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(1)   «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με 
έγγραφη υπεύθυνη δήλωση  
του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο 
υπαίτιος αυτών των πράξεων σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό 
όφελος βλάπτοντας τρίτον ή σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.» 

  

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της 
διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι: 

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να 
τα περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη 
σελίδα. Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι 
λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση 
εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς 
και η παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά 
στην πηγή. Αναφέρω πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, 
όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται 
από αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι 
αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν 
δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και 
παρουσίασή τους ως δική μου εργασία.  

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των 
παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε 
μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και 
όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι 
πίνακες και τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής. 



  

 



  
 

ABSTRACT 

Producing handwritten text is a complicated cognitive process that involves a wide range 

of the human brain’s components. However, due to limited access to specialists and 

limited knowledge on specific learning disabilities (SLDs), children who are unable to 

fully develop such skills often go undiagnosed and/or unnoticed. In addition, the 

orthographic complexity of the Greek language and its opaque spelling nature present 

additional challenges, particularly when compared to languages with transparent 

orthographies such as Finnish or Italian. Despite this, there currently exists no accessible 

means to detect such disorders online in Greece without the involvement of trained 

professionals. This thesis proposes methodologies that leverage a custom-built deep 

learning Optical Character Recognition (OCR) model to identify potential writing 

disorders – specifically writing and spelling disorders – in handwritten Greek text. 

 

The motivation behind this project is first outlined, followed by a detailed overview of 

SLDs, their defining characteristics, and techniques used to identify them. Next, the 

fundamentals of deep learning and deep neural networks are introduced, along with their 

evolution, core components, and their applicability to complex problem-solving tasks such 

as image analysis. The basics of OCR are then presented, and the architecture of the 

developed model is analysed, explaining the reasoning behind the design choices and 

techniques adopted to detect potential writing and spelling disorders on handwritten text. 

Finally, the model’s performance is evaluated using data from two control groups, with 

the results presented and analyzed. 
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CHAPTER 1 

Motivation 

1.1 Introduction 

This chapter presents the motivation underlying the project and explains the reasoning for developing 
a custom AI system designed for single-character image analysis and pattern recognition. Specifically, 
it highlights the academic challenges faced by individuals with learning difficulties, the necessity for 
an identification mechanism tailored to the Greek language, as well as the importance of a single 
character analysis optical character recognition (OCR) algorithm for handwritten text – particularly in 
the context of spelling and writing disorder detection. 
 

1.2 Learning Disabilities and Academic Progress 

Identifying spelling and writing disorders in Greek text is not just a technical challenge, but rather a 
critical step toward inclusive education and individualized learning. Specific learning disabilities (SLDs) 
such as dysgraphia and dysorthography can significantly hinder a student’s academic progress as well 
as their self-confidence and self-esteem [1]. Yet, they often go undiagnosed due to delayed 
assessments, insufficient knowledge of SLDs, or limited access to specialists [41]. It’s not uncommon 
for a Greek child to receive their diagnosis years after they are qualified to, or even not receive one at 
all, resulting in academic setbacks and emotional strain [41]. 
 
Additionally, spelling and writing disorder detection is a greatly underdeveloped field, and based on 
currently available resources, there appears to be no existing means of automatic self-assessment for 
writing and spelling disorders in Greece. This absence makes early detection inaccessible for many 
individuals and, as a result, countless students and adults continue to struggle unnoticed [41]. 
 
The Greek language presents unique phonological, morphological, and orthographic complexities, 
while also maintaining a high level of phonetic correspondence [2]. For example, the redundancy of 
vowel sounds such as “ι”, “η”, and “υ” poses complications and results in phonologically acceptable 
misspellings [3]. A 2009 study by Protopapas & Vlahou shows that the Greek language’s consistency 
is around 95% in the feedforward direction (reading) and around 80% in the feedback direction 
(spelling) – showing its asymmetrical nature of orthographic processing [4]. Specifically, decoding 
written text is considered quite reliable; however, accurate spelling demands more nuanced 
phonological awareness and lexical knowledge. 
 
Therefore, the development of an AI-powered OCR model tailored for Greek handwriting is proposed 
as a means to create an accessible, efficient, trustworthy, and scalable tool that could be used by 
educators, clinicians, or even students themselves to identify writing SLDs early. This project was 
ultimately designed to bridge the gap between technology and special education and to propose a 
variety of ways that AI can be a useful approach to solving such problems. 
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1.3 Flaws in Modern LLM-based OCR 

Optical Character Recognition is a deeply researched field that has roots stretching back over a century. 
Since then, multiple algorithms that aim to improve the accuracy of the OCR process have been 
proposed, and in recent years, there have been great advancements made due to the introduction of 
Deep Learning [5]. In particular, OCR on handwritten text is a notoriously complicated task due to 
connected components and inconsistent letters that often require context to be read correctly. As a 
result, modern OCR models with high accuracy tend to make predictions based on context and are 
usually trained on entire words rather than single letters. Thus, a phenomenon referred to as 
“hallucination” can often be observed when a model attempts to understand something that it is 
unable to fully transcribe [6]. Particularly, such models often tend to automatically correct text based 
on context cues and probabilities, making the transcription process inaccurate and often creating 
distortions in the original transcript. Such behavior is excellently captured by Rangasrinivasan et al. 
[7], and an experiment we conducted on the GPT-4o model can be found in Figure 1.1. The original 
text in that figure includes characters written in the wrong order, random uppercases and in reverse 
– all of which the model takes the liberty to self-correct. Subsequently, using such approaches to 
detect writing and spelling disorders poses a great risk of incorrectly written words being 
automatically corrected in the transcription process. 
 

 
Fig. 1.1. Common example of an OCR model distorting an original transcript, where:  

Yellow = spelling error, Pink = wrong order, Blue = inverted letter, and Green = uppercase letter. 
Prompt: Transcribe this handwritten sentence. 

 
In the case of spelling and writing disorder detection, it is first necessary to assume that large parts of 
the handwritten text being handled contain words that are spelled incorrectly and/or cannot easily be 
deciphered. This ultimately creates a need for a custom-built model used for character-level analysis 
instead of typical word detection. Although there has been significant research conducted on single 
character segmentation over the past years, it is currently considered near impossible to handle single 
characters due to the hundreds of different writing styles that combine letters, making it challenging 
for the computer to understand where they need to be split. Moreover, the Greek language contains 
characters that often look similar in handwritten text and are thus nearly impossible to decipher 
unless context is present. Such example can be found in Figure 1.2, where the writer on the left wrote 
the letter “ν” similar to the letter “υ” in the word “αρνίεσαι”. If someone were to see the same letter 
in a different context, they would most likely read it according to the context of the sentence. 
Additionally, the writer on the right in the same figure did the opposite and wrote the letter “υ” similar 
to the letter “υ”. Finally, Figure 1.3 shows another example of context-based transcription where the 
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writer on the right connected the letter “τ” with the letter “η” and thus resulted in the letter “η” 
looking similar to the letter “ι”. 
 
Sequentially, there is a need for an optimal OCR algorithm tailored to Greek text in order to properly 
capture every word letter-by-letter and provide proper feedback based on spelling and writing. This 
thesis aims to tackle the single character image processing problem and propose methodologies and 
algorithms that can effectively detect potential disorders in handwritten Greek text. 

 

 
Fig. 1.2. Example of a need for context-based letter classification. 

 

 
Fig. 1.3. Example of different writing styles with connected letters.  
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CHAPTER 2  

Writing and Spelling Disorders 

2.1 Introduction to SLDs 

Specific Learning Disorder (SLD) is a biologically based neurodevelopmental condition characterized 
by atypical cognitive processing, which underlies observable behavioral manifestations [12]. It 
markedly interferes with the acquisition and effective use of core academic skills – such as reading, 
writing, and mathematics – despite the presence of normal or above-normal intelligence, sufficient 
educational instruction, and access to appropriate learning environments [8, 9, 12]. Additionally, 
studies have shown that the prevalence rates of SLDs range between 5-15% internationally [10] and 
8.5-9.5% specifically in Greece [11].  
 
As per the DSM-5 [12], there are three main types of specific learning disorders, and they can be 
classified as Dyslexia (reading disorder), Dysgraphia (disorder of writing expression), and Dyscalculia 
(disorder of calculation). Additionally, Dysorthography can be considered part of the SLD umbrella, 
suggesting a disorder in spelling [11]. It is worth noting that all of them begin with the prefix “dys”, 
which denotes a developmental origin, implying that the individual was born with the condition, as 
opposed to the prefix “a”, which typically refers to an acquired deficit resulting from injury or illness 
[13]. For example, “agraphia” and “dysgraphia” imply different meanings. A table of SLD symptoms, 
as stated by the DSM-5 [12], can be found in Table 2.1. 
 
It is worth mentioning that specific learning disabilities can typically be reliably diagnosed from 3rd 
grade and up (8-9 years of age), when academic demands increase and persistent patterns of difficulty 
become more evident [12]. Earlier signs may still be observed, though a formal diagnosis is often 
delayed until this stage to ensure developmental variability is accounted for [9]. Additionally, while 
certain studies suggest minimal gender disparity in reading-related SLDs, several others tend to be 
more prevalent among boys [14]. 
 
Dyslexia often co-occurs with other neurological conditions [15]. For example, research by Döhla et al. 
shows that dysgraphia appears to be closely related to Dyslexia [16], with the prevalence of 
developmental writing disorders in children with dyslexia being around 70% [17]. Additionally, findings 
in the works of Butterworth (2003) and Wilson et al. (2014) show that 40% of learners with dyslexia 
pose difficulties with calculations [18, 19]. 
 

Inaccurate or slow and effortful word reading. 

Difficulty understanding the meaning of what is read. 

Difficulty with written expression. 

Difficulty with spelling. 

Difficulties with mathematical reasoning. 

Difficulties mastering number sense, number facts, or calculation. 

Table 2.1. Specific learning disorders symptoms, as stated by DSM-5 [12]. 
 
 
 



 9 

2.2 Writing and Spelling SLDs 

The production of written text is a complicated cognitive process that activates a wide network of 
brain regions as a product of thousands of years of human evolution. To illustrate the neurological 
components involved, Figure 2.1 presents a simplified diagram. At schools, a large proportion of the 
average elementary school academic curriculum focuses on the acquisition of writing skills, while 
research shows that around 50% of a typical school day consists of activities related to the process of 
writing [20]. It could be said that one of the ultimate goals of education is to enable students to read 
and write effortlessly and almost automatically. However, the acquisition of writing is a skill that many 
students are unable to obtain, resulting in academic struggles and difficulties in catching up with 
students of typical development [41].  
  
In the following two sections, a brief overview is presented of the two writing-related specific learning 
disorders that were the focus of this project, including their definitions, characteristics, and typical 
identification methods.  
 

 
Fig. 2.1. A typical writing process that is often performed unconsciously. 

 

2.2.1 Dysgraphia / Writing Disorders 

Dysgraphia is a neurological specific learning disability that manifests as persistent challenges in 
developing proficient writing skills [16]. As mentioned in Chapter 2.1, it is closely related to dyslexia, 
and studies show that the prevalence of developmental dyslexia is around 17%, opposed to that of 
developmental writing disorders being 7-15% among children worldwide [21, 22]. Additionally, Chung 
et al. [23] state that children who fail to attain writing automaticity by third grade (9-10 years of age) 
are at significantly higher risk of encountering challenges with higher-order writing tasks, as the child’s 
executive cognitive resources may remain occupied by the physical act of forming letters. 
 
Case studies have shown that the cerebellum plays an important role in dysgraphia, and specifically 
in the coordination of writing [24]. In addition, writing expression involves distinct cognitive 
mechanisms, which may be variably impaired in individuals with dysgraphia. For example, accurate 
spelling of dictated words is heavily sustained within the working memory, and tasks involving novel 
or pseudowords depend on sublexical spelling processes that apply phoneme-grapheme rules [23]. 
 

2.2.2 Dysorthography / Spelling Disorders 

According to DSM-5 [12], Dysorthography is considered a subtype of specific learning disorder with 
impairment in written expression. It is a specific type of writing impairment marked by frequent 
spelling mistakes such as letter omissions and reversals, and it is often linked to dyslexia, though it can 
also manifest independently [12, 2, 25]. As of the 2013 version of the DSM-5 [12], it can be diagnosed 
as “spelling acquisition disorder” [26]. 
 
The prevalence of spelling disorders is influenced by linguistic characteristics, the degree of 
orthographic transparency within a given language, and specific diagnostic frameworks employed [2]. 
Particularly, the Greek language’s distinct morphological complexity and linguistic evolution introduce 
acquisition challenges in spelling, which are not encountered in more structurally uniform languages 
such as Finnish [2]. 

Letter 
Transcriptio

n

Conceptu-
alization

Drafting Revising Editing
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2.3 Writing & Spelling Disorder Symptoms 

A comprehensive understanding of the symptomatic manifestations of writing and spelling disorders 
is essential for accurate identification and for providing effective support to individuals affected by 
them. The following two sections introduce key behavioral and cognitive indicators that often 
accompany these disorders. Additionally, real-world examples from handwritten text produced by 
individuals diagnosed with writing and spelling disorders are showcased. By examining the symptoms 
in depth, we can gain a greater understanding of the nuances of written expression and orthographic 
processing and provide a preface of how they can be detected. 
 

2.3.1 Writing Disorder Symptoms 

Though there are several core indicators of writing disorders, they often go undetected at early stages 
due to the continuous development of handwriting during the early years of schooling. Additionally, 
isolated cases of dysgraphia may remain unrecognized well into adolescence or early adulthood [23].  
 
Another noteworthy complication in detecting writing disorder symptoms is their variability in the 
nature of the writing task and the environment. Children may exhibit inconsistencies and 
disorganization when composing an independent story but show relatively stable handwriting when 
copying from a board or a notebook [23]. 
 
Chung et al. [23] illustrate different warning signs split into three age groups, as published by the 
United States National Center for Learning Disabilities. Specifically: 
 

• Preschool-aged children may:  
o Hold writing tools or position their bodies awkwardly while writing 
o Become easily fatigued during writing activities 
o Avoid writing and drawing tasks 
o Produce malformed, reversed, upside-down, or unevenly spaced letters 
o Struggle to keep their writing within the designated lines or margins 

 

• Elementary school-aged children often show: 
o Illegible handwriting 
o Frequent switching between cursive and print writing styles 
o Challenges in written comprehension, finding words, and completing sentences 

 

• Teenagers and young adults may experience: 
o Difficulty organizing their thoughts in written form 
o Problems with written grammar and sentence structure that are not evident in their 

spoken language 
 
Authentic writing disorder examples were provided by my professor in a learning difficulties course 
[27], and they can be found in Fig. 2.2. The ground truth is also provided to show a comparison with 
typical development writing. In both paragraphs (b) and (c), it can be observed that the sizing and 
spacing of the letters are inconsistent, and the principle of maintaining a straight line is not satisfied. 
Additionally, various characters are missing, and the order of some is problematic (e.g., καρταρτει 
instead of κατάρτι). Finally, the Greek language accent point tonos is often omitted in paragraph (b) 
and not used at all in paragraph (c). 
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Fig. 2.2. Writing disorder examples. Paragraph (a) is the ground truth and  

paragraphs (b) and (c) were written by two children diagnosed with writing disorder. 
 

2.3.2 Spelling Disorder Symptoms 

Children who struggle with spelling disorders tend to have difficulties in key writing-related skills. 
Specifically, those include mapping sounds and word parts to their written forms, using correct 
spelling based on historical usage, following grammar-based spelling rules, and recognising individual 
words within a sentence [26].  
 
Spelling errors manifested from a spelling disorder are often classified as two distinct types based on 
the linguistic level of the errors. In particular, they are referred to as historic and grammatical [26]. 
Historic spelling errors refer to historically determined spellings that do not follow specific 
phonological rules, such as the “αι” in the word “παιδί”. Grammatical spelling errors affect inflectional 
morphology and denote spelling errors in tense, gender, case, and/or singular/plural forms [26]. In 
the same word example “παιδί”, the “ί” is considered a grammatical spelling error. More examples of 
historical and grammatical spelling can be found in Table 2.2. 
 

Words Historic Grammatic 

το σκυλί το σκυλί το σκυλί 

η λέξη η λέξη η λέξη 

εσύ φεύγεις εσύ φεύγεις εσύ φεύγεις 

αυτό είναι αυτό είναι αυτό είναι 

Table 2.2. Examples of Historic and Grammatic spelling,  
where red denotes the respective spelling type. 

 
According to Mazade (2011) [28], spelling errors found in learning disabilities can be grouped into two 
systems: form-based typologies and deficit-based origins, and they can be classified into seven and six 
distinct categories respectively [26]. 
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I. Typological Classification of Errors (Form-Oriented) 
These reflect on structural characteristics of the errors themselves. 
 

1. Errors of Spatial Letter Placement 
a. Visual confusability manifested from similar shapes or orientations 

 (e.g., β -> δ, ε -> 3, ρ -> 9).  
b. Omission and/or additions of letters or syllables (e.g., τρ -> ρτ, ππ -> π). 
c. Letter reversals (e.g., στρατός -> σταρτός). 
d. Word fusion (e.g., το σπίτι -> τοσπίτι). 

2. Phonological Errors 
a. Voicing confusion (e.g., δέμα -> τέμα). 
b. Simplification of consonant clusters (e.g., όμορφο -> όμορο). 
c. Assimilation (e.g., παγώνω -> παγώγω). 
d. Insertion of letters or syllables (e.g., κατάρτι -> κατατάρτι). 
e. Vowel distortion (e.g., κίτρινο -> κίτρινι) 

3. Errors in Morphological Encoding 
Incorrect use of suffixes or stems (e.g., σκυλί -> σκιλί, τρώω -> τρώο) 

4. Errors in Representing the same Phoneme with Alternative Graphemes 
E.g., πιστεύω -> πιστέβω. 

5. Errors in Grammar 
Despite knowing grammatical rules, students may struggle to apply them (e.g., της -> τις). 

6. Lexical Substitution Errors 
The original word is replaced by a semantically unrelated one (e.g., σκύλος -> γάτα). 

7. Homophonic Word Errors 
Words that sound similar are interchanged (e.g., μίλα -> μήλα, σήκω -> σύκο). 

 
II. Classification Based on Underlying Deficit (Origin-Oriented) 
These refer to cognitive processes that fail during spelling. 
 

1. Phonological Deficit Errors 
Difficulty in phonological-letter matching (often co-occurring with dyslexia).  
Includes omissions, substitutions, additions, or letter reordering (Examples from I. b and c). 

2. Morphological Errors without Phonological Impact 
Errors are confined to the visual structure of the word  
(e.g. κόκκινο -> κώκινο, ξάρτια -> κσάρτια). 

3. Semantic Errors 
Incorrect word use that alters the meaning (e.g. θήρα -> θύρα). 

4. Grammatical Errors 
Errors in tense, gender, case, forms (e.g. εσύ φεύγεις -> εσύ φεύγει, οι λέξεις -> η λέξεις). 

5. Stress 
Misplacing accent affects phonology and sometimes semantics (e.g. διπλά -> δίπλα). 

6. Other Errors 
Includes punctuation, letter orientation, and capitalization issues  
(e.g. το σπίτι μου -> τΟ σΠΊτ μοΎ, νερό -> νΕ9ο)  

 
Similar to the previous section, an authentic example of written text produced by a child diagnosed 
with a spelling disorder can be found in Figure 2.3. Accent marks (tonos) are often omitted, and several 
spelling mistakes such as “κόλες” instead of “κόλλες” can be found. The ground truth of the particular 
passage is the same as that of passage (a) in Figure 2.2. Similarly, the image was provided by my 
professor. 
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Fig. 2.3. Spelling disorder example. 

 

2.4 Cognitive Deficits 

Individuals with writing and spelling disorders often exhibit cognitive deficits that intervene with their 
ability to process, retain, and reproduce written language [134, 136]. These skills are not always 
immediately observable in surface-level writing errors, but can significantly impact the acquisition and 
execution of writing-related skills [134, 135]. 
 
One frequently observed deficit is in auditory and visual working memory, which refers to the ability 
of containing information for a short period of time [136, 137]. Auditory working memory deficits 
affect the individual’s ability to retain verbal information, such as remembering multi-step instructions 
or holding a sentence structure while writing [134]. On the other hand, visual working memory deficits 
may hinder the individual’s ability to recall letter shapes, grammatical or word patterns, or spatial 
arrangements on the page, resulting in disorganized or inconsistent written text [136]. 
 
Another common deficit involves phonological processing, which refers to the ability to recognize and 
manipulate the sound structure of a language [139]. Individuals with phonological processing 
difficulties often struggle to segment words into phonemes, blend sounds, or accurately match sounds 
to corresponding graphemes [138]. Instead, they may rely on inconsistent or incorrect sound-symbol 
associations, which may lead to spelling errors and impair both language decoding and encoding skills 
[140, 141]. 
 
Additionally, visual-spatial processing disorders can interfere with an individual’s ability to perceive 
and organize visual information [136, 137]. This may manifest in difficulties with letter formation, 
alignment, spacing, and handwriting legibility [136]. Individuals with such deficits may also struggle to 
navigate the layout of a page or follow directional cues, which may result in deviations from a 
notebook’s lines [137]. 
 
Finally, inhibitory control is a key concept worth highlighting. In essence, it refers to the executive 
function that allows individuals to suppress instinctive reactions and emotions in order to stay focused 
in a designated task [149]. Further research shows that cognitive deficits in writing disorder often 
extend into executive functions and orthographic knowledge. Core executive functions, such as 
planning, attention control, inhibitory processes, and organization, play a vital role in written 
expression, and deficits in these areas may result in difficulties organizing ideas, error control, and 
maintaining attention [150, 151]. For instance, individuals with reduced inhibitory control may know 
the correct spelling of a word, but still produce errors manifested by difficulty in suppressing incorrect 
phonological representations. 
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2.5 SLD Detection Screenings 

Although the field of writing and spelling disorders remains significantly under-researched, 
considerable efforts have been made globally to develop screening tools that analyze behavioral 
indicators and linguistic patterns associated with learning disabilities. Such tools and algorithms have 
undergone substantial advancements in recent years, largely due to the rise of artificial intelligence 
and deep learning technologies, which have enabled more precise pattern recognition and 
classification capabilities. This section examines the progress that has been made in the past years to 
detect learning disorders both worldwide and exclusively in Greece.  

2.5.1 Worldwide Screening Tools 

Numerous screening tools aimed at detecting SLDs have been developed globally. However, for the 
purpose of this overview, only a selection of the most widely used and contemporary approaches will 
be examined. It is important to note that all tools presented are intended for identifying potential risk 
indicators of SLDs and do not serve as diagnostic tools. 
 

1. Shaywitz DyslexiaScreen, 2016 
Developed by Sally Shaywitz et al. in the United States, it is used as a brief screener tool with 
emphasis on phonological, linguistic, and academic performance and is used to help identify 
students at risk for developmental dyslexia [29]. Case studies conducted by Burns et al. (2022) 
found a decision accuracy of 45% using a sample of 115 students [30].  
 

2. DIBELS Next, 2010 
DIBELS Next (Dynamic Indicators of Basic Early Literacy Skills) is a series of brief assessments 
designed to monitor the development of early literacy skills in students from Kindergarten 
through Grade 6 (from 5 until ~12 years of age) [31]. It was developed at the University of 
Oregon, and it is primarily used in the United States. Its main purpose is to identify children 
who may be at risk for reading difficulties. In the same study by Burns et al. (2022), DIBELS 
Next scored a decision accuracy of 78% [30]. 
 

3. Devi et al.’s Machine Learning based Online Rehabilitation Tool for SLD Detection, 2019 
Introduced by Devi et al. [32], this web-based screening tool uses a modern machine learning 
algorithm approach – specifically, decision trees – to analyze student data. It is used to identify 
indicators for dyslexia, dysgraphia, and dyscalculia, and it scored an accuracy of 91.86% in the 
authors’ tests for LD identification. 
 

4. WISC-V, 2014 
WISC (Wechsler Intelligence Scale for Children) can be considered the most widely used 
screening tool worldwide for SLD identification [33]. It utilizes different indicators that are 
used to detect patterns related to Dyslexia, Dysgraphia, and Dyscalculia. Additionally, it 
supports over 20 languages, including English and Greek. Its strength lies in its ability to 
examine the child’s verbal comprehension, abstract thinking, problem solving, processing 
speed, working memory, and attention [34]. A case study by Raiford et al. reported a reliability 
coefficient ranging from .91 to .96 – indicating its high accuracy and consistency [35]. 

 

2.5.2 Screening Tools in Greece 

As of 2025, a few screening tools tailored towards SLD detection in children of different age groups 
have been created in Greece. All of them include game-like exercises that test spelling skills, though 
none of them have a means to check writing and ultimately identify writing and spelling disorders 
manifested in the production of handwritten text. The following screening applications are often used 
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in Greece as an SLD indicator, and by no means a diagnostic tool. Their characteristics, contents, and 
the age groups they are tailored for are briefly analysed below. 
 

1. eMADys, 2000 
Tailored primarily for first-year gymnasium (12-13 years of age) students, it focuses on 
cognitive indicators that may signal specific learning disorders rather than evaluating 
academic knowledge. It includes a variety of tests such as spelling quizzes and memory 
exercises [36]. 

 
2. Askisi-SD, 2025 

An accessible web-based screening tool designed to assess cognitive and orthographic deficits 
in Greek primary school students (6-12 years of age) [37]. It emphasizes on spelling disorders 
and aims to detect them early. Specifically, it includes tasks that evaluate spelling processes, 
visual and auditory working memory, and response times. In a recent study involving 264 
children, the authors scored a Spearman-Brown coefficient of 0.78 [2], showcasing its 
reliability and consistency. 
 

2.6 Diagnosis 

The diagnosis of writing and spelling disorders presents challenges both in Greece and internationally 
due to the complex linguistic, cognitive, and motor factors involved. According to ICD-10 [38], in order 
for one to be eligible for a dysorthography diagnosis, the individual must have shown clinical features, 
indicators, and manifestations from the early years of schooling, and in order to receive a standalone 
diagnosis, the symptoms must occur without coexisting reading difficulties. In addition, diagnosis can 
be established once the individual consistently fails to learn spelling, despite receiving targeted 
support at school [39, 26]. In Greece, the ACS Athens Educational & Diagnostic Testing Center [39] 
follows a series of evaluation methods, as shown in Table 2.3.  
 
Once the first evaluation procedure is completed, a comprehensive five-step assessment process 
begins. Specifically, it starts with a referral, followed by an appointment arrangement and then an 
intake interview to collect background information. A series of assessments is then conducted over 
several days, and a final meeting is carried out where the results and tailored recommendations are 
shared with the guardian. 
 

Collection of educational and clinical background 

Interview with the student’s guardian to gather family history 

Consultations with classroom teachers to explore academic and behavioral concerns 

Direct behavioral observations conducted both during classroom  

activities and the evaluation process 

Examination of prior psychoeducational assessments and reports 

Table 2.3. Evaluation methods for SLD diagnosis. 
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CHAPTER 3  

Deep Learning 

3.1 Introduction to AI 

The concept of Artificial Intelligence (AI) began to gain popularity in 1950 when Alan Turing posed the 
question of whether machines can think in his “Computing Machinery and Intelligence” paper [42]. 
Since then, extensive research has taken place in the AI industry [43], and as of 2025, large language 
models (LLMs) are widely used to complete tasks that one would consider impossible for a computer 
to handle a few years ago.  
 
According to a global survey conducted by McKinsey [43], the number of users actively engaging with 
AI tools in their daily lives has shown a sharp increase, reaching 378.8 million – or 3.9% of the global 
population – as of 2025. This number is estimated to increase by 92.4% by 2030 [44]. Additionally, the 
same survey showcases the immense funding for AI, which has reached a total of 91 billion dollars in 
2025 alone.  
 
Despite its growing popularity, many individuals still struggle to fully understand the true meaning of 
AI – how it functions and what differentiates it from Deep Learning. This chapter aims to provide useful 
insights into AI and Deep Learning, including neural network fundamentals, key architectures, the 
training processes, and commonly used frameworks, with an emphasis added on those utilized 
throughout this thesis. 
 

3.1.1 Artificial Intelligence  

Artificial Intelligence is considered a broad domain that encompasses both machine learning and deep 
learning [45], and its history dates back to the 20th century. Accordingly, it is worthwhile to begin with 
a brief historical overview. Although several definitions have been proposed over the years [45, 46], 
the High-Level Expert Group on Artificial Intelligence (AI HLEG) of the European Commission (EC) 
provides a clear task-based definition that beautifully captures the essential qualities of AI. Specifically, 
they define it as: “Systems that display intelligent behavior by analysing their environment and taking 
actions – with some degree of autonomy – to achieve specific goals.” [47, 46]. In order to further 
showcase the correlation between artificial intelligence, machine learning, and deep learning, a 
visualization can be found in Figure 3.1. 
 
The first roots of AI were set in 1956 at a workshop at Dartmouth College, where four pioneering 
researchers conducted a summer study session aimed at investigating the possibilities of making 
machines “simulate aspects of human intelligence” [48]. Following this, the field of artificial 
intelligence began to blossom, creating hundreds of new possibilities for automation, data, natural 
language understanding, and more. An iconic moment in AI history worth mentioning is the chess 
match in 1997 between IBM’s Deep Blue and the world champion Garry Kasparov, which recorded the 
first-ever computer win over a world champion [49].  
 

3.1.2 Machine Learning  

Although machine learning is frequently discussed within the context of AI, the two terms are often 
used interchangeably, which contributes to conceptual ambiguity and confusion [50, 51]. Janiesch et 
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al. define machine learning as the ability of systems to acquire knowledge from specialized training 
datasets in order to enable the automatic development of models to perform designated tasks [52]. 
Specifically, it refers to the process of allowing computers to autonomously learn important patterns 
and connections through observed data for the purpose of making predictions or creating decisions 
[53].  
 
Some representative machine learning problems worth mentioning include classification, regression, 
and clustering. Classification can be considered the act of categorizing data into predefined classes 
[53]. For example, a singular handwritten digit may be categorized as part of a class from a designated 
set of classes 0 to 9 (making up for 10 distinct classes). Following, regression refers to the prediction 
of continuous values from a series of input data [52]. One common real-world application may be 
considered house price prediction, where future property values are estimated based on several 
factors such as location and size [54, 55]. Finally, clustering is a learning approach used to partition 
data points based on shared characteristics [56]. It is considered an unsupervised technique, denoting 
the ability to analyse unlabeled data without the need for human intervention [57]. A frequently 
observed application is customer analytics, where businesses group customers into specific categories 
based on purchasing behaviours [56]. Additionally, it may also be found in the medical field, where 
patient data is analysed to discover hidden patterns [58]. 
 

3.1.3 Deep Learning 

Deep learning is a subset of machine learning, which itself is a subfield of artificial intelligence [5]. Its 
aim is to create computational models comprised of large layers of neurons with the purpose of 
learning representations of data with multiple levels of abstraction, and using that to make accurate 
decisions [4, 45]. Additionally, it is exceptionally effective in environments involving high data 
complexity and the availability of large-scale datasets [45].  
 
Its origin lies in the desire to create computer systems that mimic the structure of the human brain, 
and the first recorded milestone dates back to 1873 when Alexander Bain introduced the term “neural 
groupings” [59]. Following, the foundations of deep learning were deeply set in the 20th century, with 
revolutionary concepts like perceptrons (1958) and backpropagation (1974) being introduced [60, 61]. 
Its growth accelerated in the early 2000s, with a key achievement being the release of OpenAI’s large 
language model ChatGPT in 2022 [62]. 
 

 
 

Fig. 3.1. The correlation between AI, Machine Learning and Deep Learning. 
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3.2 Neural Network Fundamentals 

Artificial neural networks (ANNs) are inspired by the human brain’s natural neurons, and they can be 
considered a core element of deep learning, enabling systems to learn complicated patterns from 
large-scale datasets efficiently [63, 45]. Their history goes back to 1943, when Warren McCulloh and 
Walter Pitts proposed a mathematical model of the nervous system that produced an output signal 
based on an input through artificial neurons [64]. This chapter aims to provide a comprehensive 
overview of the fundamental components of a neural network, beginning by showcasing the most 
basic type – perceptrons, as well as their predecessor – multilayer perceptrons. Following, the 
introduction of non-linearity to networks through activation functions is presented. Finally, the key 
element during the learning process – backpropagation – as well as loss functions and optimization 
techniques are briefly analysed. 
 

3.2.1 Perceptrons 

For centuries, humans have made attempts to understand how the human brain functions, with the 
first roots found in the works of the Greek philosopher Aristotle in 300 BC [59]. Following to the 20th 
century, the psychologist Frank Rosenblatt proposed one of the first recorded algorithms to mimic 
biological learning through a computer by adjusting values called “weights” the same way that the 
human brain reinforces synapses [60]. This algorithm was named “perceptron” and is now considered 
the foundation of modern neural networks [60, 63]. A side-by-side comparison of a human brain’s 
synapse and a low-level ANN architecture can be found in Figure 3.2 (a) and (b), where the term 
weighted sum refers to the mathematical sum of neuron inputs and their respective weights in order 
to determine importance in characteristics. In addition, activation functions can be considered the 
threshold that allows information to flow onto a following neuron [65], and more information about 
them can be found in section 3.2.2.  
 

 
 

Fig. 3.2. A side-by-side comparison of (a) the human brain’s synapse, 
(b) a low-level ANN architecture, and (c) a typical MLP architecture. 

 
Having received an impact from perceptrons, the most frequently used neural network architecture 
nowadays has come to be the multilayer perceptron (MLP), or the “feed-forward” architecture [66]. 
If we consider a network with one or more input layers, we can define hidden layers as those used for 
intermediate computation and no direct connection to the input-output environment [66]. MLPs 
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typically consist of one or more input layers, a series of hidden layers, and an output layer, and a visual 
representation can be found in Figure 3.2 (c). Additionally, the term bias refers to a constant added to 
a neuron’s weighted output, and it is used to promote learning when the weighted sum of a neuron 
is insufficient to pass onto a following neuron [45]. The non-linear nature of MLPs makes them excel 
in solving complex problems, opposed to single perceptrons, which were limited to simple binary 
classifications (0 or 1) [60]. 
 

3.2.2 Activation Functions 

Activation functions are an essential component that introduces the non-linearity mentioned at the 
start of this chapter [45]. Neural networks need to be able to learn complex patterns and non-linear 
relationships in data. This means that rather than a straight-line relationship between input and 
output, different layers share characteristics in order to capture complicated characteristics in real-
world data [66]. Essentially, activation functions receive an input 𝑖𝑛𝑖 and, based on a threshold θ, they 
decide whether they should pass their information to other neurons or not according to their 
importance [65].  
 
Several activation functions are commonly used and serve different properties based on data and 
problem structure. Following, the two activation functions used for this project – relu and softmax – 
are briefly analysed, and both are visualized in Figure 3.3. 

 
Fig 3.3. Visual representation of the ReLU and softmax activation functions. 

 

• Rectified Linear Unit (ReLU) is widely considered a modern, cutting-edge activation function 
due to its simplicity and high performance [65]. Essentially, it only allows positive inputs to 
pass information to the next neurons. As seen in Equation (1), the function is very simple and 
easy to implement in a computer, since it only requires one computationally inexpensive 
condition [66]. 
 

𝑓ReLU(𝑧) = {
1, 𝑧 >  0
0, 𝑧 <  0

  (1) 

 

• Softmax is another commonly used activation function, and it can often be found in multi-
class classification tasks. It is used to transform raw outputs of the neural network into a 
singular vector of probabilities, where each value represents a likelihood of an input belonging 
to a specific class, with the sum of all probabilities adding to 1 [67].  
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In a previous chapter (3.2.1), a multi-class problem in the form of digit classification from 0 to 
9 was mentioned, and softmax is an ideal candidate for extracting probabilistic results. If we 
assume a well-trained neural network that takes a picture of the number 9 as an input, the 
vector produced by softmax would look something like Equation (2). In this case, the class 
with the maximum probability (0.9875) would be chosen for the final classification. 
 

𝑣 = 

(

 
 
 
 
 
 
 

0.0001
 0.0003
 0.0002 
0.0005
0.0008
0.0012 
0.0023
0.0015
 0.0056 
0.9875 )

 
 
 
 
 
 
 

  (2)  f(𝑥𝑖) =
e𝑥𝑖

∑ e𝑥𝑖𝐾
𝑗=1  

  (3) 

 
If we assume that: 
𝑥𝑖: the output of the previous layer in the network (logit) for the 𝑖-th class. 
𝐾: the total number of classes. 
e𝑥𝑖: the exponential score of the logit. 
∑ e𝑥𝑖𝐾
𝑗=1 : the sum of exponentials for all classes. 

 
Then, the softmax equation can be defined as shown in Equation (3). The exponentials are 
used to amplify the differences between scores by enlarging large scores and shrinking the 
small ones. In addition, the sum is used to normalise the exponentials and ensures that all the 
probabilities add up to 1 [67]. The reader may return to the example of Figure 3.3 now that 
the formula has been analysed. The y-axis denotes the output of the softmax function, and it 
can be observed that the higher the input logit is, the higher the output probability. 

 

3.2.3 Loss Functions and Optimizations  

Loss functions can be defined as a way to inform a machine how close the combination of weights and 
biases is to finding the optimal solution to a problem [68]. While several loss functions have been 
proposed over the years, the ones we experimented with for this project, cross-entropy loss and mean 
squared error (MSE), will be briefly analysed. It should be noted that loss functions contain every 
weight and bias of a neural network, and calculating them requires a great number of computations 
depending on the size of the network [68]. 
 

• Cross-Entropy Loss, often referred to as Log Loss, is a loss function used to measure the 
difference between two probability distributions 𝑝 and 𝑞, where 𝑝 is the predicted and 𝑞 is 
the true distribution [69]. In other words, it is used to minimize the error between the 
predicted and actual weights in a neural network, and a lower cross-entropy score denotes 
better performance. 
 
There are two widely used cross-entropy formulas depending on the classification problem: 
binary cross-entropy (BCE) used for binary classification, and categorical cross-entropy (CCE) 
used for problems involving multiple classes [70]. 

 
If we consider: 
𝑦ᵢ: the ground truth label for instance 𝑖 (0 or 1). 
𝑝̂ᵢ: the predicted probability that the label is 1. 



 21 

Then, the binary cross entropy (BSE) formula for a single sample can be defined as seen in 
Equation (4), where 𝑙𝑜𝑔 is used to penalize predictions far from the ground truth [70]. For 
example, a ground truth label of 𝑦ᵢ = 1 and a predicted probability of 𝑝̂ᵢ = 0.05 would result 
in a significantly high loss due to the logarithmic scaling. 
 

𝐿(𝑦ᵢ, 𝑝̂ᵢ) =  − [ 𝑦ᵢ × log(𝑝̂ᵢ) + (1 −  𝑦ᵢ) × log(1 − 𝑝̂ᵢ)]  (4) 
 
Additionally, if we consider that 𝐶 is the number of classes in a network, then the categorical 
cross-entropy (CCE) formula for a single sample may be defined as shown in Equation (5) [70].  
 

𝐿(𝑦ᵢ, 𝑝̂ᵢ) =  −∑ 𝑦ᵢ,𝑗
𝐶
𝑗=1  ×  log(𝑝̂ᵢ,𝑗)  (5) 

 

• Mean Squared Error (MSE), or L2 loss, is a widely used loss function that calculates the 
average of the squared differences between the predicted values and the ground truth [69, 
70]. It is considered a smooth gradient-based optimization, albeit with a downside in its poor 
performance on datasets with outliers, meaning that they need to be handled accordingly in 
the data preprocessing stage [70]. 
 
If we consider: 
𝜃: the model parameters. 
𝑛: the total amount of data. 
𝑦ᵢ: the actual value for the 𝑖-th sample. 
𝑦𝑖̂: the predicted value for the 𝑖-th sample. 
 
Then, the mean squared error formula is defined as shown in Equation (6). Squaring the 
differences works similarly to the logarithmic error amplification introduced in Equations (4) 
and (5), though MSE may place more emphasis on mistakes when the error is too big. 
Additionally, just like BCE and CCE, MSE needs to be minimized to produce better results. 
 

𝑀𝑆𝐸(𝜃) =
1

𝑛
∑ (𝑦ᵢ − 𝑦𝑖̂)

2𝐶
𝑖=1   (6) 

 

3.2.4 Backpropagation 

Bryson and Ho (1969) were the pioneers who introduced what is considered the backbone of modern 
neural networks – backpropagation [71, 45]. This algorithm refers to the process of fine-tuning 
weights and biases in a neural network based on an error rate obtained in a previous iteration [71]. 
Despite the original concept dating back to 1969, Werbos laid its theoretical foundation in 1974, and 
it only began to gain popularity in 1986 when McClelland and Williams applied it to MLPs, showcasing 
its potential to solve complex problems [72, 73, 74]. 
 
In order to thoroughly understand the reason back propagation is necessary, it is important to 
introduce the concept of forward propagation first. Forward propagation refers to the process of 
inputs being passed through the network in order to generate an output [45]. The output is then 
compared to the ground truth through the use of a loss function (e.g., BSE or MSE), and a numerical 
representation of the loss is produced [45].  
 
Back propagation uses the aforementioned error to calculate what are considered the “gradients” of 
the loss, meaning the representation of the amount a network weight contributed to the final loss 
[45]. Finally, the weights of every layer are adjusted through the gradients using a loss minimization 
function, and the scale of these adjustments is managed by the “learning rate” of the network [45, 
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75]. This reinforcement process continues for every pass through the training dataset (epoch), and 
the model’s performance is gradually increased; often until an equilibrium is found [45]. An updated 
illustration of Figure 3.2 (c) with the inclusion of back propagation can be seen in Figure 3.4. 
 
Throughout the back propagation process in neural networks, one needs to be cautious of two 
common training problems from occurring: the vanishing and the exploding gradient [76]. The 
vanishing gradient refers to the progressive shrinkage of gradients, which results in earlier layers 
receiving minimal to no updates during training [76]. On the other hand, the exploding gradient 
describes the opposite scenario where gradients receive progressively larger values, resulting in 
instability and ultimately causing the convergence to fail due to the entrapment in a local minima [76]. 
Two common ways to tackle those problems can be found in the regularization techniques section 
analysed in section 3.4.2. 
 

 
 

Fig. 3.4. The back propagation algorithm where:  
(1) the error is calculated, (2) the error is sent back to each neuron, and 

(3) the gradient of error is computed with respect to each individual weight.  
 

3.3 Computer Vision 

Enabling computers to perceive and understand the real world is a difficult challenge in artificial 
intelligence, commonly referred to as computer vision (CV) [77]. Although its applications are 
countless, one of the most impactful research areas is optical character recognition, which enables 
machines to read and interpret written text [78]. 
 
Considering the main topic of this thesis is OCR applied to spelling and writing disorder detection, it is 
essential to examine the deep learning architectures that enable robust and accurate handwritten 
text analysis. Among these, convolutional neural networks (CNNs) and transformer-based models 
have grown to become fundamental components in modern OCR systems and feature extraction. This 
section provides an overview of the relevance of these architectures, as well as how they function and 
what they consist of. 
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3.3.1 CNNs 

Influenced by the backpropagation algorithm, what is now considered the backbone of computer 
vision – convolutional neural networks – was introduced in 1989 by Yann LeCun et al. [79]. Based on 
the convolution operation on a matrix referred to as a kernel, this architecture excels in extracting 
complicated features from images by generating feature maps [5]. These maps provide a numerical 
representation of patterns such as edges and textures, and the accumulation of multiple feature maps 
across convolutional layers forms a convolutional neural network [5]. 
 
In order to understand how convolutional neural networks process data, it is first necessary to 
introduce two important image representation concepts – grayscale and RGB image formats. 
Grayscale images are represented by a set of pixels depending on their resolution, and each pixel 
contains a value from 0 to 255 [80]. Coloured images following the “red green blue” (RGB) format 
comprise three channels representing the intensity of each respective colour on each pixel [80]. A 
pixel-level visualization of both the grayscale and RGB formats can be seen in Figure 3.5. 
 

 
Fig. 3.5. Visualization of the upper-right 5x5 pixel region extracted from a  

2698x2698 image shown in: (a) grayscale, and (b) RGB format. 
 
The aforementioned convolution operation is known as a kernel-based transformation. Essentially, a 
kernel refers to a small square matrix that constantly slides over image pixels in order to extract 
information from them. This is calculated through a dot product operation between its own values 
and the pixel values it overlaps with at each position [5]. This results in a “feature map” that contains 
important visual characteristics, and depending on the parameters, may be smaller than the input [5]. 
 
Unlike traditional non-linear approaches – also referred to as artificial neural networks – CNNs allow 
networks to represent an image in a 3D format that includes height, width, and channels [5]. For 
grayscale images, the number of channels is one, while for RGB it is represented by three – one for 
each colour intensity [80].  If we assume two distinct images containing a zebra and a panda 
respectively, a 1D representation of all their information would ultimately lead to uncertainty in key 
features, such as colour placement and texture. The 3D format enables networks to distinguish 
features and visual patterns – such as the zebra’s stripes and the panda’s fur – through a thorough 
pixel analysis across every dimension and colour channel [81]. Additionally, each convolutional layer 
applies multiple kernels that extract various features from localized regions of the image, and as they 
accumulate, the areas of interest grow, allowing deeper layers to capture more abstract patterns. 
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It should be noted that kernel sizes may vary, and their application is dependent on the image’s 
resolution [81]. For instance, a kernel of 3x3 pixels is applicable to a 7x7 image, though one of 4x4 is 
not. The general formula for applying kernels is shown in Equation (7), where stride refers to the 
number of pixels the kernel moves at each step, and padding is the number of pixels added around 
the border of the image [82]. 
 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒 =
𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑧𝑒+2 × 𝑃𝑎𝑑𝑑𝑖𝑛𝑔−𝐾𝑒𝑟𝑛𝑒𝑙 𝑆𝑖𝑧𝑒

𝑆𝑡𝑟𝑖𝑑𝑒
 (7) 

 
As the number of layers begins to grow, the computational cost as well as the risk of overfitting rise 
[82]. Particularly, complicated models are prone to learning noise or meaningless patterns. To help 
control this, a mechanism referred to as pooling is commonly used after convolutional layers [82, 87]. 
Its goal is to reduce the dimensionality of feature maps – also known as down-sampling – while 
maintaining key characteristics and patterns. Two methods are frequently used to achieve this: 
average and max pooling, both of which preserve important information while discarding irrelevant 
details [87]. 
 

• Average pooling refers to the process of extracting the average from each position of a kernel 
[83], as shown in Figure 3.6.  
 

 
Fig. 3.6. Average pooling example for a 2x2 kernel with a stride of 2. 

 

• Max pooling involves selecting the maximum value within a group of features [84], as 
illustrated in Figure 3.7. 

 

 
Fig. 3.7. Max pooling example for a 2x2 kernel with a stride of 2. 

 
At the end of the convolutional and pooling layers, the last feature maps generated need to be 
transformed in a way that can be later utilized for the final classification. This is achieved by fully 
connected layers, also referred to as dense layers, whose goal is to convert a given input into a 1D 
vector, which will then be passed into an activation function [87]. In essence, every neuron in a fully 
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connected layer is connected to each one of the previous layers, forming a “dense” network of 
connections [5]. A visualization of a typical CNN architecture can be found in Figure 3.8. 
 

 

 
Fig. 3.8. Illustration of a convolutional neural network. 

 

3.3.2 Transformers 

While architectures such as recurrent neural networks (RNNs) and long short-term memory (LSTMs) 
have historically been used for sequence modeling in OCR tasks, a new architecture referred to as 
transformers has gained attention for its ability to capture long-range dependencies and contextual 
relationships [85]. Originally introduced by Vaswani et al. in 2017, this architecture uses a “self-
attention” mechanism that allows models to calculate the importance of different output elements 
dynamically [85]. This importance is represented by weights, and a greater weight denotes greater 
importance [85]. Additionally, unlike RNNs and LSTMs, which use sequential processing, transformers 
enable parallel processing – allowing the model to process entire sequences at once instead of little 
by little. This parallelization not only makes the training process faster, but also enables the model to 
understand more ambiguous patterns – something that is essential for OCR, where noise and 
unnecessary information are present [86].  
 
Transformer-based models utilize the aforementioned self-attention mechanism through multi-head 
attention, allowing them to focus on multiple parts of an input sequence simultaneously [85]. In 
essence, the input is split into multiple heads which independently learn to focus on different patterns 
and data relationships – each capturing different contextual cues [85]. Although it has showcased 
exceptional results in tasks such as machine translation and text generation [88, 89], the field of 
computer vision has also flourished due to its ability to extract complex features, enabling more 
accurate image segmentation and object identification [90].  
 

3.4 Training Deep Learning Models 

To effectively train a deep learning model, it is essential to utilize a custom dataset specifically 
designed to address the target problem. Just as humans acquire knowledge through living experiences 
in the form of observation and mistakes, deep learning models heavily rely on collections of data in 
the form of text or images to develop a comprehensive understanding of patterns and connections. 
This chapter first goes through an overview of a typical dataset preparation process, as well as the 
concept of data augmentation. Then, the two main data-related errors during the training process, 
overfitting and underfitting, along with techniques to avoid them are presented. 
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3.4.1 Dataset Preparation and Augmentations 

A typical data preparation process may comprise four distinct steps, depending on the type of data. 
Specifically, they can be characterized as data collection, preprocessing, splitting, and formatting. 
 

• Data collection can be described as the process of gathering raw data from various sources. 
This data can be found on websites or created by users themselves to tailor to specific tasks. 
The most commonly used dataset websites in the machine learning community seem to be 
Kaggle [91], UCI [92], Google Dataset Search [93], and the US government’s open data portal 
[94] – each providing thousands of free-to-use datasets with a wide range of applications. 
 

• Preprocessing is the practice of cleaning, reformatting, and normalizing data in order to 
improve usability and quality [96, 98]. It is considered a time-consuming yet necessary task 
that 60% of data scientists spend their time on, according to a survey published by Forbes 
[95]. Depending on the structure of the dataset, preprocessing could include the handling of 
outliers and missing values, inconsistencies, noise reduction, and class imbalances [96].  

 
Additionally, a concept referred to as “data augmentation” is one worth setting our attention 
to before proceeding to the following chapter. Data augmentation refers to the process of 
applying one or more transformations to existing data in order to generate more samples [97]. 
It is often used on images and time series data (e.g., dates, temperatures) and excels in 
settings where data is limited yet necessary for a model’s training process [97]. Figure 3.9 
illustrates ten different commonly used image transformations – few of which were utilized 
in the creation of this thesis’ proposed OCR model. 
 

 
Fig 3.9. Image augmentation examples. 

 

• Splitting refers to the process of dividing a given dataset into two separate ones: one for 
training and one for testing. Specifically, the training dataset is used by the neural network to 
learn key patterns, and the validation dataset is used to evaluate how well the model performs 
on unseen data [96]. Two commonly used dataset splits for testing and validation are 80-20 
and 70-30, where the numbers represent the percentage allocated to the respective subset 
[99, 100]. Those percentages are selected to help avoid the phenomenon of learning the test 
data too much, or struggling to learn them, and thus being unable to generalise to unseen 
instances [99]. 

 

• Formatting is an important step that involves the transformation of accumulated raw data 
into a machine-readable format tailored to the framework being utilized [96, 98]. If we 
consider a “dog” dataset with a “Breed” column, there may be hundreds of breed names in 
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the form of strings (e.g., Maltese, Yorkshire terrier). Machine learning models typically require 
numerical input, and thus each value of the aforementioned dataset column may need to 
undergo an encoding process that transforms strings to a numerical representation. 

 

3.4.2 Overfitting, Underfitting, and Regularization 

Two common problems are prone to occurring in machine learning models and deep neural networks: 
overfitting and underfitting [87]. Overfitting refers to a model’s overperformance in the training 
dataset and underwhelming accuracy in the validation/testing dataset, where the model struggles to 
generalise on unseen data [96, 101]. On the other hand, underfitting can be found in settings where 
a model’s architecture is too simple and, as a result, the model will generalise; though both the 
training and validation performance will be low [96, 101]. An illustration of overfitting and underfitting 
examples can be found in Figure 3.10, where the purple overfitted lines overlap with the training 
points and thus stray from potential future data. In contrast, training or data-related issues have 
caused the blue underfitting line to deviate greatly from the optimal one. 
 

 
Figure 3.10. Overfitting and underfitting example. 

 
Over the years, several regularization techniques have been proposed and are widely used to tackle 
the overfitting problem in deep neural networks [102]. Two commonly found techniques include 
dropout layers and batch normalization, and we believe they are worth presenting in order to provide 
a greater understanding of why we used them in the model presented in the following chapter. 
 

• Dropout layers are an elegant approach to solving the overfitting problem, and their general 
idea lies in randomly deactivating neurons temporarily from a neural network during the 
training process [103]. This technique allows the network to combine different architectures 
and discover the ideal one while excluding potentially biased neurons with a probability 𝑝 
[103]. 
 

• Batch normalization is a regularization technique used to improve the training process of a 
neural network by allowing it to reach an equilibrium state faster and improving its stability 
[104]. In order to fully understand how it works, typical normalization in neural networks 
needs to be mentioned first.  
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Normalization refers to the process of scaling data to ensure that every input feature in a 
neural network contributes to the learning process equally [104]. A frequently used scaling 
technique is one where input features are transformed to hold a mean of zero and a standard 
deviation of one [87]. This process is independent of the model and is conducted before 
training as part of preprocessing [87]. 

 
Batch normalization is a neural network layer placed between two connected hidden layers 
in order to normalise the output of the first one before it gets passed onto the next [104]. It 
is a technique used during the training process for small batches of data to solve the “internal 
covariate shift” problem, where the distribution of layer inputs varies as the model keeps 
learning [104]. Additionally, it allows the network to utilize higher learning rates while 
mitigating common neural network problems such as the exploding or vanishing gradient 
mentioned in Chapter 3.2.4 [104]. 

 

3.5 Deep Learning Frameworks and Tools 

Over the years, several frameworks and tools have been developed in order to assist machine learning 
and the creation of deep neural networks. This chapter goes through a brief showcase of the two most 
commonly used machine learning frameworks, as well as what was selected for this project. Following, 
a few fundamental Python libraries used throughout the entire project are mentioned. 
 

3.5.1 TensorFlow and PyTorch 

As of 2025, there are two main frameworks that are widely used to create neural networks: 
TensorFlow and PyTorch. Both frameworks are commonly paired with the Python programming 
language, which, as of July 2025, holds a TIOBE index of 26.98% making it the current most popular 
programming language [105]. 
 

• TensorFlow was created by Google in 2015 with the goal of providing the ability to execute 
machine learning algorithms on various platforms [106]. Its TensorFlow 2.0 update in 2019 
brought various quality-of-life improvements, such as an easier data loading feature and more 
“Pythonic” network definitions, and is now considered a very beginner-friendly framework 
[106, 107]. 
 

• PyTorch was created by Meta’s AI Research lab (FAIR) in 2016 as an open-source machine 
learning framework [108]. Its core characteristics lie in its “Pythonic” nature and high 
flexibility, making it especially prevalent in research in academia. Additionally, a comparative 
analysis published by Leapcell in July 2025 showcases that around 85% of deep learning 
research papers use PyTorch for experiments and AI model creation [109]. This shows a sharp 
increase since the 2021 research, which showcased that 70% of authors on the website 
“Papers with Code” used PyTorch to implement their machine learning works [110]. 

 
For this project, the deep learning model proposed was developed with PyTorch due to its 
customizable and reliable nature. 
 

3.5.2 Libraries 

Although several Python libraries were utilized throughout the entire project, the main ones were 
OpenCV, Matplotlib, and those incorporated in PyTorch, though several others such as numpy and 
skimage were also used for image calculations.  
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OpenCV [111] is a commonly used library that handles image processing. It provides a wide range of 
built-in transforms with over 2500 implemented algorithms, such as grayscale conversions and 
binarizations, and it was the backbone of almost every text-related task we handled. In particular, 
image preprocessing techniques such as automatic thresholding, as well as the entire notebook line, 
word, and letter detection process that accompanied the custom-made OCR model was enabled by 
its extensive range of tools. 
 
In addition, Matplotlib [112] was frequently used to produce most of the example plots showcased 
throughout every chapter of this thesis, as it provides great customization tools for data visualization. 
For example, Figure 3.10 showcases a custom regression algorithm that was implemented and plotted 
through Matplotlib. 
 
Finally, several PyTorch [108] libraries were used to create the proposed deep learning model, with 
the most notable ones being “transforms” and “DataLoader” – both of which were used to handle our 
custom datasets. A detailed overview of them can be found in the following chapter. 
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CHAPTER 4 

Writing and Spelling Disorder Detection 

4.1 Introduction to OCR - Need for Data 

Optical Character Recognition (OCR) can be considered the process of extracting any text from images 
into a machine-readable format [147]. Its concept dates back to the 1910s where Emanuel Goldberg 
designed a machine capable of reading characters and converting them into telegraph code [113], and 
it has seen a great rise since then – especially with the recent introduction of deep learning [5]. The 
procedure typically consists of 3 main stages, and a low-level pipeline can be found in Figure 4.1. 
 
The first step is image preprocessing. Its main role is to clean up the input image and make it more 
legible by utilizing transforms such as grayscale conversion, noise removal, binarization and resizing. 
The second step, and probably most complex one, is segmentation. Segmentation is a process that 
divides an image into meaningful regions and typically isolates rows of text, blocks of words, and single 
letters. Particularly, single letter segmentation in handwritten text can be considered an exceptionally 
difficult task due to the tendency of two or more characters being written in one stroke, or them being 
too close to each other – ultimately making it hard for the computer to understand where it would be 
best to split them. The final step is to utilize a robust model, designed for handwritten text and most 
importantly, character recognition.  
 
For this project, various open-source OCR models that are widely used today – such as Google’s 
Tesseract [114] – were tested, but the results were unsatisfactory. Therefore, creating a custom-made 
model from scratch, tailored to single Greek character recognition, would be most beneficial. Thus, it 
was necessary to solve not only the word and character segmentation problem, but also the character 
recognition problem. This also means that the text predicted by the model needs to be close to 100% 
accurate in order to make correct spelling classifications for each word used in the spelling disorder 
detection stage. 
 
However, this also created a need for handwritten Greek letters to be used as training data for the 
model. We searched for data in websites like Kaggle and Hugging Face, but since there were no major 
public datasets for Greek letters available, we decided to create our own and thus asked a group of 
volunteers to write us Greek letters that could be used for the training process of the model. 
Additionally, the National Centre for Scientific Research Demokritos provided us a small dataset of 
Greek passages from the ICDAR2012 Writer Identification competition [115]. The dataset included 2 
short passages from 100 different volunteers, each containing around 35 characters, and was used to 
boost our original dataset. 
 
This chapter outlines the procedures for data collection, preprocessing, and processing. Following this, 
it introduces the proposed model, detailing the different approaches and algorithms employed in 
order to complete the OCR process and detect potential disorders in handwritten text. 

 

 
Fig. 4.1. Low-level OCR process. 
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4.2 Data Collection 

For the initial dataset, approximately 100 individuals aged from 18 to 50 were asked to write the Greek 
alphabet in both lowercase and uppercase, along with all tonos and dialytic variants, following a 
provided format (Figure 4.2). Each participant completed a consent form including their name, 
signature, and date, explicitly stating their permission for their data to be used in this project.  
 
The data collection process was conducted both in person and online.  Participants who contributed 
in person used a pen to complete the form, which was subsequently photographed. Those who 
participated remotely submitted a digitally signed consent form along with photographs of their 
handwritten samples. 
 
Each character was separated by a large horizontal space and a vertical notebook line, making it easier 
to crop individual characters that exceed the bottom notebook line, such as ρ (ro) and ξ (ksi). This 
format avoided interference from adjacent lines and prevented character overlap, thereby improving 
segmentation accuracy. Two samples of the raw data are shown in Figure 4.2. Additionally, a sample 
of the ICDAR2012 Writer Identification competition dataset is shown in Figure 4.3. 
 
To enrich the dataset, participants were also asked to write selected double-character combinations 
that are frequently produced in a single stroke, such as αι, γγ, γκ, ει and ου. These samples were 
intended to provide insight into how the same characters may be written differently when other 
letters are present. 

 

 
Fig. 4.2. Sample of the raw data received from the participants. 

 

 
Fig. 4.3. Sample of the ICDAR2012 Writer Identification competition dataset. 
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4.3 Dataset Pre-Processing 

The next step following data collection was to extract and process each character individually in order 
to teach the OCR model how to recognize Greek characters and their potential variations.  Specifically, 
preprocessing involved character cropping, folder separation, image augmentations, class renaming, 
and train-test splits. 
 

4.3.1 Dataset Format 

Upon having cropped each letter individually, various folders were created for letters that represent 
classes, and would ultimately be predicted by the OCR model afterwards. The format used to iterate 
through every letter was created as shown in Figure 4.3, where each letter folder contained around 
500 image files of its corresponding handwritten character. 
 

 
Fig. 4.3. Data file pipeline used for this project. 

 
Character image cropping was accomplished in three different ways to add diversity, which will 
accompany the dynamic augmentations implemented later and help boost the training performance. 
Specifically, we experimented with: 
 

i. Tightly cropping both the x and y axes around each letter. 
ii. Tightly cropping the x-axis and including both horizontal notebook lines above and below the 

letter. 
iii. Tightly cropping the x-axis and cropping the upper y-axis to a point above the letter and below 

the notebook line above the character. 
 
Additionally, both approaches we experimented with included the bottom horizontal notebook lines 
in order to give our model more context about character placement, especially when it comes to 
characters that exceed that bottom line, and thus making the training process more efficient. Some 
samples of the letters we cropped and passed onto the final dataset can be found in Figure 4.4. 

 

         

         
Fig. 4.4. Cropped images part of the final dataset. 
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4.3.2 Augmentations and Data Loading 

For a deep learning OCR model used for a project as big as this one, having a mere ~500 images for 
each class would be insufficient and limit the training process greatly. To solve this problem, we 
created augmented versions of each image, both statically to pass the dataset to the model, and 
dynamically as the model was training. 
  
After having collected all characters and labeled them in their corresponding folders, we proceeded 
to create a script that loads the data with its respective classes and creates augmentations for each 
image. Specifically, we created 1.500 augmentations of every letter input with the following attributes 
to make up for the need for more data and variations: 
 

i. Random (-7, 7) degree rotation, accounting for different angles at which pictures can be taken.  
ii. Random (1, 1.5) contrast added, accounting for the different lighting in which pictures can be 

taken in. 
iii. Random y-axis extension, accounting for various ways that a letter could be captured in the 

single-letter segmentation process. 
 
In addition to the rotation augmentation, we made sure that no black gaps were left on the new 
augmented images by extending the nearest edge pixels outward – keeping the background consistent 
and essentially removing the noise in the corners. This was done by utilizing OpenCV’s 
BORDER_REPLICATE function, and it worked exceptionally well in our case, where the rotations were 
of relatively small size. 
 
Because of these augmentations, every letter folder in the final dataset contained around 600,000 
images, making it ideal to feed to the model. A few examples of the static augmentations that were 
applied can be found in Figure 4.5. 
 
It should be noted that we also applied a large variety of other dynamic augmentations while the 
model was training to reinforce the learning process and ultimately increase the model's accuracy by 
~13%. Further analysis of the dynamic segmentations we used can be found in section 4.4.2. 
 
 

 
Fig. 4.5. Original Images and their respective static augmentations. 
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4.3.3 Transforms 

Upon having completed the static augmentation creation and image loading, we proceeded to apply 
a series of transformations to each image of the dataset so as to maximize stability and efficiency 
during the training process. Specifically, we: 
 

i. Resized all input images to a fixed 512x78 pixel size, where 512 is the height and 78 is the 
width of every image respectively. We experimented with a variety of pixel sizes, but found 
that this was the one that captured every necessary data component while keeping the size 
relatively small – making the training process shorter and more efficient. 

ii. Converted the images into PyTorch tensors that also scale each image’s pixel values from 
[0, 255] to [0.0, 1.0]. 

iii. Normalized the image tensors with a mean of 0.5 and a standard deviation of 0.5 for each 
channel. Essentially, this centers the data around zero and stretches it into the range [-1, 1] in 
order to promote better learning dynamics and ultimately allow the model to train faster and 
more stably. 

 

4.3.4 Train-Test Data Split 

In order to pass the dataset to the OCR model for training, there is a need to split the data into training 
and testing data. To do this, we iterated through each data folder individually, and performed a 
dynamic split to account for potential disorder in the number of data that each folder contains. After 
experimenting with the train-split ratio, we found that 0.2 (80% training - 20% testing) worked best 
for our model and dataset. 
 
It should be mentioned that every augmentation of each image was part of either the training or 
testing dataset, which do not overlap with each other, something that would make the training 
process problematic as the model would include the same data in both the training and testing 
datasets otherwise. In other words, the training dataset is learning new data, as opposed to classifying 
data that it has already seen and learned. 
 

 
Fig. 4.6. The proposed OCR model’s architecture. 
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4.4 Model Architecture 

Having completed every necessary data preparation step, the next task was to design and train the 
handwritten text recognition model. We experimented with a variety of deep convolutional neural 
network architectures; however, we found that an upgraded Res-Net architecture worked best for 
this problem. Essentially, we borrowed a Res-Net-style architecture [116], but applied some upgrades 
tailored for handwriting recognition that include Squeeze-and-Excitation blocks (SEBlocks), Multi-
Head Attention layers, and the addition of a final residual block after the attention-enhanced features 
are processed, followed by global average pooling and a fully connected layer to output the class logits. 
The final architecture can be seen in Figure 4.6. The following sections analyze the model’s entire 
training pipeline, its architecture, and the dynamic augmentations applied throughout the model’s 
training process. 
 

4.4.1 Full Model Pipeline 

After the augmentations have been created and the dataset loading and train-test split are complete, 
the model is set to begin its training process. In the training loop, the following specifications and 
techniques were used in order to control overfitting and instability. 

 

• Loss Function 
CrossEntropyLoss loss function combined with Class Weighting and Label Smoothing. 

o CrossEntropyLoss measures the difference between the probabilities that the model 
predicted and the actual class label [69], making it ideal for the proposed multi-class 
classification-based model nearing 70 classes. 

o Class Weighting balances the learning process for classes with fewer samples by giving 
them higher weights [117]. It was used to avoid biasing towards frequent characters, 
and we found it performed well, since several characters such as “ς” were 
underrepresented. 

o Label Smoothing improves generalization and reduces overfitting. It essentially 
“softens” the class labels, preventing the model from being over-confident [118]. 
 

• Optimizer  
AdamW optimizer combined with a ReduceLROnPlateau scheduler. 

o AdamW [120] combines the Adam optimizer [119] with a decoupled weight decay, 
and it was used to achieve better generalization and stable convergence. Both Adam 
and AdamW were tested, and we found that AdamW converged better, likely due to 
the large dataset size. 

o ReduceLROnPlateau controls the validation accuracy by reducing the model’s learning 
rate by a 0.2 factor if the accuracy stops increasing for 3 epochs [121]. Additionally, a 
minimum learning rate of 1e-4 was set to avoid it becoming too low. 
 

• Gradient Control 
Gradient clipping was used to limit the gradients across all model parameters to a maximum 
of 1.0 [122]. Combined with the AdamW optimizer, it handles gradients properly and prevents 
the exploding gradient problem from occurring. Essentially, there is no fear of the gradients 
computed through the backpropagation process becoming too large and leading to unstable 
updates to the model’s weights. 
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• Early Stopping 
An early stopping mechanism was used to complete the training process when the validation 
set’s accuracy starts degrading or does not improve after a set number of epochs [123]. This 
was done as a countermeasure to the model memorizing the training data too well, including 
the noise in them, and ultimately resulting in overfitting and poor generalization. Additionally, 
avoiding overtraining meant a more resource-efficient training process. 
 

• Accuracy 
A custom accuracy metric was created to “soften” the penalty for misclassifying uppercase 
and lowercase letters that are often written the same way on handwritten text. As seen in 
equation (1), it consists of a division between the sum of correct classifications over the total 
amount of classifications, with a lighter penalty for misclassifications of characters included in 
Table 4.1. The letter check was done by first mapping the uppercase letters to their respective 
lowercase alternative using a bidirectional dictionary (e.g., Ο to ο and ο to Ο) and then creating 
a custom CaseAwareLoss class, which was used to update the accuracy after each iteration. 
 
If we assume:  
N: the total number of samples. 
𝑦𝑖: the true label for the 𝑖-th sample. 
𝑦𝑖̂: the predicted label for the 𝑖-th sample. 
𝛿𝑦𝑖,𝑦𝑖̂: 1 if the prediction is correct, 0 otherwise. 

𝑆(𝑦𝑖): the pair of the label similar to 𝑦𝑖  from the bidirectional dictionary. 
𝛿𝑦𝑖̂∈𝑆(𝑦𝑖): 1 if the prediction is similar to the true label, 0 otherwise. 

𝛼: the lighter reward for similar uppercase/lowercase predictions, where 0 < 𝛼 < 1. 
 
Then the accuracy function is denoted as: 
 

acc =
1

𝑁
∑ [δ𝑦𝑖,𝑦𝑖̂ + α ⋅ δ𝑦𝑖̂∈𝑆(𝑦𝑖)]
𝑁
𝑖=1  (6) 

 

• Confusion Matrix  
After the training process is completed, a function that plots a confusion matrix is called in 
order to visualize the characters misclassified by the model. The final confusion matrix can be 
found in Figure 4.7. Essentially, a “perfect” confusion matrix can be considered one that 
matches each letter of the x-axis (true letter) to the exact same letter of the y-axis (letter 
predicted by the model), creating a diagonal line of deep blue.  
 
A lot of Greek letters can have their lowercase and uppercase variants written in similar styles, 
making it almost impossible to distinguish them unless there is context included – even for 
humans. A list of similar letter pairs can be found in Table 4.1. In addition, since our model 
reads characters one by one rather than entire words, it would be nearly impossible to make 
such distinctions. A result of this problem could be that words read by our model include both 
uppercase and lowercase letters, making dictionary searches a difficult task (e.g. ελΙΚόπτΕρΟ 
instead of ελικόπτερο). However, we found that converting the letters in that list into 
lowercase when read by the OCR model was a quick and elegant fix that would ultimately 
increase performance and accuracy and would not interfere much with the uppercase-
lowercase inconsistency analysis in the case of writing disorder detection. 

 
Ε – ε Θ – θ Ι – ι Κ – κ Ο – ο 

Π – π Ρ – ρ Τ – τ Χ – χ Ψ- ψ 

Table 4.1. Common Greek letters of which their handwritten  
uppercase and lowercase variants look similar. 
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Fig. 4.7. The proposed model’s Confusion Matrix.  

 

4.4.2 Dynamic Augmentations 

Dynamic augmentations are an essential element when it comes to building a robust model that 
focuses on important characteristics and features. If we were to only use the static augmentations 
mentioned in section 4.3.2, the model would suffer from learning pure noise after a specific point, 
hindering its classification ability greatly because of poor training. This occurs since the augmented 
images all consist of the same characteristics of the respective original image, including noise, 
resulting in the model focusing on said characteristics and overfitting to specific character shapes or 
line styles. 
 
Each image of the current batch that the model is processing has a 50% chance of being transformed 
by each of the following techniques. They were ultimately designed to add variation by emulating 
realistic imperfections that can be found in actual real-world writing and help the model focus on 
important feature extraction without changing the original image too much. Examples and 
comparisons of each augmentation can be found in Figure 4.8, and the transforms applied are as 
follows: 
 

• Random Affine 
Mimics slight rotations, shifts, and shears to reinforce the static augmentations. 
The rotations were set to ±7 degrees, the translation to ±5%, the shear to ±5% and the scaling 
between 95% and 105%. This augmentation in particular was found to be very useful since it 
formatted the data in a way that would look similar to a realistic word segmentation. For 
example, a small part of the letter α is cut off in the 4th row of Figure 4.7 – though the letter 
remains distinguishable. 

 

• Random Perspective 
Simulates a warped or skewed page or lens distortion. 
The distortion scale was set to 0.3% and the probability of application was set to 40%. 
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• Gaussian Blur 
Mimics blur from poor resolution, motion, or camera shake. 
The kernel size was set to 3, and the sigma range from 0.1 to 1.0. 
 

• Color Jitter & Gaussian Noise 
Combined both Color Jittering and Gaussian Noise through a lambda function in order to make 
contrast adjustments and stimulate scanner noise or pen smudges. 

 
 

 

 

 

 

 
Fig. 4.8. Dynamic augmentations. Left to right: Original, Random Affine, Random Perspective, 

Gaussian Blur and Color Jitter + Gaussian Noise. 
 

4.4.3 Model Architecture Analysis 

The model’s architecture is essentially split into five large components and was heavily inspired by 
Res-Net, though tweaked and upgraded to form a modern, robust, and accurate handwritten text 
classification model. Specifically, the model’s components can be described as follows: 
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• 1. Convolutional Layer, Batch Normalization, and ReLU 
Used for the initial feature extraction of the input images.  

o The Conv2D layer extracts low-level features such as edges and texture, taking the 
1x512x78 (1 being the grayscale colour channel) input image and creating 64 output 
channels. In addition to this, a stride of 2 is applied, reducing the image’s size to half 
and passing it to the following layers in the form of 64x256x39. 

o BatchNorm2D is used to normalize activations and improve gradient flow [104]. 
o ReLU is used to introduce non-linearity to the entire network, allowing the model to 

learn complex patterns [65]. 
 

• 2. Residual Blocks 
Residual Blocks help the model preserve identity information while expanding its capability to 
learn different variations in stroke and character shapes [124]. Each residual block has two 
Convolutional layers and uses Batch Normalization and ReLU. Additionally, a skip connection 
is included to support the model’s refinement process rather than the creation of constant 
replacements. In other words, the addition of a skip connection means that the network will 
retain the original stroke shapes and other features of the data even if it learns new ones, 
making it ideal for characters that can often be found written in multiple ways, such as ψ, π, 
and Ω. Each of the 4 layers’ filter size becomes progressively bigger, scaling to 512, and 
reducing the image’s resolution by half each time. The progression can be described as shown 
in Table 4.2. 

 
Layer Filters Resolution 

Layer1 64 256x39 

Layer2 128 128x20 

Layer3 256 64x10 

Layer4 512 32x5 

Table 4.2. Residual Block analysis per layer. 
 

• 3. SE Blocks 
SE Blocks are based on the Squeeze-and-Excitation (SE) mechanism that was introduced by 
Hu et al. [125], and we thought they would be a perfect fit for improving our network’s quality 
of feature representations. An SE Block operates in two main stages: 
 

o Squeeze (Global information Embedding) 
The spatial dimensions of the input feature map are reduced using global average 
pooling. Each channel is condensed into a single scalar, capturing global spatial 
information and summarizing the channel-wise statistics. 

o Excitation (Adaptive Recalibration) 
The squeezed vector is passed through a small fully connected bottleneck network, 
which consists of a two-layer MLP (Multilayer Perceptron) with a ReLU and Sigmoid 
activation function. Essentially, this network learns non-linear channel-wise 
dependencies and outputs a set of weights in the range [0,1] which are then used to 
rescale the original feature maps via channel-wise multiplication. 
 

In other words, the addition of SE Blocks allows the network to capture important handwriting 
patterns, enhances its sensitivity to diagnostic features (upper and lowercases), and 
ultimately learns what features to focus on by suppressing irrelevant or misleading 
information.  
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• 4. Multihead Attention 
The Multihead Attention mechanism was introduced by Vaswani et al. in the “Attention is All 
You Need” paper [85], revolutionizing the way that models process information. It enables 
the network to attend to spatially distributed features such as letter strokes and line 
alignment across the entire feature map. In simple terms, it is a mechanism that allows the 
model to focus on different parts of each input image simultaneously. Specifically, it was 
placed between Layers 3 and 4 of the Residual Blocks mentioned above to allow the model to 
capture long-range dependencies while the input image’s resolution was still sufficiently high 
(64x10 as opposed to 32x5) and included contextually rich features. 
 

• 5. Global Pool and Fully Connected Layer 
The Global Average Pool (GAP) layer ensures robustness to variations in writing style and 
letter positions, while the Fully Connected layer interprets the GAP layer’s output and makes 
the final class predictions. Specifically: 
 

o Global Average Pooling (GAP) is used to reduce each feature map to a single scalar by 
computing the average of all spatial elements. It focuses on the presence of features 
rather than their exact position, making it perfect for learning different handwritings. 
If we assume B is the Batch Size, C is the number of feature maps, and H, W are the 
Height and Width of the feature maps respectively. For an input tensor of shape [B, C, 
H, W], the GAP layer will output a tensor of shape [B, C, 1, 1], which we then flatten 
to [B, C]. This output is then sent to the fully connected layer. 
 

o The Fully Connected (FC) layer acts as a classifier that associates image features with 
specific class labels. The layer takes as input the compact feature representation of 
the GAP layer and focuses on high-level semantics (using a 512-dimensional vector).  

 
After the entire five-step process is complete, a log_softmax function is applied through 
CrossEntropyLoss in the training loop to make class predictions and select the one with the highest 
logit in the validation process. 
 

 
Fig 4.9. The proposed model’s loss and accuracy charts. 
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4.5 Model Performance 

The training process took approximately 3 hours to complete on a system equipped with an RTX 4090 
GPU provided by my professor. It was trained for around 600 epochs, and each one took roughly 16 
seconds to complete with a batch size of 16. The final accuracies were 91.16% and 95.13% for the 
normal and custom accuracies respectively, which we considered sufficient to carry out our 
experiments. A chart of the model’s loss and accuracy can be found in Figure 4.9, and it can be 
observed that the model required just a few epochs to reach the 90% accuracy range. However, we 
decided to keep training it for a few more epochs to allow it to learn dynamic augmentations and 
ultimately become more robust and accurate when it comes to classifying unseen data. 
       

4.6 Input Image Preprocessing and Segmentations 

Having created a model that can recognize Greek handwritten characters, the next step was to 
complete the input image preprocessing and segmentation steps, so that we could utilize the model. 
The following four sections go into depth about both of these processes and contain the 
methodologies and heuristics adopted to make the text recognition robust and reliable. It should be 
noted that this image preprocessing differs from the one already analysed in Chapter 4.3, since we 
are no longer dealing with the model’s dataset, but rather real hand-written blocks of text. 
Additionally, the proposed segmentation process consists of 3 parts: the notebook line, single 
character, and word segmentation, respectively. A comprehensive pipeline of the entire OCR process 
proposed is shown in Figure 4.10. 
 

 
Fig. 4.10. The proposed OCR pipeline. 

 

4.6.1 Input Image Preprocessing 

The input image preprocessing consists of a quick two-step process, which aims to output a clearer, 
noise-free image that makes it easier to handle the segmentation processes analyzed in the following 
sub-chapters. Its key components can be described as follows, and a visual illustration is shown in 
Figure 4.11. 
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• Grayscale conversion 
The original RGB image is opened and then converted to a single-channel image through the 
ImageOps.grayscale function provided by the Pillow library. As a result, the data dimensions 
are reduced and each pixel holds a value from the [0, 255] range, where 0 is black, and 255 is 
white, respectively. This is an essential step to create a “cleaner” image because of the 
dimensionality reduction that ultimately allows us to work with just black and white colours, 
as opposed to three channels for each colour.  
 

• Binarization 
A threshold binarization is manually applied, where a constant threshold 𝑋 is chosen in order 
to reduce background noise. Every pixel with intensity less than or equal to 𝑋 is set to black 
(0), and every pixel greater than 𝑋 is set to white (255). This allows the handwritten text with 
thick black pixels to remain the way it is, and every background noise to be removed. 

 

 
Fig. 4.11. Input image (a) shown in: 

 (b) Grayscale conversion, and (c) Binarization. 
 

4.6.2 Notebook Line Segmentation 

Having the ability to understand the coordinates of each notebook line given an input image is 
something that would be of great help in the long run. For starters, it gives us a general idea of what 
the boundaries of each block of text are, meaning that we are able to extract said blocks of text with 
ease. Additionally, understanding those boundaries can ultimately give us an idea of whether the text 
is written by a person of typical development or not. Further analysis of the latter can be found in 
section 4.7.  
 
After careful research and experiments, we found that the Hough transform by Duda & Hart (1972) 
worked best for our input images. Essentially, the Hough transform is a computational technique used 
to detect concurrent curves by transforming points in image space into a parameter space, where 
patterns become easier to identify through a voting mechanism [126]. It matches each edge point (x, 
y) in image space to a sinusoidal curve in parameter space defined by 𝜌 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃, and then 
accumulates votes using a 2D array indexed by ρ and θ, where each cell represents a candidate line. 
The more votes a cell receives, the more likely it is that it corresponds to a real line in the input image. 
This approach was especially helpful due to its robust nature in noisy environments, even when parts 
of the lines are missing as a result of the preprocessing process analyzed in section 4.6.1. 
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In the developed code, we particularly used the hough_line and hough_line_peaks functions provided 
by the skimage.transform library in Python. Specifically: 
 

• hough_line builds the parameter space where lines manifest as peaks. It takes as input a 
binarized image with inverted pixel values (where the text is white and the background black) 

and uses angle values θ in a 180-degree field ranged from (−
𝜋

2
,
𝜋

2
). 

 

• hough_line_peaks identifies local maxima in the accumulator array produced by the 
hough_line function. It first scans the 2D accumulator array for peaks above a threshold. Then, 
a minimum distance (in our case, 20) is enforced between peaks to avoid duplicate lines. The 
most prominent (ρ, θ) pairs are returned and stored in an array that we later use to 
manipulate line positions. 
 

A visual representation of the Hough transform space, as well as its result can be found in Figure 4.12. 
Notice how it is able to recognize even the last line, which is comparatively thinner and misses a few 
pixels due to noise. Additionally, the final array produced by this example’s transform contains 6 lists, 
one for each line, with the following values, which denote the respective (x1, x2) coordinate pairs of 
each line, as shown in Table 4.3. 

 

 
Fig. 4.12. Hough Transform example on realistic Input Image. Left to right: Input Image,  

Hough Transform Space, Detected lines coloured red. 
 

Line X1 X2 

0 134.02 92.62 

1 358.0 358.0 

2 616.0 616.0 

3 875.0 875.0 

4 1137.0 1137.0 

5 1413.0 1413.0 

Table 4.3. (x1, x2) pairs for each line produced by the Hough Transform in Fig. 4.12’s example. 
 
Having knowledge of where each notebook line is allows us to generate areas of interest with ease. 
Specifically, we developed an algorithm that processes the two notebook lines surrounding blocks of 
text, adds padding between them, and then focuses on a shorter version of the area of interest. The 
two notebook lines of each area were found by utilizing the coordinates extracted from the Hough 
transform analysed in section 4.6.1.  
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The aforementioned padding was added in two distinct ways dynamically, and Figure 4.13 illustrates 
the regions of interest extracted from a sample input image. 
 

• For the upper padding, the average height between two notebook lines was first calculated 
using Equation (7), where N is the number of lines found by the Hough transform, and 𝑋1𝑖  is 
the left-most value of the x-axis for the 𝑖-th line. Then, this value was multiplied by a very 
small number, as seen in Equation (8). The final upper padding was subtracted from each text 
block’s upper bound in order to extend it upwards. 

 

𝐴𝐿𝐻 =
1

𝑁
 ∑ (𝑋1𝑖+1 − 𝑋1𝑖)
𝑁−1
𝑖=0     (7)  𝑢_𝑝𝑎𝑑 = 𝐴𝐿𝐻 × 0.03    (8) 

 

• For the lower padding, Equation (7) was utilized to find the average height between two 
notebook lines. This number was then multiplied by 0.7, as seen in Equation (9), and added to 
each block’s lower bound to extend it downwards. This was done as a measure to capture 
letters that exceed the bottom notebook line, such as ξ and ρ. 

 

𝑙_𝑝𝑎𝑑 = 𝐴𝐿𝐻 × 0.7    (9) 
 

 
Fig. 4.13. Text block example, where (a) is the original image and  

(b), (c), and (d) are the extracted text blocks. 
 
In addition to the heuristic line segmentation that worked exclusively for notebooks with lines, an 
implementation of the 2007 paper proposed by Arivazhagan et. al. [152] was created. The proposed 
algorithm uses Gaussian-based line modeling paired with probabilistic decision-making for ambiguous 
components, and it excels at segmenting lines on skewed text and overlapping components. The 
implementation was conducted in the C++ programming language, and its GitHub repository can be 
found in [154].  
 
In essence, the algorithm begins by splitting an input image into distinct vertical sections referred to 
as “chunks”. Then, the chunks are examined based on their vertical projection profiles, and the local 
maxima (peaks) and local minima (valleys) are extracted in order to gain an understanding of where 
words and line gaps are. Afterwards, the extracted valleys are connected across chunks through 
probabilities, and a final refinement step is applied through Gaussian modeling or distance calculation, 
based on several criteria such as chunk placement and pixel presence.  
 
Figure 4.14 shows an example of a chunk’s histogram analysis, and Figure 4.15 shows two examples 
of the algorithm’s performance with colour-coded lines. Its robust line-drawing logic displayed 
excellent results, especially in Figure 16’s second input image, and the only major errors can be found 
in tonos and connected components handling, likely due to histogram misses. 
 



 45 

 
Fig. 4.14. Arivazhagan et. al.’s proposed chunk extraction, where:  

(a) is the input image, (b) is a chunk, and (c) is the chunk’s vertical histogram. 
 

 
Fig. 4.15. Arivazhagan et. al.’s proposed algorithm tested on the ICDAR2012  

Writer Identification competition dataset. 
 

4.6.3 Single-Character Segmentation 

As mentioned in previous sections, single character segmentation is a process that requires a lot of 
delicate calculations to produce favorable results. Although there have been several algorithms 
proposed for efficient single-character segmentation over the years, such as [127], most of them 
suffer from the complexity of connected component analysis. We experimented with different 
segmentation approaches, such as an algorithm proposed by Rajput et al., which performs peak width 
analysis [128], but found better results in a custom algorithm that applies OpenCV transforms and a 
series of heuristic approaches. This entire process was conducted prior to word segmentation as a 
heuristic strategy to better cluster individual letters into word units. Additionally, one of the goals of 
this single character segmentation was to isolate characters and discard small contours, such as tonos 
and commas, for smoother character recognition. 
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First, an image of an entire passage is passed as an input. Binarization is then performed to isolate 
characters from the background using Otsu’s method, which automatically determines the optimal 
threshold value that separates pixel intensity distributions into a foreground (letter) and a background 
[129]. After binarization, horizontal notebook lines are detected and removed to prevent them from 
interfering with the character-level segmentation process. This is achieved by utilizing a morphological 
operation with a long horizontal structuring element that isolates horizontal artifacts. The detected 
lines are then subtracted from the binarized image, producing an output of pure handwritten 
characters without the notebook lines. Then, a morphological dilation and erosion are applied with a 
rectangular kernel to remove noise and re-expand characters for better recognition. Finally, external 
contours are extracted and have their coordinates and areas stored by calculating their width and 
height product. The average of those areas is then calculated, and each individual contour is processed 
to remove false positives generated by noise or small artifacts like tonos, dialytics, and commas. This 
was accomplished by creating a threshold 𝜃, calculated as shown in Equation (10), where CAVG is the 
average contour area. Contours with an area greater than θ are considered valid, and those with an 
area less than θ get discarded. 
 

𝜃 = 0.2 × 𝐶𝐴𝑉𝐺    (10) 
 

As a second measure for false positives – specifically tonos and dialytics – a position-based algorithm 
for contours was created. Specifically, overlapping bounding boxes on the y-axis were examined, and 
small rectangles directly above base characters were removed if three conditions were satisfied. 
 

i. The candidate’s bottom edge is above the base character’s top edge and within a vertical 
distance of 𝐻𝑚𝑒𝑎𝑑𝑖𝑎𝑛. 

ii. The candidate horizontally overlaps with the base character, allowing a small tolerance of 
around 5 pixels. 

iii. The candidate’s height is less than 80% of the base character’s height. 
 
This approach ultimately handles edge cases where a tonos is too large and ends up being considered 
a character box. For example, Figure 4.16 displays an example where a tonos is almost the same height 
as the letter “ι”, yet the tonos is the one that gets discarded. Additionally, this filtering process was a 
necessary step for the character recognition pipeline, since every character box was saved as an image, 
and unnecessary images would ultimately lead to inconsistent character recognition. The way tonos 
and dialytics were handled is analysed in the following section. 
 

 
Fig. 4.16. Small artifact removal example, where: (a) is the threshold θ approach,  

and (b) includes both threshold θ and baseline β filtering. 
 
A character segmentation approach as simple as this one suffers from connected components leading 
to oversegmentation. As a countermeasure, a custom splitting mechanism was implemented after the 
contour filtering process. An illustration of the result of this splitting algorithm is shown in Figure 4.17, 
where the two letters “μ” are slightly connected in (a), and split at an ideal splitting point in (b). 
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The algorithm begins by selecting candidate contours that might include two or more connected 
components based on two custom thresholds – average contour area and average contour width, 
both of which were calculated using Numpy’s median function. Those thresholds were then multiplied 
by distinct numbers to dynamically capture potentially problematic contour sizes, as shown in 
Equations (10) and (11). If a contour is bigger than those two thresholds, then it is considered a 
candidate for an over-segmented character. 
 

𝜃_area = 𝑚𝑒𝑑𝑖𝑎𝑛_𝑎𝑟𝑒𝑎 × 1.5    (10)  𝜃_width = 𝑚𝑒𝑑𝑖𝑎𝑛_𝑤𝑖𝑑𝑡ℎ × 1.7    (11) 
 

Once a candidate has been created, the algorithm proceeds to create a column-wise projection in 
order to identify the thinnest connection point between the characters. This projection is then 
reduced to 40% of the contour’s central region to avoid edge noise and focus on the connected 
components. Finally, the minimum splitting point is selected as the column with the least pixel density, 
and the two new contours are created. 
 

 
Fig. 4.17. Oversegmented contour split example, where: (a) is the original contour output,  

and (b) is the output of the connected component splitting algorithm. 
 

4.6.4 Word Segmentation 

Word segmentation in handwritten text is another difficult task, and although various segmentation 
techniques have been proposed over the years [130], none of them ensure 100% accuracy. Usually, 
single-character segmentation approaches complete this step prior to detecting the single-character 
contours, but this heuristic approach performs a dynamic contour clustering afterwards.  
 

 
Fig. 4.18. Word segmentation performance examples,  

where blue denotes the words recognized. 
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Individual text blocks are given as input first, and their contours are sorted from left to right based on 
their x-coordinate to ensure correct reading order. After the average character width has been 
calculated, an acceptable gap between characters is defined as shown in Equation (12). Individual 
contours are then iterated through, and the horizontal gap between the current character and the 
one following it is calculated. If the gap is below the threshold, the character is added to the same 
word; otherwise, a new word begins. Figure 4.18 provides a visual illustration of how the algorithm 
performs. Notice how the space between the words “ευαίσθητο” and “παιδί” was captured in the 
final block, due to the dynamic threshold’s robustness. 
 

𝜃width = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ ∗ 0.75    (12) 
 

4.6.5 Character Prediction 

The character prediction process was simple, though there was a need to apply a series of heuristics 
to ensure robustness. The first step was to map the class indices into their respective class names (e.g., 
1 -> Α), after which the OCR model was loaded using PyTorch’s load_state_dict and eval functions.  
 
Throughout the three-step segmentation process, each single character was assigned metadata as its 
corresponding image version was created. Specifically, the naming format captured the character’s 
block location, the word number it belonged to, and its numerical position within that word. This 
information allowed us to group letters together and separate words using the space indicator. An 
illustration of character-level image samples along with their metadata is shown in Figure 4.19. 
 
As each character image was iterated through, their upper y-axis was extended towards the notebook 
line directly above them or the upper-most pixel of the block they belonged to. This approach allowed 
us to capture the potential tonos or dialytics below each character, and brought them to a form similar 
to the one the model was trained on. Following this, sizing transforms were applied and then sent to 
the model to perform the OCR, where the first output of the softmax activation function was selected 
as the final letter prediction. Finally, the letters showcased at the start of the chapter in Table 4.1 were 
transformed into their lowercase variant to boost consistency. 
 

 
Fig. 4.19. Character-level cropping example, where:  

b = block, w = word, c = character. 
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4.7 Writing and Spelling Disorder Detection 

Having extracted precise letter position mappings and completed the letter recognition process, the 
next step was to create robust algorithms for writing and spelling disorder detection. For spelling 
disorder detection, words recognized by the OCR model were validated against a dictionary, and a 
Trie-based system was implemented to point out incorrect characters and suggest accurate 
replacements along with their respective error locations. In parallel, writing disorder detection 
focused on shape transforms and character box manipulation, complemented by checks for 
inconsistent use of capital letters and spaces. 
 

4.7.1 Spelling Disorder Detection 

For spelling disorder detection, it was necessary to utilize a dictionary that includes Greek words 
spelled correctly. The dictionary we decided to use contained a file with around one million words, 
including their frequencies. As a preprocessing measure, a script that reduced the dictionary size 
based on frequency was created. Specifically, words with a frequency score less than 2 were 
completely removed, and as a result, the dictionary’s size was halved, storing 450.000 words. 
 
For dictionary storing, both Python sets and TRIEs [131] were experimented with, but we decided to 
use a trie implementation as it is both quick and not as memory-intensive as a set. A brief analysis of 
both can be seen as follows: 
 

• Python Sets use a hash-based structure to store strings [148], and every word is stored in full, 
regardless of similarity. A word’s lookup time is O(1) due to the utilization of hashes, though 
its memory usage is high due to the hash overhead [148].  
 

• A TRIE has a tree-like structure where each node represents a letter [131], and in the case of 
the Greek language, 24. A typical word search takes O(k) computational time, where k is the 
length of the word. It avoids duplication and unnecessary character storing, and thus can be 
considered a more memory-efficient approach. Additionally, its tree-based structure allows 
dynamic predictions and suggestions for incorrectly spelled words. For example, the input  
“σχολίο” would produce a prediction of the correctly spelled version “σχολείο” by utilizing the 
dictionary’s frequency score and letter-node distribution. 

 
A table of speed tests conducted for both the trie and set implementation can be seen in Table 4.4. 
Both implementations were exceptionally fast, with the set being a bit faster in every test; however, 
the tradeoff in terms of space was significant, and the difference in search speed was minimal. 

 
Word αυτός φανταστικό βιβλιογραφία υπερδιπλασιάζεται αποτελεσματική 

Set 0.000006 0.000006 0.000008 0.00007 0.000005 

Trie 0.000013 0.000015 0.000015 0.000015 0.000017 

Table 4.4. Speed Tests between Python Set and Trie dictionary searches. 
 

Once the dictionary lookup was implemented, a predefined error threshold needed to be established 
to flag text as potentially problematic when a certain number of misspelled words is exceeded. The 
final threshold we decided on for this project was θ = 10 incorrectly spelled words for passages with 
around 70 characters. The testing process will be further analyzed in Chapter 5; however, it is worth 
noting that the words used in the final passage were carefully selected after continuous consultation 
with my professor. 
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Additionally, it was necessary to create a mechanism to handle mistakes made during the OCR process 
and prevent them from being classified as incorrectly spelled words. Specifically, if the model 
predicted a letter with a probability below 0.70, the entire word to which the letter belonged was 
excluded from the threshold-based classification. This approach ultimately handles inconsistencies in 
letter recognition and segmentation. If a word is guessed correctly and not found in the Trie, the 
counter for incorrectly spelled words is incremented by one, and if that number reaches ten, the user 
is informed accordingly.  
 
In addition to the incorrectly spelled word check, a word suggestion system was implemented using 
edit distance calculations through the Levenshtein distance [132], accompanied by the Wagner-
Fischer algorithm [133]. In essence, the system operates by traversing the Trie dictionary while 
dynamically tracking edit operations such as insertions, deletions, and substitutions. A depth-first 
search is used to explore paths, and the Levenshtein distance for each candidate word is calculated 
by measuring the difference between them through string similarity. Specifically, this is represented 
by a matrix that includes integers denoting how similar two words are. The smallest value is then 
selected, and in case of ties, the word with the highest frequency is chosen as the best match. This 
two-phase approach handles key features of the Greek language, such as tonos and diacritics, through 
the edit operations, and an example can be seen in Figure 4.20. 
 

 
Fig. 4.20. Incorrectly spelled word check examples.  

 

4.7.2 Writing Disorder Detection 

Three main algorithms were implemented in order to detect key patterns commonly found in 
passages written by individuals diagnosed with writing disorder.  
 
The first approach detects irregularities in word alignment. Specifically, individual words inside each 
block of text had their vertical positions analyzed and character bottoms calculated. The median of 
character bottoms was then used to estimate the baseline of each word, and the distance between 
those baselines and the bottom notebook line was calculated. It should be noted that descending 
letters that could skew the calculations, such as “ρ”, “μ”, and “ξ”, were excluded from the calculations. 
The filtering process was achieved by setting a descending threshold 𝜃𝑑𝑒𝑠𝑐, and it ensured that only 
characters with typical alignment contributed to the baseline calculation.  
 
If we consider: 
𝑚𝑒𝑑𝑖𝑎𝑛_𝑡𝑜𝑝: the median of the top y-coordinates of all characters in a word. 
𝑚𝑒𝑑𝑖𝑎𝑛_ℎ𝑒𝑖𝑔ℎ𝑡: the median height of all characters. 
 
Then, the threshold used to identify deep descending characters is defined as shown in Equation (13), 
where 10% is added to 𝑚𝑒𝑑𝑖𝑎𝑛ℎ𝑒𝑖𝑔ℎ𝑡 in order to allow for a more natural variation in letter size. Any 

character whose bottom falls below the threshold is considered a descender and is removed from the 
word baseline calculation.  
 

𝜃𝑑𝑒𝑠𝑐 = 𝑚𝑒𝑑𝑖𝑎𝑛_𝑡𝑜𝑝 + 𝑚𝑒𝑑𝑖𝑎𝑛ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 1.1     (13) 
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After the individual word baselines are calculated, the deviation from the bottom notebook line is 
computed, and if it exceeds threshold 𝜃𝑏𝑎𝑠𝑒, the word is flagged as problematic. The calculation of 
𝜃_𝑏𝑎𝑠𝑒 is defined as 10% of the height between two notebook lines (𝐴𝐿𝐻), as shown in Equation (14). 
This approach appeared to perform well on text that deviated both above and below the notebook’s 
baseline, and two examples can be found in Figure 4.21. 
 

 𝜃𝑏𝑎𝑠𝑒 = 0.10 × 𝐴𝐿𝐻     (14) 
 

 

 
Fig. 4.21. Examples of the word alignment irregularity algorithm, where: 

green = normal, and red = problematic. 
 
The second algorithm handled inconsistent capital letter usage in words. This was achieved by a string 
analysis for recognized words, which marked them as problematic when any character other than the 
first one was written in its uppercase variant, as shown in Figure 4.18. While this algorithm was easy 
to implement, it was exceptionally difficult to achieve great results due to the setback of needing to 
transform several of the OCR model’s misclassified letters into their lowercase variants. As a result, 
only 12 letters of the Greek alphabet could be accurately checked for inconsistent capitalization, and 
a list of those letters is shown in Table 4.5. 
 

Α Γ Δ Ζ Η Λ 

Μ Ν Ξ Σ Υ Ω 

Table 4.5. Letters that were tested for the inconsistent uppercase usage algorithm. 
 

 
Fig. 4.22. Example of the capitalization inconsistency algorithm. 
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The third algorithm was designed to detect irregularity in spaces between words. The algorithm takes 
a block as an input and begins by calculating each word’s left-most and right-most horizontal 
coordinate. These coordinates are then stored as tuples indexed by word position and sorted based 
on their horizontal placement to ensure sequential comparison. Then, the horizontal gap between 
each word pair is calculated, and a dynamic threshold 𝜃𝑔𝑎𝑝 is calculated as shown in Equation (15), 

where an anomaly is detected if any word gap is above 180% of the median, or if the bounding boxes 
generated for words are too big. Figure 4.23 illustrates an example of the algorithm’s performance on 
words with inconsistent spacing. 
 

 
Fig. 4.23. Example of the spacing irregularity algorithm. 

 

4.8 Experiments and OCR Comparison 

For our personal experiments, we decided to work with different character and word segmentation 
techniques, as well as two OCR models to compare our own model and algorithms with. Specifically, 
we experimented with different CV2 image analysis techniques, character segmentation 
methodologies proposed by different researchers, Google’s Tesseract, the word-level detection model 
CRAFT [141], and our proposed methods and model. Additionally, all tests were conducted on data 
we received from participants who wrote the passages introduced in Chapter 5, as the format needed 
to match the structural assumptions of the proposed segmentation pipeline. 
 
Before proceeding with the experiments, there is a need to introduce the CRAFT model, as well as 
why we decided to use it for our testing. CRAFT is a robust word segmentation algorithm that 
generates heatmaps for character regions and affinities, making it ideal for curved or distorted text 
[141]. It was originally designed for real-world image character segmentation, and is not considered 
ideal for handwritten text. Additionally, it is trained on the SynthText [142], IC13 [143], and IC17 [144] 
datasets, which support multilanguage scripts, though Greek was not one of them. However, we still 
decided to test its segmentation results since Greek shares similar characters to its supported scripts. 
 

4.8.1 Word Segmentation Experiments 

Word segmentation accuracy was evaluated using three algorithms: CRAFT, Tesseract OCR, and the 
proposed approach. To asses performance, two metrics were utilized – precision and word error rate 
(WER) – to effectively capture segmentation correctness and errors. 
 

• Precision is a commonly used accuracy metric for evaluating classification accuracy. It is 
calculated as the ratio of correctly segmented words to the total number of predicted 
segments, as shown in Equation (15).  
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If we assume: 
𝑇𝑃: The number of true positives (correctly classified words). 
𝐹𝑃: The number of false positives (misclassified words). 
 
Then, the precision formula is defined as follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (15) 

 

• Word error rate (WER) is a metric commonly used in speech recognition and transcription 
accuracy evaluation [144], though we thought it would be ideal for word segmentation.  
If we consider: 
𝑆: The number of wrongly segmented words. 
𝐷: The number of missed words. 
𝐼: The number of oversegmented words. 
𝑁: The total words in the ground truth. 
 
Then, the WER can be defined as shown in Equation (16). 

 

𝑊𝐸𝑅 =
𝑆+𝐷+𝐼

𝑁
     (16) 

 
Table 4.6 illustrates the word segmentation results, where CRAFT struggled with oversegmentation, 
while our proposed approach tended to undersegment words in blocks with inconsistent spacing. 
Addtionally, Tesseract OCR scored a WER of 1.064 – or approximately 106% error rate – due to its 
letter and word hallucinations. Its precision score is remarkably low, though the WER metric enabled 
more representative results. 
 

4.8.2 Character Segmentation Experiments 

Character segmentation accuracy was calculated through the same metrics as the ones discussed in 
the previous section, though the WER metric was changed to CER – or character error rate – using the 
same calculations, but for characters instead of words. CRAFT performed exceptionally well due to 
the lack of connected components in the images used for testing, and only struggled with 
oversegmentation. However, Tesseract OCR showed underwhelming results that involved 
hallucinations and missing letters, reaching a CER score of 1.79 – or nearly 180% error rate. 
 

4.8.3 Character Recognition Experiments 

Character recognition accuracy was also evaluated using the precion and CER metrics. The proposed 
OCR system performed relatively well, and its accuracy was close to the model’s final validation 
accuracy. Additionally, most of the errors included misclassified letters which looked similar (e.g., Ο 
and θ), and character segmentation faults.  
 

Word 

Segmentation 

Tesseract 

OCR 
CRAFT 

Proposed  

Approach 

Precision 38.70% 78.43% 98.38% 

WER 106.45% 29.03% 4.83% 
 

Character 

Segmentation 

Tesseract 

OCR 
CRAFT 

Proposed  

Approach 

Precision 13.72% 98.30% 99.21% 

CER 179.19% 1.33% 0.73% 
 

Tables 4.6 and 4.7. Word segmentation and single-character segmentation experiments. 
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OCR 

Accuracy 

Tesseract 

OCR 
i2OCR Convertio* OCR.Space* 2OCR** 

Proposed  

Approach 

Precision 12.97% 11.95% x x 94.51% 94.7% 

CER 87.06% 88.82% x x 5.49% 4.92% 

Table 4.8. OCR accuracy experiments. 
*Convertio and OCR.Space could not produce any reasonable output for the given inputs. 

**Though 2OCR performed exceptionally well, it automatically corrected wrongly spelled words. 
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CHAPTER 5 

Tests and Use Cases 

5.1 Test Structure 

In order to test our model and algorithms, we conducted a writing test on 15 Greek university students. 
The passages we requested the students to write were read aloud and contained a series of words 
that are often used by my professor to flag potential writing and spelling disorders. Additionally, the 
participants were asked to keep one line empty and to avoid connecting characters too much in order 
to prevent letters from being stuck together and thus becoming unable to be recognized by the OCR 
model. The ground truth for those passages is shown in Figure 5.1. 
 

 
Fig. 5.1. The ground truth of the text recited to the participants. 

 

5.2 Test Results 

Upon having received the raw data from the participants, each image was passed to the algorithm and 
had it generate the OCR predictions, as well as the writing and spelling disorder classifications. Though 
the majority of the words were written correctly by the participants, those which were not were 
successfully captured by the model and flagged as problematic. Additionally, the three-step writing 
disorder detection performed exceptionally well, and was able to analyze words exceeding the bottom 
notebook baseline, as well as understand spacing and capitalization inconsistencies.  
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Before continuing to the test results, it is necessary to introduce the recall and F1-Score metric, which 
were used to evaluate the results alongside the precision metric. 
  

• Recall, also referred to as sensitivity, calculates the model’s ability to find all of the positive 
instances, and its formula can be found in Equation (1). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
     (1) 

 

• F1-Score is a commonly used metric that balances precision and recall by creating a harmonic 
mean between them, as shown in Equation (2). 
 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (2) 

 
Table 5.1 shows the performance of each important element of the proposed approach, and the 
metrics used for our tests – precision and F1-Score – were based on different criteria: line deviation 
detection, potential disorder classification, and overall OCR accuracy. It is worth noting that the binary 
classification for potential writing and/or spelling disorder was carefully validated by my professor to 
obtain the ground truth.  
 
Table 5.2 presents the results of experiments evaluating various modern models on their ability to 
process misspelled words. Specifically, it measures how often models read and classify words exactly 
the way they are written, without attempting to automatically correct them. All of the metrics use a 
character-based evaluation, and the models selected for the experiments were 2OCR, GPT-5, Gemini 
2.5 Flash, Copilot, and our proposed model. Finally, the prompt given to the LLMs was “Transcribe this 
Greek passage and give me your opinions on it.”. 
 

 
Line 

Deviation 

Spelling 

Disorder 

Classification 

Writing 

Disorder 

Classification 

Overall OCR 

Accuracy 

Precision 98.27% 91.31% 98.4% 94.7% 

F1-Score 97.88% 90.14% 98.09% 93.52% 

Table 5.1. Performance metrics extracted from the control group data. 

 
Incorrect 

Spelling  
2OCR GPT-5 

Gemini 2.5 

Flash 
Copilot 

Proposed 

Approach 

Precision 46.15% 80.76% 15.38% 0% 96.15% 

F1-Score 48.32% 82.84% 17.42% 0% 98.03% 

CER 54.21% 16.72% 83.21% x 4.92% 

Table 5.2. Performance of models on incorrectly spelled word classification. 

 
GPT-5 showed surprisingly positive results compared to its previous GPT-o4 model, but still made a 
few automatic corrections that distorted the original written text given as input. Meanwhile, 2OCR 
achieved close to 50% precision, Gemini 2.5 Flash self-corrected almost every incorrectly written word, 
and Copilot consistently corrected every recognized word without exception. 
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CHAPTER 6 

Conclusion, Limitations, and Later Works 

6.1 Conclusion and Results 

In this thesis we proposed our take on the Greek OCR problem, as well as the recognition of potential 
writing difficulties in handwritten text. We believe that making an accessible tool for everyone to use 
is an essential step in breaking the wall of misunderstanding and limited awareness surrounding SLDs 
related to writing. Furthermore, we believe that a quick, intuitive and non-intrusive self-assessment 
mechanism could ultimately encourage more people to seek appropriate support and engage in 
targeted practice if needed. AI-powered medical assessments require a lot of delicate attention, 
though we believe that such approaches are often able to make for a solid estimation [155, 156], and 
are encouraged to be used as such.  
 
To the best of our knowledge, this is one of the first studies conducted to attempt to detect potential 
writing disorders on handwritten text, and we worked hard to incorporate modern image analysis 
techniques. We thoroughly believe that our approach is by no means perfect, but rather a stepping 
stool that could be used for further optimization techniques that would ultimately result in better 
accuracy – both on the spelling, and writing disorder classification.  
 

6.2 Limitations and Later Works 

It is worth revising on the main limitations of the proposed approach. Those include:  
 

• The lack of data used for the model’s training process. Even though 200 is a decent amount 
of different handwriting styles for a project of a scale as big as this one, it is highly likely that 
various handwriting styles were not included, which may result in potential misclassifications 
by the proposed OCR model. 
 

• Training our model on letters instead of words can also be considered a major setback. Large 
models that handle handwritten text recognition often train on entire words and produce 
exceptional results, albeit with hallucinations. A different approach could consist of a hybrid 
LLM trained on both words and letters. Additionally, an approach involving the transcript 
mapping problem on single-character level is currently being developed by me and Dr. Gatos 
Vasilis at the National Centre for Scientific Research Demokritos.  

 

• Having to leave a notebook line empty is a heuristic that worked for us and is necessary to run 
the algorithms we developed. It eventually improved the OCR model’s accuracy and potential 
writing disorder detection, but we believe that it may not be necessary to use such approach 
on a more robust OCR model and pipeline. 

 

• Needing to leave a tiny bit of space between letters and not connecting them is probably the 
biggest limitation of this project. We found it is extremely difficult to properly segment 
connected handwritten letters, and as mentioned in section 4.6.3, even though multiple 
techniques have been proposed over the years, none of them ensure that the final 
segmentation is always correct. 
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While we do believe our approach for writing learning disability detection works sufficiently when 
specific conditions are met, our proposed approach is still apt to making false classifications, as shown 
in our experiment results. As mentioned above, this thesis was not only attempting to solve the OCR 
problem itself, but also the writing and spelling disorder detection problem, which implies that the 
letter recognition worked perfectly in the first place. We also believe that more heuristics and more 
complicated approaches would ultimately increase the performance of our proposed algorithms. 
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