train NNs, data in raw forms is used, 

such as raw text or images, forming weights and biases to produce a prediction. 

The layout of a typical NN consists of an input layer, a hidden layer and an output 

layer. There can be a NN with a single layer, but extra layers help with feature 

extraction. Each layer contains interconnected nodes,  build upon the previous 

layer in order to refine the data extraction process. This process is called forward 

propagation. For example, consider images of animals (cats, dogs and horses) in a 

simple NN having a hidden layer with 3 nodes where each is trained and tasked 

with recognizing one category of animal based on its facial features. The nodes 

output a value which is a weighted probability, and it describes whether the input 

fits the data that were trained to identify. The input and output are called visible 

layers and all the between are called hidden layers. Another important process is 

backpropagation, which like gradient descent is used to calculate errors in 

predictions, and is used for fine-tuning the model. Combining Forward and back 

propagation is what makes the Network learn.  

The above series of steps describe the simplest model possible, where in reality 

NNs are extremely complex. Building a model and finding new ways to build 
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models is what DL primarily focus on. In this chapter, we will investigate the 

different types of DL NNs and their various applications. 
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1.2.a) Models and Applications 

There are many types of NNs and even more models are built around them 

daily. The rapid growth in number of the models is caused by the constant need 

for improvement. Even if it is by a margin of 5%, it is enough to be called a new 

model. DL models are generally used in the field of Computer Vision, Speech 

recognition, and Natural language processing (NLP). Additionally, since DL is 

tasked with making predictions in complex applications, a lot of layers from 

different types of NNs just blend together. For example, our project falls into the 

single category of Computer Vision as it is but if we wanted to add more 

functionality to it, it would be hard for it to be categorized, i.e., self-driving cars. 

The main focus of this chapter is to present some of the basic types of NNs. Their 

respective properties differentiate them, and their applications. 

Convolutional Neural Networks (CNNs) are composed of an input layer, an 

output layer, and one or more hidden layers. Their key difference is that the 

neurons are arranged in a three-dimensional form representing the width, height, 

and depth of dimensions. This way, it allows for 3D inputs to be transformed into 

an output volume.  

 
    Fig 1.2.1. Example of a CNNs function. 

 

The hidden layers contain combinations of convolution layers, pooling layers, 

normalization layers, and fully connected layers. CNNs are widely known for their 

feature extraction ability, they are not only used in Computer Vision, in contrary 

with popular belief, but in every field  (NLP, speech recognition, processing 

systems, etc.). 

 

 
Fig 1.2.2. Example of feature extraction using Convolutions (Vertical convolution) 

 

Each model created using CNNs is not the same. There are key differences, 

varying between the desired outputs and execution time, of course, both while 

maximizing accuracy. For example, some models focus more on object detection 

precision (ResNet) while others try to minimize execution time with the best 

possible accuracy (YOLO). The most notable ones that were taken into 

consideration for this project were YOLO, ResNet, VGG, Faster R-CNN, and SSD.  
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Following, Recurrent Neural Networks (RNNs) are a generalization of feed-

forward NNs that have internal memory. Used mainly for time series problems, 

this model leverages the past outputs to predict each new input. In other words, 

for every input of data, the output of the current input depends on the past 

computation.  

 

   
 Fig 1.2.3. Example of an RNN structure. 

 

Each output is copied and fed back to the RNN. RNNs have many applications 

in stock market predictions, text processing (Grammar corrections, Co-writer bots, 

Translations, etc.), and also as Sentiment Analysis. It performs best when 

combined with sequential data. Each new sample of data is assumed to be 

dependent on the past ones and that together with the iterative nature is this 

model’s key feature. The disadvantages of RNNs are Gradient vanishing and 

exploding problems, which translates into Poor Performance, Low Accuracy, Long 

Training Periods for vanishing issues and identity Initialization, Truncated Back-

propagation, and Gradient Clipping for the exploding issues respectively. 

Ultimately leading to difficulties in training RNNs. In order to solve the vanishing 

gradient as an issue an improved type of RNN was created, Long Short Term 

Memory (LSTM). 

Lastly, Generative Adversarial Networks (GANS) are the last NN we will look 

into, due to their useful applications. The main concept in a GAN is of two NNs 

contesting one another in the form of a game. Given a training dataset, one NN 

assumes the role of a generator and the other the role of a discriminator. The 

model aims not to procure good examples on the trained data, but rather compete 

in which NN performs better. The end results are synthetic data produced by the 

generator which are able to fool not only the discriminator but the human eye as 

well. Since the model is eventually able to produce realistic high-quality results, 

from images to videos, it has a wide range of applications as a generative tool, and 

that is only focusing on the generative NN. GANs started as a model to generate 

data for unsupervised learning tasks but also proved useful for semi-supervised 

learning, fully supervised learning, and RL. 

 



19 
 

 
 Fig 1.2.4. Example of GAN-Generated Faces. (Unsupervised Representation Learning with 

Deep Convolutional Generative Adversarial Networks, 2015.) 

 

In Computer Vision, other than synthesis of new images, GANs can be used to 

filter through unwanted noise in the data preserving the original. Such an 

example is removing the rain from an image ( H. Zhang, et al. 2020, Image De-

Raining) 

These are only some of the ANNs that DL has to offer. Some are 

straightforward like GANs and RNNs while others are memorable for their 

complexity and lack of transparency during training (CNNs). One thing is for sure, 

the appliances of these algorithms are vast and invaluable. It is important to note, 

that there are other NN algorithms equally important, that this section only 

scratched the surface of, namely Multilayer Perceptrons, Autoencoders, Modular 

NNs, and Feed-forward NNs. Next, the focus will be shifted towards the various 

limitations of DL. 
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1.2.b) Limitations of Deep Learning 

DL has numerous capabilities as a tool, but it is far from perfect, it comes with 

a lot of disadvantages no matter how impressive the results it produces. From 

their data hungry nature to their fitting title as “black boxes” and their danger of 

overfitting nonetheless. It is difficult to discern which is more important 

depending on the problem, importance changes. What all NN have in common is 

the need for enormous computation power, measured in flops (7), for its training. 

 

 

𝐹𝐿𝑂𝑃𝑆 =   𝑐𝑜𝑟𝑒𝑠 ∗  
𝑐𝑦𝑐𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
∗

𝐹𝐿𝑂𝑃𝑠

𝑐𝑦𝑐𝑙𝑒
                  (7) 

 

 

To begin with the models limitations, NN models consist of numerous layers, 

when building a new model and there is a need for a better performance at a 

specific sub-task the first idea would be to add more layers, which is incorrect. 

Adding more layers, may bring more functionality to the sub-task but it can also 

burden the model with overfitting and ultimately reduction in accuracy. This falls 

directly under the lack of interpretability. DL models, especially those with high 

complexity and many layers are hard to understand the prediction process. Hence, 

hard to pinpoint errors or biases, very important fault when the task is associated 

with human lives. Those Errors can belong either to Data type or Structural type. 

Data type errors caused by the Quality of data, noisy, incomplete or biased data 

can affect the performance negatively. Additionally there can be insufficient 

amount of data the NNs need, which is easily identified plotting each model's 

learning rates. Structural type, omitting the lack of transparency, can also be 

caused due to the complexity of the problem combined with the lack of prowess. 

Any NNs in order to be trained require significant computational power as well as 

for execution. This is not a task for an everyday computer, it requires powerful 

GPUs and enormous amounts of memory, making it environmentally expensive. 

In a recent research, it was estimated that in order to minimize the error to 5% of 

the famous ImageNet model it would take “an additional 567x more computing 

power” [3], suggesting that focus should be shifted towards algorithmic 

improvement to reduce the computation intensity and ML’s computation efficiency 

other than the current DL approaches.  

Last but not least, what NNs learn are relationships between variables, which 

may or may not have underlying connections or represent features. NNs lack in 

contextual understanding, which can be very limiting. Finding ways to 

contextualize raw information is something to be considered [4], while it could be 

argued as implausible taking into consideration data biases. 



21 
 

 
      Economic cost from [3] 

 

In conclusion, there are three main issues with DL models. The high 

complexity and lack of ambiguity when it comes to training, predictions and 

overfitting. Secondly, an enormous quantity of data is required for training. 

Lastly, training is computationally costly with no means of improvement, 

currently. Also, a lot of research and practice is required to gain experience with 

models and their operation functions. These are the walls faced when choosing to 

work with DL and NNs. 
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1.3 Machine Learning vs Deep Learning 

In computer science, terms are used interchangeably, leading to profane 

confusion. By now, there should be no confusion, only the understanding of each 

technology’s approach to building models, their core, use cases, outputs, and 

limitations. Slowly leading to a more concrete conclusion to their key differences, 

strengths, and weaknesses. As the need of DL and ML models is constantly rising 

and will continue to grow, from an engineer’s perspective, there should be no 

hesitation about which technique to choose for each presenting problem. 

Traditional ML models are chosen when the data available is scarce and there 

is a foolproof path towards the solution. Which can also be translated as the 

problem isn’t very complex in nature. Building and training small models is cheap 

computationally and requires minimum human maintenance. Also, their accuracy 

outperforms those of DL due to the lack of data. Mind that ML’s scalability is very 

impotent. On the other hand, DL is chosen when the data available is enormous 

in size and the tasks are rigorously complex. Can be used even if the 

understanding of the problem’s domain is insufficient due to its extraordinary 

exploratory capabilities. The technique stands out when it comes to dealing with 

multidimensional problems (Images, NLP, speech recognition, etc.) provided that 

one has enough high-end infrastructure to train it. DL will always outperform ML 

model’s accuracy given enough data and is also easily scalable. They are harder to 

fine-tune and very costly to build. 

Both, ML and DL, lack clarity when it comes to how they produce results, but 

being able to visualize the training process and predictions helps out a lot. From 

that perspective, ML has an advantage over DL since it is employed for relatively 

small problems. 

All in all, it falls down to data, complexity, and available resources. DL is best 

suited for handling high-complexity decision-making recommendations, speech 

recognition, image classification, etc. in essence, large-scale problem-solving. On 

the contrary, ML is suited for small simple decision making, recommenders, 

predictions, classification, and dimensionality reduction. Fast and efficient when 

errors are permissible and include no mortal threat. 
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Chapter 2 Programming Languages, Tools, and 

Libraries  

Onward with the hands-on stuff, an important role in creating the project is 

the ability to choose among the right programming tools. In our case, it is obvious 

enough that we are going to use High-Level languages to create the model. Using 

a low-level programming language can have its perks in terms of compilation 

speed and faster computations, but setting up the whole NNs structure would be 

very time-consuming at the very least not taking into consideration the 

complexity. Build-in garbage collector is one of the other convenient tools high-

level languages offer that is necessary for AI applications. Nowadays, aside from 

the already established programming languages such as Python, Java, 

JavaScript, C++, C# there are others worth mentioning such as R, Scala, Julia, 

and Ruby always taking into consideration the deployment boundaries of the 

project. There are a lot of variables to contemplate when choosing a programming 

language for any project such as the scale, available resources, etc. This 

introduction aims to specify a majority of the existing programming languages, 

used for AI applications. Briefly mention their core distinctive features, explaining 

the thought process behind them. 

Starting with Java which is a very powerful language, easy to write, easy to 

debug and to top it off multiplatform. Especially prevalent in the mobile app 

department as well, Java is a prominent candidate, with built-in garbage collector 

and many many more tools like Swing, Standard Widget Toolkit, and many 

libraries using Deeplearning4j (DL4) as their base. DL4 is a major open-sourced 

DL library that is written on Java and used for a variety of applications such as 

network intrusion detection, cybersecurity, anomaly detection in industries such 

as manufacturing etc. Java is and will always be a core option to consider in every 

kind of project, not only AI-related. 

Next on the list is C++, truthfully C++ isn’t amongst the most popular of choices 

but it is widely used throughout the industry. C++ has exceptionally fast 

compilation and also is very efficient, in exchange for being a complex language. 

OpenCV (OpenCV. (2015). Open Source Computer Vision Library), one of the most 

important computer vision libraries available is written in C++. In most cases, 

C++ is used together with other languages to build AI applications but not as the 

core language, but rather having a supplementary role. 

A relatively new programming language Julia is also a potent tool. Since its 

first version in 2018, Julia has been growing rapidly with AI popularity. The main 

reason Julia is preferred is because it contains a built-in package manager and 

support for parallel and distributed computing, a valuable asset for any AI project. 

Its main library of interest is Flux [37] a ML and AI stack. Julia is another 

possibility to consider, using its built-in parallelism, offering easy scalability 

combined with cloud computing. Unfortunately, the language still has room to 

grow in terms of community and libraries, in contrast to the other alternatives. 

The next language to take into consideration is LISP [38]. Like C++, LISP isn’t 

used to develop modern AI applications but enables prototyping through its 

effective processing of symbolic information. The different syntax LISP uses and 
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the lack of modern well-developed libraries is what makes other languages eclipse 

LISP. 

Last but not least, the most famous and the one we will be using, Python [39]. 

Python may be the slowest, when it comes to its execution time and compiling 

time, from all previous choices but it comes with great advantages. From the easy 

syntax, making writing clear code and debugging it relatively easy, to its wide 

selection of packages and libraries backed up by an enormous and active 

community. Additionally, it has a variety of API frameworks and IDEs to choose 

from, it is versatile and flexible, and also easy to interact with other applications 

and code. What Python lacks in speed it makes up for with its community and 

packages. One of the many examples, Cython is a module that translates Python 

code into C. It has its limitations but combined with other libraries such as Numpy 

is able to produce several times faster compile and execution times, overcoming 

Python’s own shortcomings. 

In conclusion, it is not just one programming language dominant over the 

others, as always each language comes with its own pros and cons. It is healthy, 

for the whole AI development application field to have variety, in order for 

progress and innovation to bloom. Moreover, the existence of modern libraries is 

important to build an application and also an active community in order to 

maintain it. 
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2.1 The Adopted Libraries 

As mentioned, Python has a wide variety of libraries to choose from in order to 

develop an AI model. Namely among the best is Numpy, Tensorflow, Ultralytics, 

Pytorch etc. In order to develop a stable and reliable application, the existence of 

libraries is important, and also for maintaining them operational and future proof. 

Vehicle detection can be done in a stream processing manner, supposing we have 

the necessary resources available, GPUs with high VRAM, ten thousand plus cores 

and at least 300 TPUs, or by Batch Processing in our case. 

First and foremost, since image processing is one of the most frequent task this 

program is going to perform, OpenCV is one of the most important libraries. 

Opening video files, capturing frame by frame, concatenating, perform pixel 

related operation such as grayscaling, bitwise_not and threshold selection. 

Although there are other libraries out there to consider like scikit-image, 

SimpleCv or TensorFlow, due to its C++ base code, OpenCV in Python is unrivaled. 

Continuing with Pandas [41] and Numpy [40], almost in every scientific 

program there are always reasons for Pandas and Numpy to be used, and those 

reasons are data processing. Pandas is a library built on Numpy, that specializes 

in every form of data manipulation, from saving to manipulation, Pandas handles 

tabular formats and performs operations efficiently. On the other hand, Numpy is 

used exclusively for mathematical operations on arrays. Pandas is a data 

processing library and Numpy is a computational library specialized in arrays, 

both combined provide powerful data structured functions, that are used for data 

analysis (Pandas) or scientific data computation (Numpy). Our extracted data will 

be saved into .csv format file, holding important information such as frame 

number, car ID, bounding boxes, confidence, license plate etc. Most AI public 

libraries depend on those two libraries in Python for data related task. 

We are going to need a library for model deployment and for that ultralytics 

was used. Since we are going to use already existing archetypes rather than fine-

tune or deploy new ones, ultralytics is a good fit, simplifying the training process 

into a few lines of code, while providing all the necessary information about our 

model's training process such as Learning rate, gradient descent, etc. In case there 

was any reason to modify the model Tensorflow or Pytorch would be the library of 

choice. In particular, Pytorch since Tensorflow has some dependency problems and 

is infamous for its incompatibility with other frameworks and APIs. 

For training the license plate detector cuda acceleration was used but not for 

prediction generation, since we wanted to test the inference speed. 

Lastly, the dataset used for training the LSP was obtained through roboflow. 

Roboflow [42] is a wrapper around the Roboflow REST API, providing abstract 

methods for interacting with Roboflow in Python code. The Python package offers 

methods for managing projects and workspaces, uploading and downloading 

datasets, running inference on models, uploading model weights, and more. 

With Python as the programming language of choice, there are plenty of ways 

to go around all the different parts of our project. With that being said, in the next 

chapter we will go into more detail about the models that were used. 
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2.2 Model Architecture 

As seen on the previous chapter of DL, the most fitting algorithms for 

Computer Vision, and object detection in particular, are CNNs. A traditional 

object detection pipeline consists of three main stages, Region Proposal 

Generation, Feature Extraction, and lastly Classification. Current modern models 

have evolved and are either two-stage or one-stage type. A two-stage architecture 

(1) produces region proposal (Region proposal network RPN), by importing ML 

methods or DL, followed by (2) Object Classification on the features extracted by 

(1) from the proposed regions. These algorithms achieve significantly higher 

accuracy, at the cost of high inference speed. The performance of frames per second 

is less than that of one-stage detectors. Those models are Region CNNs, Faster R-

CNN or Mask R-CNN. On the other hand, One-stage detectors function the same 

way without the RPN, this process is significantly faster and therefore can be used 

in real-time applications. The drawback is that the algorithm prioritizes inference 

speed but has a loss of accuracy when it comes to detecting small-shaped objects, 

groups of objects, and odd-shaped (possibly blurred) objects. Some of the models 

are YOLO, SSD, and RetinaNet. These types of models are generally the fastest, 

structurally simple, and efficient when compared with multi-stage detectors. 

Lastly, another important factor that we have to take into consideration is the 

‘backbone’ of those models. The backbone of an NN is the core architecture that 

supports the learning process and enables the network to extract meaningful 

features from the input data. It dictates the performance of the network in DL 

tasks, and choosing the right backbone is essential to its success. The focus of the 

chapter is to investigate some of the popular models used in object detection. 

 

 
  Fig. 2.2.1 Structural difference of One and Two Stage Detectors [8]. 

 

 

Starting with Faster R-CNN (Two-Stage) [5], produced by extending R-CNN 

and Fast R-CNN models. Adding RPN which is a fully convolutional network for 

generating proposals of bounding boxes and aspect ratios. Faster R-CNN 

introduced the concept of anchor boxes, which are fixed bounding boxes depending 

on the class and are widely used in almost every modern model.  As depicted in 

the picture, the two stages are RPN and Fast R-CNN. The backbone network is 

usually a dense CNN, originally VGG-16 however it was observed that replacing 

it with ResNet offers significant improvement in performance. 
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    Fig. 2.2.2 A Faster R-CNN structure. 

 

The strength of R-CNN when combined with multi-layered backbone NN, i.e. 

ResNet-101, offers the best possible Average Precision over Small, Medium, and 

Large objects, of course at the cost of time. Suited better for medical diagnosis 

related feature extraction problems. 

Single-shot detector (one-stage) (SSD) was the first to achieve an accuracy that 

rivals two-stage detectors [6]. Brief SSD has two components: a backbone model 

and an SSD head. The backbone model is typically a network like ResNet, from 

which the final fully connected classification layer has been removed. The SSD 

head is just one or more convolutional layers added to this backbone and the 

outputs are interpreted as the bounding boxes and classes of objects in the spatial 

location of the activations of the final layers.  

 

   

 
Fig. 2.2.3 Single Shot detector structure. 

  

YOLOv3(one stage) [9] has the advantage of being much faster than other 

networks and still maintains accuracy. It allows the model to look at the whole 

image at test time, so its predictions are informed by the global context in the 

image. YOLO and other CNN algorithms “score” regions based on their 

similarities to predefined classes, in our case that would be cars and license plates. 

High scoring regions are noted as positive detections of whatever class they are 

most likely to identify as. In practice, in a live feed of a railroad, YOLOv3 can 
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detect different kinds of vehicles depending on which region of the video scores 

highly in comparison to the predefined classes of vehicles. In conclusion, the 

accuracy of YOLOv3 increases the bigger the amount of data available for training, 

perfect for traffic related applications since the number of different vehicles is 

plentiful. 

 

          
Fig. 2.2.5 YoloV3 structure by [10]. 

 

To summarize, two stage detectors offer more precise outputs slowly compared 

to other models and are more suited for Computer Vision applications in Medicine. 

On the other hand, one-stage detectors offer decent results extremely fast, usually 

depending on their vast amount of training time to cover for their hastiness. Since 

our project aspires to be concurrent one-stage detectors are more suited for the 

job, reducing the computational burden and having the optimal inferance speed. 

Next on the list is to take a peek into the evaluation of the models and their 

outputs. 
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2.3 Evaluation Metrics  

In Object Detection, it is insufficient to know just about the class of the 

identified object. There are other variables that quantify the performance of the 

model such as the speed of the Training, the speed of the Inference, Average 

Precision and Recall depending on the threshold of our problem, typically 0.5. Still, 

those are just the tip of the iceberg, it is also important to know to what extent the 

model can identify different-sized objects. 

 

 
 Fig 2.3.1 Example of evaluation metrics on Yolov3 and Faster RCNN in [11]. 

 

The evaluation metric used to extract the Mean Average Precision is 

Intersection over Union (IoU). IoU is calculated by dividing the overlap between 

the predicted and ground truth annotation by the union of these. As we can see 

the Average Recall is not calculated, that is due to the nature of our predictions, 

Recall doesn’t play an essential role as Precision in our case. In the case of Cancer 

cell detection, it would be the opposite. Lastly, the meaning of the thresholds 

dictates whether the predictions will be a True Positive or False Positive. As 

previously mentioned, the typical IoU threshold is 0.5, when needed to be stricter 

with the outcomes of the model 0.7~0.75 is considered a strict threshold.  

Other important metrics we are going to keep track of can be categorized as 

Box Loss, Objectness, and Classification oriented all using Mean Squared Error. 

Box Loss represents the ability of the algorithm to detect the center of an object 
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and how well the predicted bounding box covers an object. Objectness is a measure 

of the probability that an object exists in a proposed region of interest.  

If the objectivity is high, this means that the image window is likely to contain 

an object. Classification loss gives an idea of how well the algorithm can predict 

the correct class of a given object. Keep in mind that these metrics are more 

‘personalized’ to our task and cannot be adapted by all the other models. 

To sum up, when it comes to traffic-related object detection, the evaluation 

metrics used to measure a model's quality are its computational cost and Average 

precision or Average Recall. There are also extra metrics to keep track of while a 

model is in its training phase, that likewise help measure the quality of the 

predictions and not so much as the model itself. All in all choosing metrics is 

ultimately related to the application and the qualities of a ‘good’ model are 

interchangeable.   
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Chapter 3 Autonomous Recognition of Vehicles 

and Plate Detection 

By now it was established that NNs projects are complex in nature and 

expensive to train and run, but can offer a wide range of applications. Object 

Detection specifically employ CNNs algorithms that are one of the most composite 

of convolutional layers, normalization layers, Max Pooling layers, and Upsample 

before producing predictions and can sum up to hundreds of layers. The fulfilment 

process can be summarized in the simplified Flow Chart below. Our proposed 

system is a single device end-to-end application, which can easily be scaled to edge-

computing with small adjustments. 

 

 
Fig 3.1. Flow chart of this Thesis research steps. 

 

Throughout the intensive research, one can find not one way to implement a 

similar project but multiple. It is in the eye of the beholder to choose his tools. In 

our project first, we tested three famous models Faster R-CNN, SSD, and YoloV3 

on the COCO 2017 dataset. The model benchmark process revealed that the YOLO 

algorithm was the fastest to produce results, with 0.03 sec/per frame as opposed 

to 0.08 SSD and 0.1 on Faster RCNN, and was chosen as the model to be the core 

of the application. 

 



32 
 

 
Fig 3.2. The results of SSD, YOLOv3, and Faster R-CNN tests. 

 

After the model was selected, research was conducted into YOLO. The latest 

version YOLOv8, even though it has been abandoned by its original researcher 

Joseph Redmon due to his disapproval of the militarized appliances YOLO might 

produce, has an active community and is slightly better than its predecessor 

YOLOv7, more details on the choice will be on the corresponding chapter for the 

model. 

 For the Vehicle Recognition part the pre-trained weights were chosen instead 

of training a new model. The license plate detector was trained anew on a dataset 

that can be found publicly available online, using the YOLOv8 architecture and 

yielded satisfying results. Functions were implemented for a variety of purposes, 

for example runtime estimation, designated file creation, video splitting into 

frames etc. that can help expand the project in the future. 
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3.1 Yolov8 

YOLOv8 is the latest of the YOLO series models, it is exceptionally fast real-

time inference on single-device applications. It is important to understand that 

the inference performance of a model depends on the hardware available and is 

not something constant to be measured. YOLOv8 has five different-sized models, 

the general accuracy of those is presented below. 
 

MODEL Size (pixels) mAPval 50-
95 

Speed CPU 
ONNX (ms) 

Speed A100 
TensorRT 
(ms) 

Parameters 
(M) 

FLOPs (B) 

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7 

YOLOv8s 640 44.9 128.4 1.20 11.2 28.6 

YOLOv8m 640 50.2 234.7 1.83 25.9 78.9 

YOLOv8l 640 52.9 375.2 2.39 43.7 165.2 

YOLOv8x 640 53.9 479.1 3.53  68.2 257.8 

  

The scores are from test runs on COCO 2017 dataset and are from single model 

single scale type [12,47] and the model show high precision 0.84, recall 0.969 and 

mAP 95.10% in Table III [44] compared to the older versions of YOLO algorithm. 

Another very important benefit of YOLOv8 is that it can support various 

backbones, such as EfficientNet, ResNet, and CSPDarknet, providing us with the 

flexibility to choose the best model for our specific use case. In our case, the 

backbone is default CSP-Darknet53. YOLOv8 is constructed in a way that offers 

adaptive training, optimizing the learning rate and balancing the loss function 

during training, which leads to better overall model performance. Additionally, it 

employs advanced data augmentation techniques, MixUp [45] and CutMix [46] to 

improve the robustness and generalization of the model. Lastly, most of the 

aforementioned are pre-build ready to deploy for the purpose of the task, without 

limiting the ability to customize the inner structure of the model when deemed 

needed. For example, in the hypothetical scenario where our task was to train an 

Automatic Broken Bone AI system, to lower human error and help junior doctors 

with limited experience, we would need to change the backbone to the ResNet 

family which is focused on Object Identification (in case of small fractures in the 

hands) and also change to a “larger” model with more parameters and higher 

inference such as YOLOv8l to maximize average Recall. All of which can be done 

with minimum code writing. The default structure of the model is depicted in (Fig. 

3.1.1). 
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 Fig 3.1.1 YOLOv8 diagram by user RangeKing (https://github.com/RangeKing). 

 

 

YOLOv8 is distributed using the ultralytics library and in cooperation with the 

roboflow library, without the need to use the API, we built and employed our 

models. Ultralytics is a library similar to TensorFlow and PyTorch, but rather 

centered on model deployment, and roboflow for acquiring the dataset to train the 

LSP, apply preprocess and data augmentation operations, such as resizing, 

random horizontal flips, rotations, zooms, shifts, and many more. It is impossible 

for every single image scenario of a license plate to be captured, taking into 

account all the different weather, and lighting conditions. Preprocessing is 

essential for both technical and performance reasons and so is Augmentation. 

Both increase the robustness of the model and improve accuracy. After creating 

the models, they can be deployed directly by ultralytics or loaded into other 
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environments such as TensorFlow or PyTorch. Example of code loading YOLOv8n 

and our LSP after it is trained. 

 

 
 

Example of code for feeding frames into the model and using OpenCV for frame 

capturing. 

 

 
 

In conclusion, YOLOv8n is the model used for both Vehicle Detection and 

license plate detection. It is clear that other than the superior inference speed, it 

also comes with a lot of customization capabilities. The main libraries ultralytics 

and roboflow are more centered on the distribution, making it possible to deploy 

and train with a few lines of Python code, but that neither limits the capabilities 

of the models themselves nor the programmer as it can be loaded and modified 

freely.  
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3.2 License Plate Detector 

For the training of the License Plate (LSP) Detector a Tesla T4 was used in 

order to minimize the training time. It is not important or impactful to the 

performance of the model, whether GPU or CPU is used for the training process, 

the only thing that changes is the amount of time to train the weights.  

Creating the LSP Detector in our project can be separated into three steps. The 

first step is to obtain a dataset with license plates and inspect it. The dataset used 

consists of 10126 raw images. Generally, it is a good practice to have at least a 

thousand images per class. In our case, we will use the Augmented version of the 

dataset, consisting of 21174 images training 87%, 2049 validation set 8%, and 

1020 test set 4%. The Augmentation techniques applied on the original testing 

images only are the following: 

- Flip: Horizontal 

- Crop: 0% Minimum Zoom, 15% Maximum Zoom 

- Rotation: Between -10° and +10° 

- Shear: ±2° Horizontal, ±2° Vertical 

- Grayscale: Apply to 10% of images 

- Hue: Between -15° and +15° 

- Saturation: Between -15% and +15% 

- Brightness: Between -15% and +15% 

- Exposure: Between -15% and +15% 

- Blur: Up to 0.5px 

- Cutout: 5 boxes with 2% size each 

 

 
   Fig 3.2.1 Code that downloads the chosen dataset. 

 

The YOLO algorithm performs better with more data so it is advised to be 

greedy. We will check for overfitting after the training is over. The next step is 

training the model. As mentioned a Tesla T4 was used, publicly available by 

Google collabs, in order to minimize the training time. The model was trained for 

20 epochs. It is good practice to first train a model around 20~25 epochs, then see 

how it performs and tune its hyperparameters. 

 

 

 



37 
 

    Fig 3.2.2 Final output of the training process. 

 

The training took 2.4 hours and we can see that the estimated mAP50 is 0.983 

and mAP50-95 is 0.703. The models seem to be performing very well on the testing 

data. Small notice that the last line “Speed: 0.2ms preprocess, 2.2ms inference, 

0.0ms loss, 1.6ms postprocess per image” with the T4 inference is taking about 

4ms per frame more or less, which means the LSP model could theoretically be 

used for real-time application with 250FPS give or take. The reason we are 

highlighting this information is that the final project is done without the T4 Tesla, 

on a CPU that is significantly slower. 

The final step is to evaluate the model. Conveniently most of the evaluation 

metrics are automatically generated by the ultralytics and during training the 

most crucial metrics were monitored automatically. There is no reason to tamper 

with any of those automatic processes, in the first iterations but it is possible. The 

configured values are performing well in general. For example, the learning rate 

usually is the best at 0.01.  

 

 
   Fig 3.2.3 Plots of the most important Eval Metrics of the LSP. 

 

From the Evaluation metric plots we can clearly see that the training process 

easily could be extended to 40-50 epochs since Box Loss was decreasing at the time 

of interruption and in general no curve converged, which is considerably logical 

result with such a small amount of epochs. We can safely assume that the model 

is not overfit by any means. The mAP seems to be promising. Interpreting 

evaluation metrics can only get us so far since there isn’t any indication of the 

model acting up, it is time to test it on real inputs. From the batch testing Fig 

3.2.4, the results are impressive but then again, we need to test on new data. 

Deliberately we chose a variety of video quality for the model to be measured on 

and as suspected on low-quality videos the LSP didn’t perform well, but on 

medium to high-quality videos, the LSP achieved a better overall outcome. That 

happens because the YOLOv8 algorithm works with 640-pixel inputs, and the 

higher the quality the better it will perform. Additionally, we chose the ‘nano’ 

version, the smallest of the 5, which has the smallest number of parameters to 
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work with, that is the trade-off of choosing speed over accuracy. A factor to keep 

in mind when deploying the project. 

 

 

 

 
   Fig 3.2.4 Test batch predictions of the LSP. 

 

The LSP detector is set, we wrote a small program that takes a video, applies 

the model frame by frame, and saves it as a new video. Through Images 3.2.5-8 

the libraries are presented as well as the execution. The detector finds the 

bounding boxes above the given threshold and using the OpenCV module the 

vizualization is created. In the last image, we noticed that each frame takes 

roughly 170~240 ms and up to 400 ms rarely, which is very slow and cannot be 

used for real-time application, but that is because the LSP doesn’t utilize the GPU 

and runs solely in the CPU of the system which is an Intel(R) Core(TM) i5-3350P 

CPU @ 3.10GHz. 
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Fig 3.2.5 Libraries used. 

 

 
Fig 3.2.6 Video selection, setting up the VideoWriter. 

 

 
   Fig 3.2.7 Frame by frame LSP Detection and save. 

 

 
 Fig 3.2.8 Example of time needed by the LSP Detector to process each image. 

 
 

 

The LSP detector is done. We have a pre-trained model for Vehicle Recognition, 

we created an LSP detector, it is time to combine the DL models with code and 
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finish the project. There are still a lot of variables to take into consideration. For 

example, when applying the model at intersections there is the probability that in 

rare cases LSP detector can confuse license plates with other objects, for that 

precautions must be taken in the form of a stricter confidence when predicting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

3.3 Execution and Outputs 

To establish that the LSP doesn’t accidentally detect any sign caption, we 

decided to use redundancy in many forms, the pre-trained YOLOv8n will be used 

to make vehicle predictions, and then on the predicted bounding boxes the LSP 

Detector will be used. Next, we would need to extract the information from the 

LSP detector with an Optical Character Recognition (OCR) tool and save it to 

a .csv file along with some necessary information about the car, frame, and 

confidence of the prediction.  

 The purpose of the final program is to successfully extract the necessary 

information from a video, not visualize the results. 

The execution process has three main steps. The first step is to use the pre-trained, 

on COCO 2017, YOLOv8n on each frame to detect Vehicle types and extract their 

locations. Searching through its class attribute we find that class IDs of [2,3,5,7] 

are Vehicle types. Furthermore, we employ a tracking algorithm for 2D multiple 

object tracking in video sequences which is called SORT in order to assign each 

Vehicle a unique ID.  

 

 
   Fig 3.3.1 Vehicle detection and assigning unique ID with SORT. 
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Step two, now that we have bounding boxes of images containing Vehicles we 

cross-reference the predictions of the LSP with the predictions of the first model. 

We prepared many utility functions that perform such actions, which are 

contained in the video_functions.py file. The get_car() takes the tabular data and 

tries to find a licence plate detected by the LSP model in the Vehichle predictions. 

If there is a licence plate match, we proceed to the third step, extraction and 

temporary save. 

 
   Fig 3.3.2 Cross-referencing Licence Plates and Vehicles. 

 

 

After finding the connected Vehicles and Licence Plates, we need to preprocess 

them Fig. 3.3.3-5. This part is necessary in order to increase the performance of 

our OCR. The OCR module used is pytesseract, which recognizes character 

patterns. The model was trained using scripts so in order to maximize the outputs, 

it would be best for the images offered to be in a similar form and have white 

background and black letters as much as possible. Cropping the images with the 

licence plates, converting them into grayscale, applying a filter threshold for the 

pixes, and then bitwise_not, before feeding them to the OCR. Grayscaling the 

image covers the case of multicoloured licence plates and letters. Afterwards, the 

croped licence plates are fed (Fig. 3.3.3-3.3.5) to the OCR, keeping the results that 

have the highest score. The reasoning behind this is once more to widen the 

horizon on all the possible cases with different multicoloured licence plates. 

 

                         
 Fig 3.3.3 Grayscaled Licence Plate.   Fig 3.3.4 After Pixel Threshold Licence 

Plate. 

 
 Fig 3.3.5 Bitwise not Thresholded Image. 

 

     After running some quick tests in Fig 3.3.8, we noticed that the OCR predicted 



43 
 

NAI5NRU while the ground truth was NAI3NRU. It is pretty common with OCRs 

to mistake some characters for others. One of the drawbacks of using pytesseract 

is that the images need to be further pre-processed. Making some further 

adjustments, in particular image resize, we managed to correct the errors in Fig 

3.3.9, at the cost of execution time. There are many different factors that we need 

to take into consideration before processing any images. Some may need different 

preprocessing methods in order to produce the best possible result and it is not 

possible to account for every single of these factors. Some examples are the 

different lighting conditions, noise of the image, angles etc.  

 
   Fig 3.3.6 Preprocess licence plates and character extraction. 

 

If the character read by the OCR fits the licence plate criteria then it is saved 

in the format frame_nmr, car_id, car_bbox, license_plate_bbox, 

license_plate_bbox_score, license_number, license_number_score. The plate with 

the highest score should hold the correct licence plate number and between the 

grayscale and the threshold-bitwise-not, we will choose the one with the highest 

confidence score. After the execution for all the frames is completed, the results 

are saved on a .csv output file, ready to be utilized for every kind of purpose. With 

the .csv file we can either vizualize every detection, or use the confidence scores as 

thresholds and vizualize only the most confident results, ultimately use it 

combined with a database to store the activity in areas of interest. 
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   Fig 3.3.7 Temporary save the highest Licence Plate. 

 
    Fig 3.3.8 Test results (a) of the execution. 
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Fig 3.3.9 Test results (b) of the execution. 

 

In Fig 3.2.3 the graph of different evaluation metrics were ploted, over the 

validation set which was 1020 images and in Fig. 3.2.4 a batch of prediction was 

presented as well. Over the 1020 images the LSP detector scored remarkable.  
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  Fig 3.3.10 Evaluation scores of the LSP over training. (on validation set) 

In Fig 3.3.11 is presented a prediction on a random image with a minimum of 

0.45 confidence, the results of which are very good. It is important to remind that 

the most important metric in our case is precision rather than recall and the 

accuracy which is not presented is the confidence of the model in the prediction 

since it is not a classification but a detection problem. In Fig 3.3.11 confidence is 

0.78 or in other words 78% accuracy that this was a licence plate. 

 
Fig 3.3.11 Detection on random image.  

Lastly we will run some more tests on the final ‘whole’ version of our program, 

changing our OCR from pytesseract to EasyOCR for better results over different 

images. The change was made because pytesseract was providing insufficient 

results. The images used were low quality 416x416 pixels and so the results are 

expected to have low confidence, reminding that YOLOv8n needs high quality 

images.  
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Fig 3.3.12 Input image 416x416 pixels 

 

 
    Fig 3.3.13 Execution outputs. 

 

The important parts are marked for clarity reasons. The results are the default 

‘-1’ that marks an empty output .csv. The OCR detects the number correctly but 

also recognizes a comma. Licence plates should not have special characters so we 

remove them. We try to detect the UK licence plate format [43] which consists of 

seven digits. Digits 1 and 2 are letters, digits 3 and 4 are numbers and digits 5,6 

and 7 can be of any random letters. The confidence is very high taking into 

consideration the quality of the image. 
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    Fig 3.3.14 Input image 1181 x 664 pixels 

 

 
Fig 3.3.15  Execution outputs. 

 

As we can see, it has 0.78 licence plate confidence and a 0.76 number score with 

a higher quality clean image. Let’s also take a look at a lower-quality image in 

which the model got confused. 
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  Fig 3.3.16 Input image 416x416 pixels 

 

 
    Fig 3.3.17  Execution outputs. 

 

In the licence plate, the OCR confuses the letter I for 1. and so we get a false 

positive. Although the licence plate bbox has a confidence of 0.94 the number score 

is lower than 0.1, making it easy to disregard by applying a minimum threshold 

on the value number score. Keeping in mind that the low confidence is due to the 

low quality image, and the mistake is of logical nature since we take into 

consideration the possibility of letter I in digit 3 might be a 1, confused by the 

OCR. In order to further improve the program in the future a system where 

tampering with results takes into consideration that the possibility of confusion, 

is directly influenced by the confidence of the prediction.  
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This redundancy costs a lot of computational time but it is important in order 

to ensure correct information extraction. Redundancy tends to avoid unwanted 

scenarios and ensure a safer execution in exchange for computational time. Either 

in the form of extra predictions or in the form of extra checks that additional 

computational time will be sacrificed towards better results. We are sure of the 

LSP detector execution and there is no doubt about the pretrained YOLOv8n 

model.  
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3.4 Improvements and limitations. 

During the planning phase of our proposed system, the main focus was feature 

extraction functionality and execution/compilation speed, while also trying to 

create flexible code that can be used in multiple scenarios. Being able to have a 

lightweight model such as YOLOv8n, can make real-time inference possible. There 

is plenty of room for improvement when it comes to code optimization. The 

proposed system was also limited by the hardware available.  

To begin with the improvements, there is a lot of room to refine the LSP 

Detector. Increase the epochs to 50~100, searching for the best number while 

avoiding overfitting or even adding more images to the dataset all of which will 

result in an accuracy increase. It is also possible to remove the LSP Detector as an 

individual model and add its functionality to the main YOLOv8n due to the fact 

that the first layers in both models have common features. The idea behind the 

LSP Detector is for it to be the specialized network that detects licence plates in 

Vehicle objects. 

Next on the optimization list, there are different kinds of OCR performing 

better in terms of accuracy and speed compared to pytesseract such as EasyOCR. 

Pytessaract was chosen due to its end-to-end support for multiple languages, 

offering flexibility when adjusting the feature extraction on different language 

licence plates. It makes it possible to create a multilingual licence plate detection 

application. EasyOCR might be offering better accuracy, but is computationally 

expensive and cannot cover every factor that needs to be taken into consideration 

when preprocessing the image. (Light conditions, blur, noise, angle etc.) 

The limitations mainly consist of hardware requirements. As already stated 

the LSP Detector was trained on a T4 Tesla in Google Colab and the predictions 

were made locally on a singular computer. There were no cloud services available 

to test for parallel execution of the program and check its functionality on real-

time inference. Running without GPU acceleration is very time-inefficient. 

Another limitation is that the results produced by the DL models are not very 

clean. In reality, there are a lot of processes working in the background, that build 

an orderly presentable final output.  

In conclusion, tools and models have their pros and cons depending on the 

nature of the problem. The biggest limitation of the project was the lack of 

hardware to further implement the capabilities of the algorithm as well as reduce 

the time inefficiency of the test executions. Object detection is a very complex field 

to be approached by many different scopes, and the project has a lot of room to 

grow. 
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Conclusions 

Automatic Recognition of Vehicles and Updates using Licence Plates can be of 

great merit to the public, private businesses, the government and its respective 

authorities. The project in general has room for improvement and can be further 

developed to increase its functionality. Monitoring an area for trespassing or 

traffic violations is a difficult and demanding task to cover using human resources, 

especially in remote places. This problem can be solved by deploying Automatic 

Recognition of Vehicles using Licence Plates and utilizing modern technology. 

Keeping always in mind the Ethical part of data collection. 

CNN Object Detection algorithms have a lot to offer towards recognition and 

the YOLO model isn’t the only one fit for the job. As previously mentioned, there 

are countless ways to approach the problem at hand. To maximize the usage of the 

project, Cloud services are also needed and deployment on the Edge would be 

preferable. Partly why, the inference speed was the most vital value parameter 

with a lightweight algorithm during model selection. Though single-device end-to-

end is the current extent of the Algorithm, it is sustainable with a proper GPU. 

Building the code using Python might not be the fastest option when compiling 

and executing but it comes with the benefits of flexible code, an enormous active 

community, constant breakthroughs and new tools. Vital elements towards 

building a successful and long-lasting application. 

Lastly, Automatic Recognition of Vehicles and Updates using Licence Plate's 

strongest suit is as a Monitoring tool for Traffic Law Enforcement and data 

collection. As Benjamin Franklin once said “An ounce of prevention is worth a 

pound of cure” Monitoring forest entrances, intersections, school entrances, and 

remote roads are all places where activities frequently contravene the law. The 

deployment of the model can help enforce traffic rules, creating safer roads and 

drivers' solidarity. As a data collecting tool, locating a stolen vehicle or tracking a 

suspicious vehicle activity, provided enough coverage would simplify the process 

drastically. 
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