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(1)   «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με έγγραφη 
υπεύθυνη δήλωση  
του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο υπαίτιος 
αυτών των πράξεων  
σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή σκόπευε 
να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.» 

 

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της 
διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι: 

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να τα 
περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη σελίδα. Η 
αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι λογοκλοπή. Πέραν 
της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση εδαφίων από έργα άλλων, 
συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς και η παράθεση στοιχείων που 
άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά στην πηγή. Αναφέρω πάντοτε με 
πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται από 
αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι αντιγραφή. Η 
αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν δικαιολογεί συρραφή 
εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και παρουσίασή τους ως δική 
μου εργασία.  

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των 
παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε μεγάλο 
παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και όταν 
δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι πίνακες και 
τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής. 





  
 

 

ABSTRACT 

 

This thesis tackles the challenge of mitigating skin tone bias in deep learning models for skin cancer 

classification through the application and extension of Latent Adversarial Debiasing (LAD). While deep 

neural networks have demonstrated high performance in various tasks, they often adopt present 

biases inside the data unintentionally. To address this, we adapt LAD, an adversarial based technique 

for mitigating biases and evaluate its effectiveness across multiple architectures, including ResNet, 

DenseNet, and EfficientNet, under fully biased and semi-biased conditions. The study compares the 

models on a combination of the ISIC2020 and the PAD-UEFS, in addition to evaluating fairness metrics 

such as Equal Opportunity (EO), Disparate Impact (DI), and Accuracy Parity (AP) alongside traditional 

performance measures. Results show that LAD-enhanced models achieve significant improvements in 

fairness, with DenseNet121 and EfficientNetB0 in particular demonstrating robust performance across 

both fairness and accuracy. Moreover, the analysis highlights the trade-off between fairness and 

predictive accuracy, indicating that the model is sensitive to hyperparameters and extensive searches 

should be considered when considering implementing it. This work contributes insights into fairness-

aware model design and provides a concrete foundation for deploying debiased deep learning models 

in meaningful real-world applications such as medical imaging. The implementation code is publicly 

available on the following github repository https://github.com/Panaghs01/Thesis.

https://github.com/Panaghs01/Thesis


  
 

 

Table of Contents 

ABSTRACT .....................................................................................................................................................I 

1 INTRODUCTION ........................................................................................................................... 3 

2 ARTIFICIAL INTELLIGENCE (AI) ....................................................................................................... 5 

2.1 MACHINE LEARNING AND DEEP LEARNING .................................................................................. 5 
2.1.1 ARTIFICIAL NEURAL NETWORK FOUNDATIONS ............................................................................................... 6 
2.1.2 TRAINING PROCEDURE OF A NEURAL NETWORK ............................................................................................. 9 
2.1.3 OVERFITTING, UNDERFITTING, AND BIAS .................................................................................................... 13 
2.2 COMMON ARCHITECTURES .................................................................................................... 13 
2.2.1 CNNS ................................................................................................................................................... 13 
2.2.2 AUTOENCODERS ..................................................................................................................................... 15 
2.2.3 GANS ................................................................................................................................................... 17 
2.2.4 PRE-TRAINED MODELS AND TRANSFER LEARNING ......................................................................................... 18 

3 DEEP LEARNING IN MEDICINE ..................................................................................................... 21 

3.1 OVERVIEW ........................................................................................................................ 21 
3.2 MEDICAL IMAGING ............................................................................................................. 21 
3.2.1 IMAGE CLASSIFICATION ............................................................................................................................ 22 
3.2.2 OBJECT DETECTION ................................................................................................................................. 22 
3.2.3 IMAGE SEGMENTATION ........................................................................................................................... 22 
3.2.4 IMAGE ENHANCEMENT ............................................................................................................................ 23 
3.3 FAIRNESS AND BIAS MITIGATION ............................................................................................. 24 
3.3.1 COLLIDER BIAS ........................................................................................................................................ 24 
3.3.2 FAIRNESS METRICS .................................................................................................................................. 24 
3.3.3 MITIGATION TECHNIQUES ........................................................................................................................ 25 
3.3.4 BIAS IN SKIN LESION DETECTION ........................................................................................... 26 

4 PROPOSED SYSTEM .................................................................................................................... 26 

4.1 LATENT ADVERSARIAL DEBIASING ........................................................................................... 27 
4.1.1 VQ-VAE ............................................................................................................................................... 27 
4.1.2 ADVERSARIAL WALK ................................................................................................................................ 28 
4.2 DATASET AND EVALUATION ................................................................................................... 31 
4.2.1 ISIC2020 DATASET ............................................................................................................................ 31 
4.2.2 PAD-UEFS DATASET .............................................................................................................................. 32 
4.2.3 EVALUATION METRICS ............................................................................................................................. 33 

5 EXPERIMENTS ............................................................................................................................ 34 

5.1 IMPLEMENTATION DETAILS ................................................................................................... 34 
5.1.1 ENVIRONMENT SETTINGS ......................................................................................................................... 34 



 1 

5.1.2 MODEL SETTINGS .................................................................................................................................... 34 
5.1.3 PRE-PROCESSING .................................................................................................................................... 35 
5.2 RESULTS ....................................................................................................................... 36 
5.2.1 RESNET RESULTS .................................................................................................................................... 36 
5.2.2 DENSENET RESULTS ................................................................................................................................ 38 
5.2.3 EFFICIENTNET RESULTS ............................................................................................................................ 39 
5.2.4 MODEL COMPARISON ............................................................................................................................. 40 

6 CONCLUSION & FUTURE WORK .................................................................................................. 46 

REFERENCES .................................................................................................................................... 47 

 
 

Table of Figures 

Fig. 1 Artificial Intelligence and its subsets. .................................................................................................. 6 
Fig. 2 Activation functions ............................................................................................................................. 8 
Fig. 3 Neuron – Multiple neurons, Multilayer perceptron [129] .................................................................. 9 
Fig. 4 Data augmentation Examples ........................................................................................................... 12 
Fig. 5 Kernel application on the input image. ............................................................................................. 14 
Fig. 6 Convolutional Neural Network illustration ....................................................................................... 15 
Fig. 7 Max pooling example ........................................................................................................................ 15 
Fig. 8 Basic autoencoder architecture. ....................................................................................................... 16 
Fig. 9 Autoencoder with convolutions example showing image reconstruction of MNIST handwritten 

number dataset. The autoencoder was trained for 2 epochs for demonstration purposes. ........................... 16 
Fig. 10 GAN network architecture .............................................................................................................. 18 
Fig. 11  ResNet residual block [130] ............................................................................................................ 19 
Fig. 12 ResNet34 architecture [130] ........................................................................................................... 19 
Fig. 13  DenseNet Dense connectivity illustration ...................................................................................... 20 
Fig. 14 EfficientNet dynamic scaling technique scaling the three dimensions simultaneously.................. 20 
Fig. 15 VQ-VAE architecture illustration ..................................................................................................... 28 
Fig. 16 Post-adversarial-walk images with alpha = 0.1 (heavy perturbations). Bottom images were taken 

before the walk, and the upper images were taken after the walk. ................................................................. 30 
Fig. 17  Two Images from the ISIC2020 dataset. ......................................................................................... 32 
Fig. 18 PAD-EUFS dataset images ............................................................................................................... 32 
Fig. 19 Equal Opportunity versus Accuracy in the fully biased setting. ResNet models are colored blue, 

DenseNet red, and EfficientNet green. LAD models include the value of alpha inside their name (i.e. 
resnet20-0.1). EfficientNet B5-0.01 is not included inside the graph because the value was too low and it 
would make the graph unreadable. .................................................................................................................. 41 

Fig. 20 Accuracy Parity versus Accuracy in the semi biased setting. ResNet models are colored blue, 
DenseNet red, and EfficientNet green. LAD models include the value of alpha inside their name (i.e. 
resnet20-0.1) ..................................................................................................................................................... 41 

Fig. 21 Disparate Impact versus Accuracy in the fully biased setting. ResNet models are colored blue, 
DenseNet red, and EfficientNet green. LAD models include the value of alpha inside their name (i.e. 
resnet20-0.1) ..................................................................................................................................................... 42 

Fig. 22 Comparison of all fairness metrics and accuracy between the best performing models in the fully 
biased setting. ................................................................................................................................................... 42 



 2 

Fig. 23 Accuracy Parity versus Accuracy in the semi biased setting. ResNet models are colored blue, 
DenseNet red, and EfficientNet green. LAD models include the value of alpha inside their name (i.e. 
resnet20-0.1) ..................................................................................................................................................... 43 

Fig. 24 Disparate Impact versus Accuracy in the semi biased setting. ResNet models are colored blue, 
DenseNet red, and EfficientNet green. LAD models include the value of alpha inside their name (i.e. 
resnet20-0.1). ResNet20 is not present in the graph because of the low EO value. ........................................ 44 

Fig. 25 Accuracy Parity versus Accuracy in the semi biased setting. ResNet models are colored blue, 
DenseNet red, and EfficientNet green. LAD models include the value of alpha inside their name (i.e. 
resnet20-0.1) ..................................................................................................................................................... 44 

Fig. 26 Comparison of all fairness metrics and accuracy of the best performing models using the LAD 
augmentations in the semi biased setting. ....................................................................................................... 45 
 
 
 
  



 3 

1 Introduction 

Artificial Intelligence (AI) has seen significant advancements in recent years with the introduction of Machine 

Learning (ML) and later, Deep Learning (DL). These approaches have demonstrated exceptional performance 

in various complex tasks such as image recognition, decision making and natural language processing. These 

technologies are applied in various fields of science in order to aid other researchers in their work by providing 

powerful computing structures and problem-solving methodologies. Healthcare in particular, has been 

frequently utilizing AI to assist clinicians with their work, providing second opinions, improving diagnosis 

outcomes and planning treatments just to name a few. One of the most popular challenges in healthcare ML 

is oncology, and specifically cancer diagnosis and treatment. Cancer has been the leading cause of death 

worldwide, accumulating nearly 10 million deaths in 2020, and based on 2019-2023 statistics there are 

approximately 145.4 deaths per 100.000 cancer cases [1], [2]. Melanoma, a form of skin cancer, is one of the 

most common types of cancer and it represents a major global health concern. When diagnosed in early 

stages, melanoma has a five-year survival rate of more than 99%, falling to 75% when the cancer reaches the 

lymph nodes and then even further at 35% when the cancer reaches distant organs [3].  

Despite recent successes, AI systems are not immune to the biases present in the data on which they are 

trained. Systemic underperformance and unequal outcomes on certain minority class data can often go 

unnoticed if not taken fully into account. In medical contexts, such biases can have serious consequences, 

potentially leading to unequal performance across demographic groups and reinforcing existing healthcare 

disparities. For example, in dermatology, skin lesion classification models often underperform for patients 

with underrepresented skin tones, due to imbalanced datasets and confounding correlations in the training 

data. This raises critical concerns about fairness, and the ethical deployment of AI in clinical practice. 

Recent research has highlighted the need for fairness-aware AI systems that not only achieve high accuracy 

but also maintain equitable performance across diverse populations. Bias in AI can arise from multiple sources, 

including data collection processes, annotation practices, and model architectures that inadvertently exploit 

spurious correlations. Recent research in 2024 compared 54 publicly available skin cancer datasets and 

concluded that only 3 of them included a skin tone attribute inside the dataset [4]. In the context of skin lesion 

detection, collider bias where non-causal features can become predictive due to dataset composition can 

cause models to rely on irrelevant cues like skin tone rather than the lesion itself.  

This study addresses the challenge of bias mitigation in deep learning models for skin lesion detection. Building 

upon the Latent Adversarial Debiasing (LAD) framework, we aim to deploy the LAD model on a real world 

application and evaluate its effectiveness to separate causal signals from confounding factors on skin lesion 

image data. This approach is suited to medical imaging scenarios where perfectly balanced datasets are 

impractical to obtain. By integrating adversarial perturbations in the latent space, the method aims to produce 
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debiased training data that improves fairness metrics such as Equal Opportunity, Disparate Impact, and 

Accuracy Parity, without significantly compromising classification accuracy. To evaluate the proposed system, 

we combine two publicly available datasets, the ISIC2020 and PAD-UFES, creating a more demographically 

diverse benchmark for skin lesion classification. We conduct experiments across multiple CNN architectures, 

including ResNet, DenseNet, and EfficientNet, under both fully biased and semi-biased conditions.  

This study, situated at the core of AI fairness, medical imaging, and bias mitigation methodologies, contributes 

to the expanding field of equitable healthcare AI. The outcomes emphasize the necessity of embedding 

fairness considerations into every stage of clinical AI development, from design and training to evaluation, 

making efforts to support the creation of diagnostic systems that are both dependable and fair in advancing 

cancer care. 

In the following chapters we discuss the following matters: Chapter 2 sets up basic Artificial Intelligence, 

Machine Learning and Deep Learning principles and structures, describes model architecture and training 

procedure in detail and listing some of the most significant architectures proposed in the recent years that 

were also important for the scopes of this study, as well as challenges and limitations of AI. In chapter 3 we 

explore how AI has reshaped healthcare, listing improvements applied in medical imaging and tasks that these 

models address, in addition to detailing challenges like biases especially in skin lesion detection and way to 

detect them using evaluation metrics. In chapter 4, we present how the Latent Adversarial Debiasing 

mechanism works, describing its components, the structure of the datasets and the evaluation metrics that 

were used. In chapter 5 we set up the experimental environment and list all its details, including dataset pre-

processing and code implementation key settings that were used. Additionally, we test the three pre-trained 

architectures on different hyperparameter settings of LAD and then proceed to compare them, first each 

model with itself then all models together. In chapter 6 we conclude on the experimental results, discussing 

future work and limitations. 
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2 Artificial Intelligence (AI) 

Artificial Intelligence is a field in computer science where, via algorithms and mathematics, the computer tries 

to imitate human intelligence [5]. It involves methods that enable the computer to learn through past 

experiences, adapt to new data, and perceive its environment. In general, AI is a broader definition that 

encompasses any artificially created computational system designed to mimic intelligent and complex 

behavior, like decision making or understanding a language [6]. In Section 2.1, we will dive deep into machine 

learning and deep learning, as well as neural networks, how they work, development frameworks, and the 

challenges they have to face. In Section 2.2, core architectures like Convolutional Neural Networks (CNN), 

autoencoders and variational autoencoders, Generative Adversarial Networks (GAN), and pre-trained models 

will be introduced, as well as data preprocessing and augmentation. 

2.1 Machine Learning and deep learning 

Research in Artificial Intelligence traces back to 1943 when Turing and Champernowne found the first chess-

playing computer program. Later [7] developed the first perceptron (Fig. 8) model, a hypothetical nervous 

system that could make predictions and classifications [8]. In this Section, we introduce concepts such as 

machine learning, deep learning, model architectures, and training methodologies that play a pivotal role in 

the present study. 

Machine Learning (ML) is a part of Artificial Intelligence designed to imitate organic intelligence and encourage 

the computer to learn from its surroundings. The focus of ML is creating algorithms and statistical models that 

enable computers to learn independently from data. ML encompasses several learning paradigms, most 

notable are supervised, unsupervised, and reinforcement learning, each suited to different problem settings. 

Models are trained through examples, and their goal is to find the underlying patterns and capture them, so 

that the learned generalization can be applied to new, unseen data [9]. 

Deep Learning (DL) is a subcategory of machine learning that uses the multilayered structure of Artificial 

Neural Networks (ANN), imitating the architecture of the biological neural network to process more than one 

problem at a time. Specifically, DL focuses on deep neural networks (DNN) that are often denser and more 

complex models than traditional ANNs, enabling DNNs to learn hierarchical feature representations [10]. In 

general, DL excels when processing large and high-dimensional data like images, videos, speech, etc., without 

requiring manual feature engineering [11], [12]. 
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2.1.1 Artificial Neural Network Foundations  

In an attempt to recreate the information processing structure of a human brain, Neural Networks have been 

developed, composed of multiple nodes called neurons connected to each other [13]. Each neuron produces 

an output with the help of the activation function. Connections between two neurons denote the weight of a 

signal passing through them, called a weight, which can be interpreted as the network’s ability to 

memorize[14]. The final output of the network may vary depending on the input, the corresponding weight 

values, and the activation function that was used. Generally, these networks are created to implement either 

some natural phenomena or a logical strategy [15]. ANNs can be computed in parallel, making good use of 

modern-day Graphics Processing Units (GPUs) and distributed architectures [16]. 

The neurons of an ANN can represent different concepts like letters, features, patterns, or more abstract 

meanings. The network can be divided into three layers: the input layer, the hidden layer and the output layer 

[17]. The input layer receives the real-world data that we want our model to be trained with. The output layer 

yields the results of the model, i.e., a final prediction or a classification. The hidden layer cannot be observed 

outside the network and serves as the connection between the input and the output layers [18]. These layers 

are connected through weights, and each neuron of the previous layer is connected to every neuron of the 

next layer. The computation of the weights and the connection between neurons translate to the 

representation and processing of the data inside the network. Additionally, to help the network cover a wider 

range of values in the model output a constant bias factor is introduced in the calculation of a neuron. The 

computation of a neuron output can be mathematically interpreted as follows: 

Fig. 1 Artificial Intelligence and its subsets. 
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∑ 𝑤𝑖 × 𝑥𝑖 + 𝑏

𝑖

 

Where i is the index of the neuron’s input, w is the weight, x is the actual input, and b is a constant bias factor 

[7]. 

The activation function is applied after the calculation and introduces non-linearity to the model. This 

component of the ANN architecture is crucial for the model’s learning process, absence of a non-linear 

activation function would effectively collapse the model into one singular linear transformation [19]. Some 

popular and effective activation functions are the Rectified Linear Unit (ReLU), Leak ReLU, Exponential Linear 

Unit (ELU), Parametric ReLU (PReLU), Sigmoid, Hyperbolic tangent (tanh), and Softmax [20]. Each of these 

functions has its application. For example, Sigmoid is used mainly in Binary Classification tasks because it 

outputs values in a range of [0,1], and Softmax is used in multi-class classification tasks as it outputs 

probabilities. The activation function illustrations and their formulas are shown below. 

1. ReLU:   {
𝑥                 𝑖𝑓 𝑥 > 0
0                 𝑖𝑓 𝑥 ≤ 0

 

2. Leaky ReLU:  {
𝑥                𝑖𝑓 𝑥 > 0
0.01𝑥        𝑖𝑓 𝑥 ≤ 0

 

3. ELU:   {
𝑥                     𝑖𝑓 𝑥 > 0

𝑎(𝑒𝑥 − 1)    𝑖𝑓 𝑥 ≤ 0
 

4. PReLU:  {
𝑥𝑖           𝑖𝑓 𝑥𝑖 ≥ 0
𝑎𝑖𝑥𝑖        𝑖𝑓 𝑥𝑖 < 0

 (where 𝑎𝑖 is a learnable parameter) 

5. Sigmoid:   
1

1+𝑒−𝑥 

6. Tahn:   
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 

7. Softmax:  
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

   [20] 
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Fig. 2 Activation functions 
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The perceptron, first introduced in [7], is considered the foundation of AI. It introduced the concept of the 

neuron and served as a breakthrough for AI research. Later, the multilayer perceptron (Fig. 3) architecture 

was established in [21] marking the start of Deep feedforward networks trained through back-propagation. 

 

 

 

Feedforward networks typically mean that at the start of training, the data course through the entire network 

from the input layer to the output layer. Most modern DL models have adopted this approach. 

 

2.1.2 Training Procedure of a Neural Network 

The training of a Deep Learning model can be partitioned into two different stages. The first stage is the 

forward stage, where the data passes through our model in small batches and produces an outcome. After 

the outcome is produced, it is evaluated by the chosen loss function. Loss functions play a central role in model 

training as they calculate how far off the model’s predictions are from the desired output. [22]. Common loss 

functions are the cross-entropy loss function [23] typically used in classification problems, and Mean Square 

Error (MSE) [24] applied in prediction models like regression [25]. After the Error has been computed, the loss 

function guides the model’s weight updates through gradient descent [26]. Gradient descent is an 

Fig. 3 Neuron – Multiple neurons, Multilayer perceptron [129] 
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optimization algorithm that uses backpropagation to compute the gradients of the loss function with respect 

to the model parameters. The gradient shows the direction of the biggest increase in loss and takes a step in 

the opposite direction. This step is controlled by a hyper-parameter called Learning rate. Hyper-parameters 

are tunable model parameters that need to be evaluated outside of model inference. Small learning rates 

cause the model to stagnate at local minimums while large learning rates cause the model to make big changes 

and never find the optimal weights for the model. The gradient descent is mathematically interpreted as 

follows: 

𝑝(𝑡+1) = 𝑝(𝑡) − 𝑙
𝑑𝐿

𝑑𝑝(𝑡)
 

Where 𝑝(𝑡)  are the model’s parameters at iteration 𝑡 , 𝑙  is the learning rate and  𝐿  is the calculated loss 

function. Gradient descent and its variants, Adam[27], RMSprop [28] and Stochastic Gradient Descent [29] are 

some of the more commonly used and well-known available optimizers. To dynamically change the learning 

rate of the model, learning rate schedulers have been introduced to adjust the parameter with either static or 

dynamic strategies [30]. Regularization methods such as batch normalization, layer normalization, and 

dropout are widely used in model training. Batch normalization smooths the optimization landscape by using 

batch statistics, enabling faster and more accurate training [31]. Layer normalization performs normalization 

on layer neurons and does not require batch statistics [32]. Dropout simply zeros out some of the neurons 

randomly to prevent model overfitting, while also reducing computational cost, as there will not be as many 

neurons to compute as before [33]. When all the above techniques have been implemented and the model 

does not seem to improve, we use Early Stopping based on a stopping criterion to inspect and tune the model 

settings and hyper-parameters[34]. After all the above functions have been executed, the model will then pass 

through the data multiple times (epoch number), performing the same operations and gradually improving 

the model. 

Another essential part of the training procedure is how we handle data before they are processed. Data are 

present in datasets where the structure may vary, but in general, datasets include a metadata file that 

describes the data and a partition for train and test sets. Datasets, more often than not, are not fully ready for 

processing from the start. Data mining introduces data preparation techniques that are key to training efficient 

and accurate models. For the model to generalize, we need to partition our dataset, if it is not already, rather 

than simply feeding all the data in training, this would cause the model to overfit, which will be discussed in 

Section 2.3 [35]. Data cleaning is also important for model training as it removes unusable data such as null 

(empty) values, outliers that attempt to throw off the model, and fix inconsistencies [35], [36]. Another 

important aspect of data preprocessing is data integration [35], [37]. Data from multiple sources needs to be 

evaluated and integrated into a single dataset that will be used in training. Finally, data augmentation is 

important to model learning, as our dataset usually will not contain all the data we would like it to have. In 



 11 

cases where there is insufficient data, class imbalance occurs in classification problems, or there is limited 

variance in our dataset, data augmentation is a good way to address these issues. Augmentations are applied 

based on a given probability on the whole dataset and are either saved in the dataset or created for model 

training only [38]. Some common augmentations include: 

Random horizontal flip mirrors the image along its vertical axis, helping the model generalize to left–right 

variations. Random vertical flips work similarly but flips along the horizontal axis, which can be useful for the 

same reasons as horizontal flip. Random rotation rotates the image by a small angle within a defined range, 

allowing the model to become robust to orientation changes. Random crop extracts a smaller portion of the 

image, often followed by resizing back to the original dimensions, encouraging the model to focus on different 

regions of the input. Random erasing removes a rectangular patch from the image and fills it with random 

values or a constant color, simulating occlusion and forcing the model to learn from incomplete information. 

Gaussian blur smooths the image by averaging pixel values using a Gaussian kernel, mimicking out-of-focus 

effects or sensor noise. Color jitter randomly alters brightness, contrast, saturation, and hue, teaching the 

model to ignore lighting variations. Random perspective warps the image by slightly shifting the positions of 

its corners, simulating changes in camera angle and viewpoint. Finally, random affine transformations combine 

scaling, translation, rotation, and shearing in a linear fashion, providing the model with invariance to 

geometric distortions. (Fig. 4). 

To practically implement all the above, several Python frameworks exist for DNN development. The most well-

known framework for research is PyTorch, a library that provides a vast selection of implementations and high 

modularity in a MATLAB-like environment. Lua was primarily chosen for PyTorch’s development and backend, 

along with C and C++, which significantly accelerate the execution speed due to low-level code execution. 

PyTorch uses a new data type called Tensor to efficiently calculate the necessary gradient computations on a 

GPU if possible. PyTorch can run on Linux, Windows, Android, and iOS operating systems and supports 

distributed code execution on multiple CPUs and GPUs, further decreasing the execution time. Other 

frameworks like TensorFlow, Caffe and Theano also exist that offer similar capabilities [39]. The 

implementation of this study is coded in PyTorch and can be found in [40]. 
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Fig. 4 Data augmentation Examples 
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2.1.3 Overfitting, Underfitting, and Bias 

While artificial intelligence models have shown remarkable performance in their respective applications, 

common pitfalls emerge from poor data management quality or architectural design. Overfitting occurs when 

a model demonstrates exceptional performance on training data but fails to generalize to new unseen data, 

from the same distribution as the original data [41]. Several factors can be attributed to model overfitting, 

such as the model learning the exact representation of all data points, including “noisy” data, and the model 

being too complex for our data and problem at hand [41], [42]. Underfitting is the opposite of overfitting. 

Sometimes, due to insufficient training time, too simplistic model architecture, or lack of data, our model will 

not be able to generalize well, and its performance on both the train and test set will be sub-optimal as it fails 

to capture the needed underlying patterns [41], [42]. Bias refers to systematic errors that lead to the model 

favoring a specific outcome or group over another, often due to imbalances or gaps in the training data [43]. 

As highlighted in recent research, bias can stem from unrepresentative datasets that fail to capture the full 

diversity of the target population, leading to disparities in model performance across demographic groups 

[44]. For example, in medical imaging, if the training data underrepresents certain skin tones or age groups, 

the model may perform worse for those populations, reinforcing existing healthcare inequalities. 

In summary, overfitting, underfitting, and bias are fundamental challenges that can significantly impact the 

performance and fairness of AI models. Effectively addressing these issues requires careful model design, 

attentive data management, and continuous evaluation to ensure that AI systems are both accurate and 

equitable across diverse populations. 

 
 

2.2 Common architectures 

Having explored the essentials of training neural networks, it is now crucial to understand the architectures 

that learn from data. Deep learning encompasses a variety of specialized models tailored to different tasks 

and data modalities. This section explores some of the core principles of the architectures used in the present 

study. 

2.2.1 CNNs 

The idea of Convolutional Neural Networks is to mimic human vision and perception, and was first introduced 

in [45] and practically implemented in [46]. Since then, they have dominated the field of computer vision and 

pattern recognition on images and videos [47]. The basic CNN can be divided into 3 key components.  

The first is the Convolutional layer, which focuses on finding the best kernels for the current task. After an 

image input, the image itself is represented by a matrix, with the pixel values being the values inside the 
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matrix. Kernels are smaller filters that slide across the input image, performing element-wise multiplication 

and summing them to produce feature maps that can highlight specific parts of an image, like edges, shapes, 

or textures [47], [48]. Convolutional layers can be tuned by 3 hyperparameters: depth, stride, and padding. 

Depth controls how many filters are applied in a single convolution to output the same number of feature 

maps. Generally, larger depths lead to more diverse and complex features at the cost of training time. The 

stride parameter controls the step that the kernel executes at every application, skipping multiple pixels if 

adjusted to reduce training time at the expense of output quality. The padding parameter simply adds a blank 

pixel border around the image to further control the image dimensions [49]. After the convolutions are done, 

the image’s dimensions will be greatly altered. To calculate the dimensions, we use the following formula: 

(𝐼 − 𝐾) + 2𝑃

𝑆 + 1
 

Where 𝐼 represents the input image channels (3 if RGB, 1 if grayscale, or 13 if a Satellite image), 𝐾 is the kernel 

size, 𝑃 is the padding size and 𝑆 is the stride. 

 

 

Fig. 5 Kernel application on the input image. 

The second component is the pooling layer, which performs simple down-sampling of the input, reducing the 

number of parameters. The pooling layer is applied over all extracted feature maps and operates based on the 

set configuration, most common being the max pooling configuration (Fig. 7). In essence, max pooling 

summarizes the area it is applied to; for example, with a 2 x 2 filter, the max function selects the largest value 

inside the kernel. This helps reduce the spatial dimensions of the image at the cost of quality [49], [50]. 
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The final component is the fully connected layer, which flattens all the spatial dimensions to one, then 

calculates the probabilities for the output classes, like a traditional ANN [48]. 

 

 

 

 

2.2.2 Autoencoders 

Autoencoders (AE) are a type of neural network that encodes the given input into a meaningful, compressed 

representation and then proceeds to decode it, effectively learning an optimal compression method to 

deconstruct and reconstruct data [51]. First introduced as a generalization of Principal Component Analysis 

(PCA) [52], a data mining dimensionality reduction technique [53], then implemented in [54] . The 

autoencoder model has been used in anomaly detection [55], image processing using convolutions (Fig. 8) 

[56], compression, and many other fields. 

An autoencoder is composed of two parts: an encoder and a decoder. The encoder maps data to a lower-

dimensional latent space, far smaller than the original, imposing a bottleneck in the network, significantly 

Fig. 6 Convolutional Neural Network illustration 

Fig. 7 Max pooling example 
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reducing the input’s dimension. The decoder part does the opposite of the encoder, decoding the latent 

representation to reconstruct the input image. Combining all the above with a loss function to tune the parts 

results in the encoder learning an optimal compression structure and the decoder learning to reconstruct it 

back to the original input. Since an autoencoder performs a regression-like operation, the most common 

function is the MSE loss to measure the reconstruction error [57] or Binary Cross Entropy loss for binary images 

[58]. Building on autoencoders, convolutional autoencoders can compress and reconstruct images using 

deconvolution layers that find a set of kernels and feature maps to rebuild the original image, and are also 

able to magnify them with super resolution [59], [60]. 

 

 

 

Fig. 9 Autoencoder with convolutions example showing image reconstruction of MNIST handwritten 
number dataset. The autoencoder was trained for 2 epochs for demonstration purposes. 

Fig. 8 Basic autoencoder architecture. 
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The Variational autoencoders (VAE) are a probabilistic class of autoencoders that have achieved significant 

improvements in the latent space representation operations. Although they share the encoder-decoder 

architecture, VAEs introduce a probabilistic framework, modeling the encoder as an approximate posterior 

distribution over latent variables and the decoder as a generative model that samples from this distribution 

to reconstruct or synthesize new data [51], [57]. 

 

 

2.2.3 GANs 

Generative Adversarial Networks (GANs) are revolutionary models in the field of generative AI. They were first 

introduced in [61] and have been widely used for data and image generation, upscaling image resolution, face 

aging, and many more applications. They involve training a pair of networks that are in competition with each 

other, the generator and the discriminator. The generator model does not have access to real images; instead, 

it uses random noise input to try and map it into a synthetic data sample so that the discriminator thinks it is 

a real, non-synthetic image. The discriminator uses inputs from both real images from the training dataset and 

synthetic images from the generator and tries to distinguish which is real and which is synthetic. The error of 

the discriminator measures how well it separates real from synthetic images, while the generator uses that 

same error to see if the generated image managed to fool the discriminator [62]. The GAN’s objective function 

is to match the original image data distribution with the generator's mapping of noise. This expands to the 

discriminator aiming to minimize the binary classification error and the generator aiming to maximize the 

probability of its generated images being real [63]. 

Some of the most used GAN architectures include the Deep Convolutional GAN (DCGAN) [64] which uses 

convolutions instead of simple linear layers and Conditional GANs (cGAN) [65] which conditions both the 

discriminator and generator to extra information about the data in a separate input layer. These architectures 

have been instrumental in advancing the quality of the generated outputs and have enabled applications in 

photorealistic synthetic images and domain-specific image generation. 
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2.2.4 Pre-trained models and transfer learning 

Transfer learning is a type of learning procedure that utilizes already existing models to solve current 

challenges. These models are already trained on a huge dataset, most commonly the ImageNet dataset, 

consisting of 15 million labeled images [66]. They are often large, making them easily reusable in a lot of 

scenarios with a small amount of fine-tuning [67]. Some popular pre-trained models include ResNet, 

DenseNet, and EfficientNet. 

ResNet introduced in [68], uses residual learning (Fig. 11) that learns a residual function to propagate the input 

forward, reducing the difficulty of optimizing deeper CNNs (150+ layers). Since then, skip connections have 

become a standard method in DL and have inspired many other great advancements like DenseNet, 

Transformer models, and Unets. There are numerous models of ResNet, each with higher levels of layers: 

ResNet18, ResNet34 (Fig. 12), ResNet50, ResNet101, and ResNet152, with the number referring to the number 

of layers inside the network. 

DenseNet introduced in [69], builds on ResNet by connecting each layer to all its subsequent layers. This 

increases feature reusage, has fewer parameters, and helps the optimizer be more efficient. DenseNet models 

include DenseNet-121, DenseNet-161, DenseNet-169, and DenseNet-201. 

EfficientNet proposed in [70] uses mobile convolutions for efficiency and introduces compound model scaling 

which scales model depth, width and resolution via a controlled parameter 𝜑  for better resource 

management. EfficientNet models are based on the value of 𝜑 : EfficientNetB0, EfficientNetB1 …, 

EfficientNetB7. 

Fig. 10 GAN network architecture 
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These pretrained architectures offer a wide spectrum of accuracy-efficiency trade-offs, making them powerful 

starting points for transfer learning across domains. 

 

 

  

Fig. 11  ResNet residual block [130] 

Fig. 12 ResNet34 architecture [130] 
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Fig. 13  DenseNet Dense connectivity illustration 

Fig. 14 EfficientNet dynamic scaling technique scaling the three 
dimensions simultaneously. 
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3 Deep Learning in Medicine 

With the rapid transformation of healthcare data to electronic documents, ML and DL have emerged as pivotal 

technologies in healthcare, enabling a wide range of applications such as computer-aided diagnosis, medical 

image registration, annotation, segmentation, multimodal image fusion, image-guided interventions, and 

medical image database retrieval [71]. These capabilities are essential in addressing diagnostic deficiencies 

that, in some cases, may have irreversible consequences. In the following sections, prior work in the medical 

field will be discussed (3.1), proposed methods in medical imaging (3.2), and finally, we will focus on fairness 

and bias in medicine and how they can be fairly mitigated (3.3). 

3.1 Overview 

Deep learning has become integral to many medical imaging tasks, from anatomical modeling (e.g., 

segmentation of organs and structures) to tumor detection, disease classification, and surgical planning. 

Beyond image analysis, DL techniques have also enhanced computer-aided diagnosis (CAD) systems and 

decision support tools, enabling more precise, consistent, and scalable interpretation of complex medical 

data. The first application of CAD systems dates to 1998 when it was approved by the Food and Drug 

Administration (FDA) to be used as a second opinion in screening mammography [72], [73]. Since then, a 

plethora of DL models have been used to aid physicians, such as autoencoders diagnosing Alzheimer's disease 

early from brain Magnetic Resonance Imaging (MRIs) [74] and CNNs classifying skin cancer [75]. Beyond 

imaging, DL has made significant contributions to analyzing Electronic Health Records (EHR) and genomics. For 

instance, using Long Short-Term Memory models (LSTMs) to predict medicine based on a patient’s history 

[76], autoencoders to predict future diseases and clinical events [77], [78], [79], gene protein backbone 

predictions, and cancer prediction from gene expression profiles [80], [81]. While DL’s influence spans diverse 

areas of healthcare, its most profound advancements and clinical integrations have emerged in medical 

imaging, which we explore in greater depth in the following section. 

 

3.2 Medical Imaging 

With recent advancements in CNNs and related deep learning architectures, computer vision has achieved 

significant advances in medical imaging. These techniques now enable solving a variety of tasks, including 

image classification, object detection, image segmentation, and image enhancement, each playing a vital role 

in clinical decision-making. From classifying medical images into diagnostic categories [80], [82], to detecting 

and localizing abnormalities such as tumors or lesions [75], [80], [83], to segmenting organs and pathological 
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regions at the pixel level [84], these methods have significantly improved diagnostic accuracy and consistency. 

Furthermore, image enhancement techniques such as super-resolution reconstruction, denoising, and 

contrast adjustment have enabled higher-quality visualization of medical data, even from low-dose or 

degraded scans [60], [85]. The aforementioned capabilities of CNNs not only reduce interpretation time for 

physicians but also facilitate early disease detection, more precise treatment planning, and improved patient 

outcomes.  

3.2.1 Image Classification 

Image classification refers to the process of categorizing an image by associating it with one or more labels, 

which is one of the fundamental tasks in computer vision. Traditionally, the procedure of classifying images 

was to use a low-end feature-extracting technique and then propagate the outcome to a machine learning 

classifier like Support Vector Machines (SVMs) [86]. DL approaches have recently been proven more powerful 

than traditional methods, making the use of CNNs in image classification the new standard due to their ability 

to automatically learn hierarchical feature representations and achieve state-of-the-art performance [66], 

[87]. DL architectures have been used to classify different categories of interstitial lung disease patterns in 

high-resolution computed tomography [87], detect focal liver lesions on multiphase computed tomography 

images [66], classify breast cancer from mammography MRI images [88], and classify histopathology images 

automatically [89] in addition to numerous other medical imaging tasks.  

3.2.2 Object detection 

Object detection goes beyond image classification by not only recognizing the presence of multiple objects 

within an image but also localizing them using bounding boxes and confidence scores. This task is fundamental 

in medical imaging, where precise localization of abnormalities such as tumors, lesions, or nodules is crucial 

for diagnosis and treatment planning. Traditional methods for object detection relied on hand-crafted features 

combined with sliding window techniques, which were computationally expensive and often inaccurate [90]. 

Several models have been proposed to tackle object detection, like YOLO (You Only Look Once)[91], Single 

Shot MultiBox Detector(SSD) [92], R-CNN, Fast and Faster R-CNN [93] showing promising performance even 

on medical data on which they were not explicitly trained. Abnormality detection in X-ray imaging, cellular 

structure or tissue anomaly identification, endoscopic and micro-endoscopy location, and classification of 

lesions during procedures [94] are a few of the documented applications of these models. 

3.2.3 Image Segmentation 

Image segmentation refers to the process of partitioning an image into multiple meaningful regions or 

structures, allowing detailed analysis at the pixel or voxel level. In medical imaging, segmentation is essential 

for identifying and delineating anatomical structures, lesions, and other regions of interest across modalities 

such as CT, MRI, PET, and ultrasound. Traditional segmentation methods relied on thresholding, region 
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growing, or edge detection, but these approaches often struggled with complex medical images [95]. 

Architectures such as Fully Convolutional Networks (FCNs) and U-Net have become the standard, 

demonstrating robust performance in extracting features from multimodal medical images. Applications of 

segmentation include tumor and lesion detection [75], organ and tissue delineation, treatment planning, 

disease progression monitoring, and cellular analysis in microscopy images [95], [96], [97], [98]. By enabling 

precise localization and quantification, deep learning-based segmentation plays a critical role in advancing 

CAD and supporting personalized medicine. 

 
 

3.2.4 Image enhancement 

Image enhancement refers to the process of improving the visual quality of medical images by increasing 

contrast, reducing noise, and highlighting relevant anatomical details. Unlike higher-level tasks such as 

classification or detection, enhancement operates as a crucial preprocessing step that directly impacts the 

accuracy of subsequent analysis. Traditional approaches include spatial domain methods, such as histogram 

equalization, gamma correction, and adaptive contrast enhancement, as well as frequency domain techniques 

like Fourier and wavelet transforms. Recent deep learning-based approaches have further advanced this area 

by learning data-driven mappings for denoising, super-resolution, and contrast adjustment [60], [78], [88]. In 

medical imaging, enhancement has been applied across multiple modalities: improving mammography for 

early breast cancer detection, refining cardiac MRI and echocardiography for more accurate diagnosis of 

cardiovascular disease, enhancing MRI brain scans to visualize tumors and lesions, and improving 

histopathology images for cellular-level analysis [60]. By producing clearer and more informative images, 

enhancement techniques facilitate both human interpretation and the performance of downstream AI 

models, contributing to more precise and reliable clinical decision-making [99]. 
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3.3 Fairness and bias mitigation 

While preceding applications in medical imaging have made significant contributions in the field of medicine, 

difficulties arise when sensitive attributes like sex, age, and ethnicity are present in the dataset. These 

attributes can unintentionally act as discriminators, leading the model to pick up counterfeit correlations 

instead of true disease-related signals. 

3.3.1 Collider bias 

 A particular concern is collider bias, which occurs when the data collection or sampling process entangles 

non-causal factors with the target outcome [100]. For example, if images of certain demographic groups are 

more likely to be acquired with specific scanners, under different conditions or the demographic groups have 

significant differences, models may rely on these background signals rather than the true clinical features of 

interest. Swayamdipta S. et al mention that DNNs are prone to latching onto “easy-to-learn” features inside 

the data, like background [101], [102]. Darlow L. et al reinforced this claim by introducing the one-pixel 

problem, a toy scenario in the MNIST dataset, where a classifier would typically train in the dataset, but the 

images would change a pixel based on the image’s label [103]. The classifier would then learn the change that 

corresponds to the pixel change and not the actual number. Such biases not only reduce generalization 

performance but also risk propagating health disparities. Addressing them requires fairness-aware strategies 

such as balanced data collection, adversarial debiasing, and subgroup evaluation to ensure that models rely 

on causal signals rather than confounding ones. 

 

3.3.2 Fairness metrics 

To identify if a DL model discriminates against a specific demographic group, fairness metrics have been 

introduced to evaluate model fairness and performance. Three main metrics are used in the present study: 

Equal Opportunity (EO), Impact Disparate (DI), and Accuracy Parity (AP) [100], [104]. 

To make sure our algorithm does not favor specific groups, Equal Opportunity measures the parity of true 

positive rates between two groups and can be interpreted as follows: 

𝐸𝑂 =
𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐺𝑟𝑜𝑢𝑝)

𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑓 𝑁𝑜𝑛 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐺𝑟𝑜𝑢𝑝)
 

Where 𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑓 𝐺𝑟𝑜𝑢𝑝) denotes the likelihood of accurately recognizing positive cases for the 

said group. An 𝐸𝑂 ≈ 1 means that both groups have equal true positive rates, meaning that our algorithm is 

fair. 
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To evaluate the decision-making process of a classifier, DI measures the successful outcome of the 

classification between groups. It can be interpreted as follows: 

𝐷𝐼 =
𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐺𝑟𝑜𝑢𝑝)

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑜𝑛 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐺𝑟𝑜𝑢𝑝)
 

Where 𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑟𝑜𝑢𝑝)  indicates the likelihood of the classifier making a positive 

prediction, i.e., classifying the case are 1 for binary classification, A 𝐷𝐼 ≈ 1 means that both groups are being 

equally classified as positive. 

 

AP compares the accuracy of classifications between groups. It can be formulated as follows: 

𝐴𝑃 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑛𝑜𝑛 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑜𝑢𝑝
 

Where accuracy means correctly predicting a case for the group.  

These fairness metrics provide a complementary perspective on model equity. While Equal Opportunity 

focuses on balancing error rates, Disparate Impact evaluates parity in decision outcomes, and Accuracy Parity 

ensures overall predictive performance remains consistent across groups. By jointly applying these measures, 

we obtain a more holistic assessment of fairness, reducing the risk that the model inadvertently favors or 

disadvantages any demographic subgroup. 

 

3.3.3 Mitigation techniques 

Mitigating biases has been an active research topic in ML and DL. A number of methods have been proposed 

to combat bias, including pre-processing, in-processing, and post-processing. Pre-processing methods focus 

on preparing the data to be free of bias. Methods include bias suppression, where the sensitive attribute is 

completely removed from the training data, oversampling and undersampling imbalanced classes, random 

perturbations like introducing noise to the data, re-weighting training instances without changing labels or 

input data, and fair representation learning [105], [106], [107]. In-processing techniques refer to actively 

incorporating fairness into a model or an algorithm. Such techniques include adversarial de-biasing, where 

two competing models are trained to minimize bias, the use of a prejudice remover regularizer that integrates 

fairness directly into the objective function, exponentiated gradient reduction, which introduces fairness 

constraints through cost-sensitive classifiers, and fair model training with encrypted attributes using multi-

party computation[105], [108], [109]. Post-processing methods, on the other hand, operate on model outputs 

to adjust predictions to improve fairness. Examples include gradient feature auditing, which checks whether 



 26 

sensitive attributes influence classifier decisions, calibrated equalized odds that balance false positive and 

false negative rates across subgroups, and randomized threshold optimization that satisfies fairness criteria 

while maintaining accuracy and minimizing disparities [105], [107]. While these methods have been widely 

applied in medicine, skin lesion detection has not received as much attention as it should until recent studies 

spanning the last 3 years [110], [111]. 

3.3.4 Bias in skin lesion detection 

Skin melanoma classification has been a popular benchmark for a lot of studies and pre-trained deep learning 

models [110]. Unfortunately, the majority of these models do not account for skin tone variety that may exist 

inside the dataset or apply in real-world scenarios, making DL models biased unintentionally [110], [112]. 

Recent efforts to mitigate skin tone bias include variational autoencoder feature extraction and resampling, 

pre-processing practices along with pre-trained classifiers using transfer learning, augmented datasets and 

using style transfer on synthetic data to better train a classifier, training a swin transformer model along with 

a CNN classifier and using diffusion models [113], [114], [115], [116]. While these strategies highlight the 

progress in DL fairness, they also underline that no single solution can fully eliminate bias in medical imaging. 

Effective bias mitigation often requires a multi-faceted approach, combining data-level interventions, 

algorithmic fairness constraints, and careful evaluation with fairness metrics tailored to clinical contexts. As 

datasets become more diverse and models more advanced, the integration of fairness-aware design from the 

ground up will be essential to ensure that automated melanoma classification systems are not only accurate 

but also trustworthy and clinically applicable across diverse patient populations. 

 

4 Proposed System 

We acknowledge that real-world datasets often lack balanced demographic group representation. To address 

this, the present work adapts the Latent Adversarial De-biasing network (LAD) [103] for application in skin 

lesion detection. A key strength of LAD is that it does not require bias-free data during training, making it 

suitable for medical imaging contexts where collecting perfectly balanced datasets is impractical. By learning 

fair latent representations through adversarial training, LAD can be integrated into lesion classification tasks 

to enhance both accuracy and fairness across diverse patient populations. The following subsections detail 

the architecture of the proposed LAD-based framework (4.1) and its dataset and evaluation setup (4.2). 

 

 

 



 27 

4.1 Latent Adversarial Debiasing 

LAD’s main objective is to counter collider bias mentioned in section 3.3.1 by augmenting the training data to 

separate biased information and keep the causal signals needed for the classification process. LAD consists of 

three main components: A Vector-Quantized Variational AutoEncoder (VQ-VAE) that produces a latent space 

that can approximately separate causal and confounding signals, a simple  classifier trained on the latent space 

produced by the VQ-VAE, and a method to remove the confounding signals that the biased classifier was 

trained on [103].  

4.1.1 VQ-VAE 

The VQ-VAE is effectively an autoencoder architecture with the key difference that it produces a quantized 

latent space. This means that the encoder outputs a discrete representation instead of a continuous. To 

achieve this, VQ-VAE uses a fixed, trainable codebook, where there is a static number of vectors that can be 

assigned to values. When the encoder produces a representation, it is then matched to the closest value of 

the codebook using L2 norm nearest neighbor look-up. This process is called the vector quantization process. 

Since the quantization is non-differentiable gradients of the decoder are copied to the encoder. After the 

quantization, the decoder learns to reconstruct the image from the discrete representations. While the 

codebook size is static, its embeddings are trainable; each training iteration moves the embeddings closer to 

the encoder output to increase codebook utilization (perplexity) and decrease reconstruction loss, helping the 

codebook adapt to the data distribution. The connection in the backpropagation  [117]. The loss function can 

be interpreted as follows: 

𝐿 = log 𝑝(𝑥|𝑧𝑞(𝑥)) + ‖𝑠𝑔[𝑧𝑒(𝑥)] − 𝑒‖2
2 + 𝛽‖𝑧𝑒(𝑥) − 𝑠𝑔[𝑒]‖2

2 

Where sg stands for stop gradient, and it is used to constrain the operand to be a non-updatable constant, 𝑒 

stands for the codebook embedding, x is the input, 𝑧𝑒 is the output of the encoder, 𝑧𝑞 is the closest encoding 

vector to the encoder’s output, 𝛽 is the commitment loss term that tunes the level of codebook commitment 

and || ∙ ||2
2 is the operator denoting the square Euclidean distance between the two encodings. The first term  

is optimized by both encoder and decoder, the second term optimizes the embeddings, and the last term is 

optimized by the encoder only [117]. 
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4.1.2 Adversarial walk 

The classifier is attached to the encoder’s latent space. While the latent space contains both confounding and 

causal signals, the classifier is prone to latch onto the easy-to-learn features and enable LAD to work. While 

conventional adversarial attacks operate in pixel space by perturbing inputs to maximize classification loss, 

LAD performs the walk directly in the latent space of the encoder with the objective of maximizing the entropy 

of the simple classifier.  

𝑚𝑎𝑥𝛿𝐻(𝑓(𝑞𝑢𝑎𝑛𝑡𝑖𝑠𝑒(ℎ + 𝛿, 𝐺))) 

Where 𝐻 is the entropy of the classifier’s prediction probabilities, 𝑓(∙) is the simple classifier, ℎ is the input’s 

latent representation and 𝑞𝑢𝑎𝑛𝑡𝑖𝑠𝑒(∙) refers to VQ-VAE’s (𝐺)  quantization mechanism. The perturbation 

strength is influenced by 𝛿: 

𝛿 = 𝑎 ∙

𝜕𝐻
𝜕ℎ

− 𝑚𝑒𝑎𝑛 (
𝜕𝐻
𝜕ℎ

)

𝑠𝑡𝑑 (
𝜕𝐻
𝜕ℎ

)
 

  

Fig. 15 VQ-VAE architecture illustration 
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Where mean and std refer to mean and standard deviation computed over the gradient and 𝑎 is a hyper-

parameter controlling the step size of the adversarial walk. 

This approach preserves perceptual consistency while systematically probing which features the classifier 

relies on. After the walk has been executed, the latent representation should be adjusted such that the 

classifier outputs high entropy probabilities, and the VQ-VAE decoder can now reconstruct the new perturbed 

image. The aim is for the new image to contain as little of the confounding signal as possible, providing a way 

to augment images to remove confounders intentionally. After the augmentation is done, we can train a new, 

final classifier on the augmented data and produce a debiased classifier. 

ALGORITHM 1: QUANTIZATION-CONSTRAINED ENTROPY TARGETED ADVERSARIAL WALK. 

 INPUT    : 𝑓(∙), 𝑦, ℎ , 𝑎, 𝑠𝑡𝑒𝑝𝑠, 𝐺() ∙ 

 OUTPUT: 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑙𝑎𝑡𝑒𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, ℎ𝛿 

 ℎ𝑑𝑒𝑙𝑡𝑎 ← ℎ                 # 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ℎ𝛿  𝑡𝑜 ℎ 

 FOR 𝑖 ← 1 TO 𝑠𝑡𝑒𝑝𝑠 DO 

      𝑦̂ ← 𝑓(ℎ𝑑𝑒𝑙𝑡𝑎);        #  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

      𝐻 ← 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦̂); 

      𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝐻; 

      𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝛿; 

      ℎ𝑑𝑒𝑙𝑡𝑎 ← ℎ𝑑𝑒𝑙𝑡𝑎 + 𝑎 ∙ 𝛿 

      ℎ𝑑𝑒𝑙𝑡𝑎 ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑠𝑒(𝐺, ℎ𝑑𝑒𝑙𝑡𝑎) 

 END 
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Fig. 17 Post-adversarial-walk images with alpha = 0.1 (heavy perturbations). Bottom images were taken before 
the walk, and the upper images were taken after the walk.  

Fig. 16 The LAD architecture illustrated with real world skin cancer examples from the following datasets. Alpha was 
set to 0.1 denoting heavy perturbations. 
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4.2 Dataset and evaluation 

For our train dataset, we wanted to collect data that included skin tone labels along with diagnosis labels 

(benign-malignant). Due to limitations in the availability of such datasets, we decided to fuse two datasets, 

ISIC2020 [118], [119] and PAD-UEFS [120] into one whole dataset. While ISIC2020 covers the majority of our 

dataset, containing more than 40.000 images, it lacks skin tone labeling. PAD-UEFS is used to compensate for 

this unavailability by providing instances with skin tone labels. 

4.2.1 ISIC2020 Dataset 

The International Skin Imaging Collaboration (ISIC) is a joint effort between academia and industry that 

leverages digital skin imaging to advance early detection and ultimately reduce mortality from skin cancer. 

The ISIC archive comprises a range of datasets suitable for skin lesion classification. The ISIC2020 dataset was 

created for the 2020 skin lesion classification Challenge and is a publicly accessible dataset, consisting of 

33.126 training images and 10.982 test images. The samples were extracted from 2.056 unique patients that 

are identified by a unique patient identifier. Images consist of contributions made from Memorial Sloan 

Kettering Cancer Center (11,108), The University of Queensland Diamantina Institute, The University of 

Queensland, Dermatology Research Centre (8,449), Department of Dermatology, Hospital Clínic de 

Barcelona (7,311), ViDIR Group, Department of Dermatology, Medical University of Vienna (4,374), Sydney 

Melanoma Diagnostic Center at Royal Prince Alfred Hospital and Pascale Guitera (1,884) [121]. All malignant 

diagnoses were confirmed via histopathology, and benign diagnoses were confirmed with expert agreement, 

longitudinal follow-up, or histopathology. Metadata for each image describes patient age at time of image 

capture, biological sex, general anatomic site of the lesion, anonymous patient identification number, benign 

or malignant category, and the specific diagnosis if one was available based on an acceptable ground truth 

confirmation method. The dataset contains 584 confirmed melanoma instances [121]. While there is no label 

for skin tone inside the metadata, a skin tone labelling algorithm using the Fitzpatrick skin type metric [122], 

estimates that ~90% of the dataset belongs to skin type I-IV. 
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4.2.2 PAD-UEFS Dataset 

The PAD-UFES dataset was created by the Federal University of Espírito Santo (UFES) in Brazil as an openly 

accessible resource to support research in computer-aided skin cancer diagnosis. It was designed to provide 

clinical and dermoscopic images collected in real-world conditions using smartphone cameras, to facilitate 

robust skin lesion classification methods. The dataset includes 2,298 skin lesion samples from 1,373 unique 

patients, contributed by two Brazilian cancer care institutions: Santa Casa de Misericórdia de Vitória and the 

Federal University of Espírito Santo Hospital. A total of 658 malignant lesions were confirmed through 

histopathological examination, while benign cases were validated by dermatologist consensus. Metadata for 

each sample includes patient age, sex, lesion site, diagnostic category, parents’ background, fitzpatrick skin 

type and several fields describing the lesion like itch (True/False), bleed etc. [123]. In this study, the dataset 

was used to incorporate more diverse skin tones into the ISIC2020 dataset. 

 

  

Fig. 18  Two Images from the ISIC2020 dataset. 

Fig. 19 PAD-EUFS dataset images 



 33 

4.2.3 Evaluation metrics 

Evaluation metrics are essential for assessing the performance of our model, as they provide computable 

measures to compare predictions against ground truth labels. The most commonly used metrics include 

accuracy, which measures the proportion of correctly classified instances and is useful when classes are 

balanced; confusion matrix, which is a simple way of 2x2 array of ground truth labels and predictions; 

precision, which indicates the ratio of correctly predicted positive cases to all predicted positives and is crucial 

when false positives carry high costs; recall, which measures the proportion of actual positives correctly 

identified and is important when missing positive cases is critical; and the F1-score, which is the harmonic 

mean of precision and recall, offering a balanced metric when both false positives and false negatives need to 

be considered[124], [125]. 

These metrics can be computed with the following formulas: 

If we assume that TP is a positive prediction that was correct, TN is a negative prediction was correct, FP is a 

positive prediction that was incorrect, and FN is a negative prediction that was incorrect: 

 

Table 1 Confusion Matrix 

 Positive (1) Negative (0) 

Positive (1) True Positive (TP) False Positive (FP) 

Negative (0) False Negative (FN) True Negative (TN) 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝐸𝐶𝐴𝐿𝐿 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑆𝐶𝑂𝑅𝐸 =
2(𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 ∙ 𝑅𝐸𝐶𝐴𝐿𝐿)

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 + 𝑅𝐸𝐶𝐴𝐿𝐿
 

 

On top of these vital metrics, we also add fairness metrics discussed in chapter 3.3.2. These metrics are crucial 

for model inference because they highlight different aspects of model behavior under various conditions, 

ensuring that evaluation is not biased toward a single perspective such as overall accuracy, receiving a 

comprehensive understanding of model reliability, robustness, and suitability for real-world applications. 
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5 Experiments 

Our experiments are performed on the aforementioned dataset fusion context. We define the minority group 

as the protected group in the experiments. Two settings were tested on models: one with a few samples of 

protected group lesions and one with a more balanced dataset. We call the first setting “Fully biased” and the 

second “semi-biased”. The reason we test our model in these two different settings is that, like Darlaw L. et al 

[103], we do not assume that any training data is free from bias which is often the case in real-world situations. 

Our goal is to find a way to mitigate the confounder from the data rather than relying on a small amount of 

bias-free data. In the following sections, we discuss implementation details in 5.1, taking closer look to 

environment, model settings, dataset manipulation and preprocessing, and lastly, we also review the 

produced results in section 5.2. PyTorch code implementation exists on the author’s github [40]. 

 

5.1 Implementation Details 

5.1.1 Environment settings 

All following models have been trained and executed using PyTorch, on a machine with an RTX 4090 24GB 

VRAM GPU, 128GB RAM, NVMe M.2 storage and an Intel Xeon W-2235 CPU at 3.80GHz. For both settings, as 

our strong final classifier, we used transfer learning to fine tune some of the most common image classification 

models, including ResNet18, ResNet50, ResNet152, DenseNet121, DenseNet201, EfficientNetB0, and 

EfficientNetB5. We deployed these different model versions to observe how the model’s size would impact 

performance.  

5.1.2 Model settings 

For the VQ-VAE model, we used the following implementation [126] with hyper-parameters: 512 hidden layer 

size, 2 residual layers with size 32 each, embedding dimension of 64 with 2056 embeddings, 128 batch size, 

0.35 commitment cost in the loss function and a learning rate of 0.01 with learning rate scheduler bringing 

the learning down to 0.0001. The Adam optimizer without amsgrad was used as the model’s optimizer along 

with MSE loss. The VQ-VAE was trained until it scored satisfactory results and acceptable codebook usage, 

specifically after an estimated 900 epochs, VQ-VAE scored ~70% codebook usage. 

Due to the large size of our image dataset, the simple classifier deviates from the original seen in [103] and 

instead of just one linear layer with size 100 we use four layers with relu activation of 1024, 512, 128, and 2, 

respectively, with batch normalization and dropout rate with possibility 0.2 and batch size of 128. Additionally, 

the classifier has been trained with the “Reduce learning rate on Plateau” learning rate scheduler, which 
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reduces the learning when there is no major improvement in the model along with the Adam optimizer instead 

of SGD optimizer for 50 epochs. 

For the adversarial walk, we used 2 steps and for the alpha hyper-parameter, settings were tested on 0.005, 

0.01, 0.085 and 0.1 to evaluate the impact of low and high image perturbations. 

For the transfer learning of models, we used the default best weights and the following settings in all models: 

5 epochs for the classifier head of the model, early stopping with 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 15 at 100 epochs maximum,  

cross entropy loss, AdamW optimizer with learning rate of 0.0005 and learning rate scheduler with 

𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 2  and a batch size of 32. Models include ResNet20, ResNet50, ResNet150, Dense121, 

DenseNet201, EfficientNetB0 and EfficientNetB5. 

 

5.1.3 Pre-processing 

Before the training phase of our model, some pre-processing practices were applied to make training 

procedure easier for both human interpretation and model performance. Since the images are extracted from 

different sources, PyTorch requires all inputs have the same size. For this reason, we decided to resize our 

images to 256x256 to balance training time and visual quality. The metadata of our datasets were also merged 

to match the ISIC format as the majority of images are already using this format. Specifically, we cross-

referenced similar attributes from the two datasets and matched the corresponding information. Redundant 

attributes like diagnosis and target, were also dropped to make metadata structure easier to understand. 

From the PAD-UEFS dataset, we filtered all Fitzpatrick instances of type 4-6 (the ones what were less present 

in the ISIC dataset) and inserted them into one unified dataset with ISIC’s metadata structure and were 

assigned the 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 = 1 attribute. 

All image augmentations were pre-computed once and then saved to the training set to avoid generating 

augmentations every time we run the model. It is worth noting that the augmentations where done after the 

train/test split of the dataset to avoid intersection between splits that would otherwise overfit our model to 

the training data. New augmentations retain the original image’s metadata. The following data augmentations 

were also used: random horizontal flip with probability (p) = 0.5, random vertical flip with p = 0.5, color 

jitter with brightness = 0.1, constrast = 0.1, saturation = 0.1 and hue = 0.05, random affine with p = 0.5 

and scale = [0.98,1.02], random perspective with p = 0.5 and distortion scale = 0.2, random rotation with 

degrees = [0,20], gaussian blur with p = 0.5 and random erasing with p = 1. To compensate for the black 

edges that cropping or random perspective leave on the image, the inpainting technique TELEA was used from 

the OpenCV library [127], [128]. It uses a mask composed of a dilated kernel to detect the regions that need 

to be inpainted. Regions that are not zero inside the mask are inpainted. The algorithm performs a weighted 
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average on the neighboring pixels and replaces the center pixel. We use a kernel of 3x3 dilation and a grayscale 

mask of [0,0] to try and inpaint the black corners left by the augmentations. 

5.2 Results 

In the following subsections, we present the study’s results, stating each model’s performance and 

highlighting better outcomes. We then compare them to conclude on the impact of LAD in lesion classification 

and find which is the most optimal model to implement LAD on in order to fairly classify skin lesion data. 

5.2.1 ResNet Results  

The ResNet architecture has achieved decent results with the introduction of the LAD mechanism on the fully 

biased setting. An improvement of ~15%  in F1 score, AP and DI can be observed in ResNet20 with the use of 

𝑎𝑙𝑝ℎ𝑎 = 0.085. Other minor improvements in recall of class 0 precision of class 1 and EO should also be 

considered. Overall, the model seems to have better performance on the protected demographic due to AP 

and DI being higher than the default model while also retaining an overall accuracy of 82.25% which is only 

0.35% lower than the default. We can also observe that higher alpha values see more meaningful changes 

than lower values. On the other hand, the more complex ResNet50 and ResNet150 tend to perform better 

with lower alpha values. Although they did not manage to significantly deviate from the default performance, 

a small improvement in fairness can be observed. 
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Table 2 Full bias setting results of three ResNet architectures, red denotes best value in column and blue indicates the second 

best. Default in alpha signifies that the default architecture was used instead of the lad mechanism. 

 

For the semi-biased dataset, we see a slight increase in default model accuracy, while the LAD accuracy falling 

behind by ~2 − 4%. Fairness metrics EO and DI fall behind on ResNet20 but perform better on the more 

complex models ResNet50 and ResNet150. Specifically, a ~20% increase in EO and AP for ResNet150 can be 

observed as well as some small increases in fairness of ResNet50. Overall higher alpha values seem to have a 

better effect on fairness in this setting for all three models. Other metrics like F1 score recall and precision do 

not greatly deviate from the default in the best performing LAD settings. 

Table 3 Semi biased setting results of three ResNet architectures, red denotes best value in column and blue indicates the second 
best. Default in alpha signifies that the default architecture was used instead of the lad mechanism. 

 

Semi-Biased 
MODEL ALPHA EO DI AP ACC F1 | 0 F1 | 1 PR | 0 PR | 1 REC | 0 REC | 1 

RESNET20 

_ 79.74 87.82 61.54 86.26 81.1 89.21 86.52 86.12 76.31 92.52 

0.085 58.49 55.06 71.46 81.88 74.45 85.96 81.73 81.95 68.35 90.38 

0.01 31.98% 54.12% 54.44% 82.15% 77.34% 85.28% 75.88% 86.35% 78.85% 86.35% 

0.1 62.43% 55.92% 73.64% 81.78% 73.90% 86.00% 82.68% 81.37% 66.81% 91.19% 

0.005 51.68% 71.04% 56.07% 83.10% 78.16% 86.22% 78.02% 86.31% 78.30% 86.12% 

RESNET50 

_ 86.33% 91.05% 49.63% 86.54% 80.43% 89.75% 91.76% 84.29% 71.59% 95.95% 

0.085 79% 93.48% 45.04% 80.06% 70.12% 85.03% 83.21% 78.81% 60.59% 92.32% 

0.01 61.20% 90.44% 47.65% 83.54% 77.62% 86.98% 81.72% 84.51% 73.91% 89.59% 

0.1 68.30% 92.47% 51.37% 80.42% 72.97% 84.65% 78.16% 81.57% 68.42% 87.97% 

0.005 76.45% 98.04% 49.59% 84.24% 77.90% 87.76% 84.98% 83.88% 71.91% 92.00% 

RESNET150 

_ 74.10% 90.22% 54.95% 85.80% 80.02% 88.98% 87.60% 84.93% 73.63% 93.44% 

0.085 99.83% 91.83% 75.41% 80.48% 72.93% 84.74% 78.53% 81.46% 68.07% 88.29% 

0.01 41.72% 59.37% 59.56% 82.45% 78.59% 85.12% 74.28% 88.70% 83.43% 81.82% 

0.1 97.15% 90.53% 72.99% 82.48% 75.51% 86.36% 82.05% 82.69% 69.94% 90.37% 

0.005 74.11% 89.28% 59.32% 84.09% 79.18% 87.12% 80.03% 86.56% 78.35% 87.70% 

 

FULL BIAS 
Model ALPHA EO DI AP ACC F1 | 0 F1 | 1 PR | 0 PR | 1 REC | 0 REC | 1 

RESNET20 

_ 96.77% 68.48% 36.23% 82.60% 87.23% 72.71% 92.20% 79.38% 60.03% 96.80% 

0.1 97.92% 84.23% 53.70% 81.98% 72.83% 86.52% 87.20% 79.98% 62.53% 94.22% 

0.01 97.03% 71.01% 40.47% 82.18% 72.86% 86.74% 88.49% 79.85% 61.93% 94.93% 

0.085 96.43% 81.13% 52.04% 82.25% 73.32% 86.70% 87.41% 80.25% 63.17% 94.28% 

0.005 99.01% 73.97% 42.91% 82.21% 73.21% 86.68% 87.49% 80.18% 62.94% 94.34% 

RESNET50 

_ 98.56% 70.21% 36.69% 84.13% 74.87% 88.40% 96.37% 80.15% 61.21% 98.55% 

0.085 96.77% 69.30% 39.62% 81.76% 72.69% 86.31% 86.22% 80.02% 62.82% 93.68% 

0.01 93.15% 79.14% 46.13% 82.25% 75.29% 86.51% 83.08% 82.30% 68.83% 91.18% 

0.1 92.10% 66.50% 41.63% 80.31% 71.54% 84.98% 81.13% 79.99% 63.98% 90.64% 

0.005 98.53% 75.68% 44.30% 83.32% 75.44% 87.37% 87.46% 81.60% 66.32% 94.02% 

RESNET150 

_ 98.59% 72.78% 40.05% 84.60% 75.84% 88.69% 96.17% 80.71% 62.61% 98.43% 

0.085 94.85% 73.43% 41.26% 79.08% 66.18% 84.86% 88.11% 76.35% 53.00% 95.50% 

0.01 93.45% 72.55% 46.82% 82.10% 73.71% 86.43% 85.14% 80.82% 64.99% 92.86% 

0.1 95.40% 74.13% 41.84% 79.81% 67.43% 85.37% 89.42% 76.87% 54.12% 95.97% 

0.005 94.81% 72.43% 44.46% 83.09% 74.59% 87.33% 88.90% 80.84% 64.24% 94.95% 
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5.2.2 DenseNet Results 

The DenseNet architecture in the full biased setting has achieved good overall performance.  It is the only 

model in the test results to surpass the accuracy of the default model rather than hindering it to increase 

fairness. DenseNet121 with 𝑎𝑙𝑝ℎ𝑎 = 0.1  scored better DI and AP and a slightly lower EO score, while 

simultaneously increasing almost all other metrics (except PR|0 and REC|1). DenseNet201 DI and AP scores 

also prove that the model is fairer than the default with only a small decrease in accuracy. Both models seem 

to surpass their corresponding default architecture and are performing better on higher alpha values, as 

shown by row  𝑎𝑙𝑝ℎ𝑎 = 0.085, 𝑎𝑙𝑝ℎ𝑎 = 0.1. 

Table 4 Full bias settings tested on two DenseNet models. Red denotes best value, and blue indicates the second best. Default in 
alpha signifies that the default architecture was used instead of the lad mechanism. 

 

In the semi-biased setting, both DenseNet architectures demonstrate notable improvements in fairness 

compared to the default baseline. While DenseNet121 achieved slightly better balance across subgroups, its 

fairness metrics and overall accuracy show small declines relative to the default. On the other hand, the more 

complex DenseNet201 scored major improvements in fairness, with over a 20% increase in EO and DI 

compared to the default setting. This fairness boost, however, decreased most other performance metrics, 

such as precision, recall, F1, and AP by 1-10%. Overall, the results suggest that while both architectures benefit 

from LAD perturbations, DenseNet201 achieves a more favorable fairness–performance trade-off, highlighting 

the role of model capacity in mitigating bias. 

  

FULL BIAS 
MODEL ALPHA EO DI AP ACC F1 | 0 F1 | 1 PR | 0 PR | 1 REC | 0 REC | 1 

DENSENET121 

DEFAULT 98.28% 70.11% 36.66% 83.96% 74.56% 88.29% 96.22% 80.00% 60.86% 98.50% 

0.085 91.53% 84.21% 65.28% 83.03% 77.60% 86.34% 79.16% 85.32% 76.11% 87.11% 

0.01 93.30% 67.08% 40.15% 81.35% 72.37% 85.92% 84.57% 80.04% 63.24% 92.74% 

0.1 96.23% 84.71% 56.36% 85.32% 78.38% 88.88% 90.86% 83.02% 68.92% 95.64% 

DENSENET201 

DEFAULT 99.36% 69.32% 34.91% 83.78% 74.22% 88.16% 96.06% 79.83% 60.48% 98.44% 

0.085 95.14% 75.48% 46.98% 82.31% 73.21% 86.80% 88.21% 80.09% 73.21% 86.80% 

0.01 84.71% 76.13% 36.37% 81.18% 72.76% 85.62% 82.50% 80.60% 65.07% 91.31% 

0.1 96.29% 75.63% 45.05% 82.22% 72.43% 86.88% 90.31% 79.40% 60.46% 95.92% 
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Table 5 Semi biased setting results of the two DenseNet architectures, red denotes best value in column and blue indicates the 
second best. Default in alpha signifies that the default architecture was used instead of the lad mechanism. 

 

Semi-Biased 

MODEL ALPHA EO DI AP ACC F1 | 0 F1 | 1 PR | 0 PR | 1 REC | 0 REC | 1 

DENSENET121 

DEFAULT 67.72% 80.90% 57.17% 87.41% 82.72% 90.10% 88.05% 87.07% 77.99% 93.34% 

0.085 46.37% 56.50% 62.19% 84.33% 79.91% 87.16% 79.14% 87.70% 80.69% 86.62% 

0.01 52.62% 67.84% 58.95% 84.95% 80.89% 87.58% 79.35% 88.71% 82.50% 86.49% 

0.1 37.09% 49.14% 62.98% 82.91% 79.10% 85.55% 74.97% 88.93% 83.70% 82.42% 

DENSENET201 

DEFAULT 47.00% 61.70% 57.00% 87.77% 84.09% 90.07% 84.53% 89.78% 83.65% 90.37% 

0.085 69.03% 78.86% 60.84% 83.01% 76.61% 86.67% 81.82% 83.63% 72.03% 89.93% 

0.01 28.53% 51.62% 54.30% 83.67% 80.00% 86.20% 75.89% 89.55% 84.59% 83.09% 

0.1 63.42% 75.93% 58.85% 82.43% 75.76% 86.23% 81.12% 83.11% 71.06% 89.59% 

 

5.2.3 EfficientNet Results 

EfficientNet models are achieving similar results with the pervious models in the full biased setting. However, 

compared to the other models, there is a significant drop in accuracy for the more complicated model B5. The 

simpler B0 model bests B5 scores in every metric, possibly hinting that larger EfficientNet models struggle with 

LAD perturbations. EfficientNet B0 also marks decent results compared to the default model with increased 

fairness metrics, specifically a ~15% increase in DI and AP while decreasing overall accuracy by less than 2%. 

Additionally, we observe that EfficientNet performs better with lower alpha values, like 𝑎𝑙𝑝ℎ𝑎 =

0.01 𝑎𝑛𝑑 𝑎𝑙𝑝ℎ𝑎 = 0.005.  

 

Table 6 Full bias settings tested on two EfficientNet models. Red denotes the best value, and blue indicates the second best. 
Default in alpha signifies that the default architecture was used instead of the lad mechanism. 
 

 

FULL BIAS 
MODEL ALPHA EO DI AP ACC F1 | 0 F1 | 1 PR | 0 PR | 1 REC | 0 REC | 1 

EFFICIENTNET B5 

DEFAULT 94.23% 68.34% 39.52% 81.18% 71.45% 85.97% 86.29% 79.27% 60.97% 93.90% 

0.085 87.94% 69.73% 41.95% 71.64% 54.84% 79.33% 71.24% 71.77% 44.58% 88.68% 

0.01 87.36% 69.80% 52.19% 75.32% 66.04% 80.62% 70.47% 77.83% 62.14% 83.61% 

0.005 86.35% 69.56% 50.56% 76.98% 67.15% 82.28% 74.80% 77.98% 60.92% 87.09% 

EFFICIENTNET B0 

DEFAULT 97.10% 74.53% 44.11% 84.56% 76.34% 88.54% 93.52% 81.31% 64.49% 97.19% 

0.085 91.83% 84.91% 59.48% 80.38% 70.56% 85.29% 83.94% 79.00% 60.86% 92.67% 

0.01 97.91% 87.36% 60.24% 82.88% 76.14% 86.64% 82.41% 83.10% 70.76% 90.50% 

0.005 97.93% 78.59% 48.31% 81.21% 73.14% 85.55% 81.64% 81.01% 66.25% 90.62% 
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In the Semi-biased setting, the two EfficientNet models show great disparities, hinting that more complex 

architectures even when scaled evenly in height width and depth are considerably hindering their 

performance. EfficientNet B5 performs similar to the full bias setting in terms of overall accuracy, scoring 

~10% lower than the default model. Fairness metrics do not see any major improvements other than a 10% 

increase in DI. B0 model on the other hand, scores more than 80% in all fairness metrics while being subject 

to only a 4% decrease in accuracy and other performance metrics, further reinforcing the stated assumption. 

Overall both models seem to perform better on larger alpha values like 0.1 and 0.085. 

Table 7 Semi biased setting tested on two EfficientNet models. Red denotes the best value, and blue indicates the second best. 
Default in alpha signifies that the default architecture was used instead of the lad mechanism. 

 
 

5.2.4 Model Comparison 

Having evaluated model performance across both semi-biased and fully biased settings, we next compare 

architectures under their best-performing LAD configurations. In the full bias setting (Figs. 13–16), three 

architectures emerge as clear leaders: EfficientNet B0, DenseNet121, and ResNet20. All three achieve strong 

fairness outcomes, surpassing 50% in Accuracy Parity (AP), 80% in Disparate Impact (DI), and 85% in Equal 

Opportunity (EO), indicating considerable mitigation of bias relative to other baselines. Among these (table 8), 

DenseNet121 and EfficientNet B0 slightly outperform the best-performing ResNet20 variant, achieving not 

only higher fairness metrics but also stronger overall accuracy. Notably, DenseNet121 surpasses EfficientNet 

B0 across most metrics, positioning it as the most consistent architecture under high-bias conditions. These 

results highlight the importance of balancing model depth and size when addressing the fairness–accuracy 

trade-off. DenseNet121, being shallower and more compact than DenseNet201, achieves stronger fairness 

and accuracy scores despite its smaller capacity. In contrast, deeper variants such as DenseNet201 may 

introduce unnecessary complexity that does not translate into better debiasing performance. 

Semi-Biased 

MODEL ALPHA EO DI AP ACC F1 | 0 F1 | 1 PR | 0 PR | 1 REC | 0 REC | 1 

EFFICIENTNET B5 

DEFAULT 86.66% 70.62% 80.76% 87.59% 84.15% 89.80% 82.99% 90.61% 85.35% 89.00% 

0.085 85.62% 81.08% 76.01% 76.00% 68.01% 80.79% 70.08% 79.38% 66.05% 82.25% 

0.01 76.66% 75.18% 75.25% 79.09% 74.10% 82.47% 71.04% 84.95% 77.43% 80.14% 

0.005 78.98% 75.76% 75.76% 79.43% 74.60% 82.72% 71.31% 85.40% 78.21% 80.20% 

0.1 87.92% 82.16% 76.36% 75.58% 66.86% 80.67% 70.27% 78.45% 63.76% 83.03% 

EFFICIENTNET B0 

DEFAULT 80.87% 81.57% 65.97% 88.56% 84.27% 91.01% 89.88% 87.88% 79.31% 94.31% 

0.085 95.06% 75.57% 92.19% 82.28% 75.97% 85.97% 79.77% 83.64% 72.51% 88.43% 

0.01 60.54% 62.08% 70.08% 83.79% 79.78% 86.47% 76.95% 88.65% 82.83% 84.39% 

0.005 52.50% 58.71% 66.37% 84.22% 80.39% 86.80% 77.29% 89.21% 83.75% 84.52% 

0.1 94.40% 86.63% 83.35% 81.38% 73.49% 85.05% 78.84% 82.02% 69.29% 88.31% 
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Fig. 20 Equal Opportunity versus Accuracy in the fully biased setting. ResNet models are colored blue, DenseNet red, and 
EfficientNet green. LAD models include the value of alpha inside their name (i.e. resnet20-0.1). EfficientNet B5-0.01 is not included 
inside the graph because the value was too low and it would make the graph unreadable. 

Fig. 21 Accuracy Parity versus Accuracy in the semi biased setting. ResNet models are colored blue, DenseNet red, and 
EfficientNet green. LAD models include the value of alpha inside their name (i.e. resnet20-0.1) 
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Fig. 22 Disparate Impact versus Accuracy in the fully biased setting. ResNet models are colored blue, DenseNet red, and 
EfficientNet green. LAD models include the value of alpha inside their name (i.e. resnet20-0.1) 

Fig. 23 Comparison of all fairness metrics and accuracy between the best performing models in the fully biased setting. 
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In the semi biased setting (Fig. 17-20) we observe different models scoring better results. For the DI chart, 

ResNet50 with 𝑎𝑙𝑝ℎ𝑎 = 0.005 stands out as the highest DI score followed by the other ResNet models and 

the two EfficientNet B0-B5 with 𝑎𝑙𝑝ℎ𝑎 = 0.1. The DenseNet architecture scored decent results in accuracy 

but did not perform as well as the other architectures on the DI metric. 

For the EO chart, we again see both ResNet and EfficientNet achieving the highest outcomes, with ResNet150 

being at the top followed by the B0 architecture, while B1 scored the better accuracy while keeping EO 

relatively high. DenseNet architecture underperformed on the EO chart with results under 70%. 

For the AP chart, ResNet and EfficientNet are emerging as the top models specifically B0 and ResNet150 with 

outcomes over 80% and 70% respectively. DenseNet, while not scoring as high results as the other two 

architectures, the accuracy was higher than the other models. 

Comparing the three best models in Fig. 20, we see that both EfficientNet and ResNet architectures are 

offering similar performance with EfficientNet surpassing ResNet on AP score, while ResNet achieved higher 

DI and EO scores. These results show that each model comes with its own trade-offs and that both models can 

be applied in the present challenge effectively. 
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Fig. 24 Accuracy Parity versus Accuracy in the semi biased setting. ResNet models are colored blue, DenseNet red, and 
EfficientNet green. LAD models include the value of alpha inside their name (i.e. resnet20-0.1) 
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Fig. 25 Disparate Impact versus Accuracy in the semi biased setting. ResNet models are colored blue, DenseNet red, and 
EfficientNet green. LAD models include the value of alpha inside their name (i.e. resnet20-0.1). ResNet20 is not present in the graph 
because of the low EO value. 

Fig. 26 Accuracy Parity versus Accuracy in the semi biased setting. ResNet models are colored blue, DenseNet red, and 
EfficientNet green. LAD models include the value of alpha inside their name (i.e. resnet20-0.1) 
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6 Conclusion & Future Work 

This study examined the issue of bias in AI models, with a specific focus on skin cancer detection in medical 

imaging. Building upon the theoretical foundation of machine and deep learning, addressing critical healthcare 

challenges, issues, prior work done to mitigate them, and  the Latent Adversarial Debiasing framework 

designed to combat confounding features present in the data. The experimental setup evaluated the 

performance of state-of-the-art CNN architectures and provided evidence of the framework’s effectiveness. 

We conclude with two different important findings. First, the use of LAD has evidently proven to consistently 

increase all fairness-related metrics such as EO, DI and AP without hindering the overall classification accuracy. 

This suggests that the LAD framework can be used to reduce demographic group disparities while maintaining 

crucial clinical performance, striving for a fairer classification environment. Secondly, the experiments show 

that the LAD framework generally favored smaller capacity models like ResNet20, DenseNet121, and 

EfficientNetB0. While larger models have shown a better overall accuracy, the majority of them were not 

subjected to major fairness improvements. Therefore, there exists no need to align model complexity to the 

present bias mitigation technique. 

As deep learning approaches are being increasingly integrated in the field of healthcare, present biases that 

hurt model accuracy for a particular demographic subgroup can often be the deciding factor for a patient’s 

life. Therefore, this study highlights the importance of integrating and developing fairness-aware models for 

medical imaging and many other applications. While LAD shows promising results, there exists no bias 

mitigation technique that truly eliminates systemic biases due to data incompleteness or imbalance. 

Future work should expand the current study in three main ways. First, the construction of a larger and diverse 

skin lesion dataset with exact metadata about lesion condition, diagnosis, and skin tone, is crucial to bias 

reduction, as we believe there needs to exist a combination of pre-processing, in-processing, and post-

processing methods to significantly mitigate biases. Second, is the finding of a lightweight enough model to fit 

on resource constraint clinical infrastructure or even mobile phones. The model needs to produce satisfactory 

results and must be constructed alongside experienced hospital physicians to verify the usefulness of the 

model. Third, the generalization of LAD to other clinical imaging tasks like radiology, pathology or 

ophthalmology should be explored to further utilize the framework’s bias mitigation mechanism. 
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