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διοικητικές συνέπειες που δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί, 

διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν µου ανήκει διότι είναι προϊόν λογοκλοπής.  
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NOTATION TABLE 
 

Symbol Description 

𝐺 = {𝐺1, 𝐺2, … , 𝐺𝐾} The set of clusters as it is created by 𝐾-Means 

𝑔𝑖 Center of the Cluster 𝐺𝑖 created by 𝐾-Means 

𝐷 = {𝑝1, 𝑝2, … , 𝑝𝑛} Set of 𝑛 vectors.  

𝑛 Number of vectors in the dataset 

𝑑 Number of dimensions in each vector 

𝑙 Number of iterations that the  𝐾-Means needs to cluster 

data 

𝐽 Objective function of 𝐾-Means 

FCM Fuzzy C-Means 

KM K-Means 

𝑢𝑖𝑘 Membership value for the 𝑖𝑡ℎ data point in the 𝑘𝑡ℎ cluster 

𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝛾} The set of clusters as it is created by FCM 

𝑐𝑖 Center of the Cluster 𝑆𝑖 created by FCM 

𝑚 Fuzzy parameter (FCM parameter) 

𝛽 Value for stopping criterion in FCM 

𝐔 Membership matrix 𝑐 × 𝑛 

𝐽𝑚(𝐔, S) Objective function of FCM 

𝑤 Number of Distributed Database Management Systems 

𝐷𝐵 = {𝐷𝐵1, 𝐷𝐵2, … , 𝐷𝐵𝑤} A set of Distributed Database Management Systems 

𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑧} A set of queries from the users 

𝑧 Number of queries that server received by the users. 

𝛧 = {𝛧1, 𝛧2, … , 𝛧𝑤} Set of groups of IoT devices 

𝑆𝑉 It symbolizes the Server of our scenario 

𝑋𝑡 = [𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑑
𝑡 ] The form of the multivariate vectors that are reported by a 

IoT device at time instance 𝑡. 

𝑡 Time instance 

𝑊 Window Size for the training phase in HCBM and HMCM 

𝛷 Number of data vectors that a query has to receive as 

answer 

DBMS Database Management System 

DDBMS Distributed Database Management System 
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MDBSs Multidatabase systems 

BM Baseline Method 

DDB Distributed Database 

QBL Query-Based Learning 

GCS Global Conceptual Schema 

LCS Local Conceptual Scheme 

LIS Local Internal Scheme 

ES External Schema 

PAM Partitioning Around Medoids 

BIRCH Balanced Iterative Reducing and Clustering using 

Hierarchies 

CF Clustering Feature 

CF-tree Clustering Feature Tree 

𝐿𝑆 Linear Sum 

𝑆𝑆 Sum of Squares 

𝑁 Number of data that belong to a cluster (BIRCH algorithm) 

𝐵 Branching factor 

𝐿 Maximum number of entries in a leaf node 

𝑇 Maximum diameter of subclusters stored at a leaf node of 

a CF-tree 

DBSCAN Density-Based Spatial Clustering of Applications with 

Noise 

OPTICS Ordering Points To Identify the Clustering Structure 

𝛺 Clusters in the Chameleon algorithm 

minPts the minimum number of data points inside the 

neighborhood of a point at DBSCAN algorithm 

𝜀 the radius at DBSCAN algorithm 

𝑆𝑉 Server 

ΑΟΜ Area Overlap Metric 
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ABSTRACT 
 

The increased adoption of various types of computer systems and smart devices in several areas 

has created an enormous amount of data. In parallel, the need of several applications and users 

for a part of these data for the execution of tasks and the extraction of knowledge has provoked 

the injection of tremendous number of queries per second into the servers of distributed databases. 

Due to this phenomenon, a significant process is the efficient response of these queries both in 

time requirements and the detection of appropriate data excluding unrequired data points. In this 

thesis, we propose an hierarchical query-driven clustering model to perform efficient data 

mapping for future incoming queries in distributed databases. We differentiate from the state-of-

the-art solutions by involving in the same model the process of Query-Based Learning (QBL) 

with a hierarchical clustering and different types of clustering. The performance of the proposed 

model is evaluated through a variety of experimental scenarios being also exposed by numerical 

results. 

 

Keywords: Data mapping, Data Management, Query-Based Learning, Hierarchical Clustering, 

Data Retrieval 
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CHAPTER 1: INTRODUCTION 
 

In the era of the rapid increment of the production of data, analysts have to deal with a 

tremendous number of data which are located in different databases. For this reason, many 

challenges have been arisen for the management and extraction of knowledge from them such as 

data caching, the assurance of the quality of data by eliminating anomalies in data, missing values, 

data mapping etc. Data mapping is the process which gathers data from multiple datasets into a 

single dataset and stores them in a uniform way. This process plays a significant role in a variety 

of processes such as data migration, data integration, data warehousing etc. 

In this thesis, we propose an hierarchical clustering model for the detection of the 

appropriate data for the execution of queries sent into a server in the minimum possible time. We 

elaborate on a model which takes into consideration the required data of a number of historical 

queries which arrive in the server during a time interval to detect and collect the data that a future 

query will require, without scanning the entire distributed databases. We focus on the use of two 

different types of algorithms for clustering i.e., the fuzzy clustering and the hard clustering, using 

the Fuzzy C-Means (FCM) and the K-Means (KM) algorithms, respectively. These clustering 

methods are used to create clusters with similar queries, based on the data that they need for their 

execution. The proposed model examines the queries that are coming into the server to find the 

most similar clusters upon them. Based on the relevant literature, we involve in our model a 

mechanism which computes the overlap of the area of interest between two queries. The novelty 

of this thesis is that we combine the QBL with a hierarchical clustering scheme into a model 

which has the ability to predict which of the data it will have to retrieve for similar future queries. 

The main contributions of this thesis are as follows: 

• We propose an hierarchical clustering-based model combining two different types of 

clustering methods for the detection of the appropriate data as responses to future queries  

in the minimum possible time and with the minimum error. 

• We adopt QBL to retrieve the appropriate data for the user's query relying on the retrieved 

data of previously executed queries. 

• We argue on an area overlapping metric between the areas of the queries i.e., the area 

which is formed by the boundaries of the query to detect the existence of data points of 

common interest. 
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CHAPTER 2: RELATED WORK 
 

The data management processes constitute an important factor for the effectiveness of 

various tasks and operations such as the extraction of analytics from a set of data. The research 

community has proposed several models and mechanisms for the improvement of various data 

management processes. Caching is a crucial data management process which prevents the burden 

of the memory with unnecessary data. In [1] the authors present a distributed framework for cost-

based caching of multi-dimensional raw arrays in native format. More specifically, the authors 

adopt a R-tree index to eliminate extra raw files from processing and they propose cost-based 

algorithms for distributed cache eviction and placement, taking into consideration a historical 

query workload. A Caching System for Graph Queries is presented in [2]. The authors present a 

full-fledged caching system named GrapheCache (GC) for graph queries which deals with the 

resource and dynamic management of the cache index. Also, they involve a semantic graph cache 

in their system which leading to a speedup for its performance and a cache admission control 

mechanism improving the performance gains of GC. Additionally, they propose a new solution 

for the general subgraph isomorphism problems by GC while they refer a number of graph cache 

replacement strategies including a novel hybrid graph cache replacement policy. Another major 

data management process is the effective response in queries from users and applications. The 

work discussed in [3] presents BlinkDB a massively parallel, approximate query engine for the 

execution of interactive SQL queries in large amount of data and allows the users to trade-off 

query accuracy for response time. Especially, BlinkDB is based on an adaptive optimization 

framework and a dynamic sample selection. The former is used to build and maintain a set of 

multi-dimensional samples from the database over time while the dynamic sample selection 

strategy is used to select an appropriately sized sample based on a query’s accuracy or response 

time requirements. In addition, the authors of [4] present a solution for the assigning of the queries 

and tasks in the appropriate edge computing nodes in order to reduce as much as possible the 

response time. For this purpose, the authors propose a method for the estimation of the 

computational burden that an allocation of a query will be added to a node. Also, the authors 

develop an ensemble similarity scheme responsible to deliver the complexity class for each query 

or task and a probabilistic decision-making model. Moreover, in [5], the authors develop 

Relational Sum Product Networks (RSPNs) i.e., a type of deep probabilistic models over 

databases which can capture important characteristics of a database. They propose a probabilistic 

query compilation approach to translate the incoming queries into probability and expectations 

for RSPNs. These former two methods are combined in a proposal data-driven model that can be 
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used for different tasks such as query answering, or cardinality estimation called DeepDB. The 

partition of large amount of data into smaller parts has arisen several challenges. In [6], the 

authors define the concept of a Query Controller (QC) that assign each of the queries into a 

processor which is placed in front of each data partition. Based on this technology they develop 

a framework for query assignment which involves two learning schemes, i.e., a Reinforcement 

Learning (RL) and a clustering scheme. Also, they propose a multiple Q-tables scheme as 

knowledge base of the QC in the RL case and a technique for deriving the level of compactness 

of the created clusters in the clustering scheme to deliver the best possible QP for each 

assignment. In [7], the authors introduce an adaptive, reciprocity-based Machine Learning 

mechanism to estimate the answers of a variety of aggregate queries (AQs) avoiding the big data 

back-end. The mechanism learns from past analytical-query patterns while they develop solutions 

to correspond in the changes in queries’ analytics and analysts’ interests. 
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CHAPTER 3: DISTRIBUTED DATABASE MANAGEMENT 

SYSTEMS 
 

Nowadays, a tremendous number of IoT devices, computers, and applications produce 

data at a humongous rate and in large quantities. The produced data are stored into datacenters 

across several sites which are geo-distributed all over the world. In order to make possible the 

maintenance and utilization of such large collections of data the use of a database management 

system (DBMS) is required. Every site has its own right and local users, a separate local DBMS 

which may differ of the other sites and its own local data managers. The sites communicate and 

are connected using high-speed networks creating distributed systems. The union of the separated 

databases of the sites forms a distributed database. Therefore, when we use the term distributed 

database management system (DDBMS), we are referring to the software system that allows a 

user to manage the distributed database. An important characteristic of a DDBMS is that gives 

the user the view of a united database while the data is physically distributed in the datacenters 

of the computer systems which participate in the distributed system. In other words, a DDBMS 

is logically integrated but physically distributed. Figure 1 presents a basic structure of a 

distributed database architecture. In the next two paragraphs, we describe (i) the types of 

distributed databases; (ii) the meaning of parameters in which the classification of DBMS 

architectures developed and (iii) three categories of architectural models for DDBMS i.e., the 

Peer-to-Peer DBMS, Client-Server Systems, Multidatabase Systems (MDBSs) [8], [9], [10]. 

 

 
Figure 1: Distributed database architecture 
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3.1 TYPES OF DISTRIBUTED DATABASES 
 

In this paragraph, we present the types of distributed databases and their properties. There 

are two categories of distributed databases based on the kind of DBMS software they use. The 

first and simplest category is the Homogeneous DDBMS. In this category, all the sites of the 

distributed system running their applications on the same DBMS software. Additionally, every 

site knows the existence of all the other sites, and they work together to process user’s request. 

Homogenous databases permit users to have access data from each of the databases like it was a 

single database. All the aforementioned characteristics of homogenous databases making them 

easy to manage. On the other hand, in heterogeneous DDBMS, the sites are controlled by a variety 

of different DBMSs. The sites work autonomously and are connected with such way to allow 

users the access to data from the other sites. Also, each site may not be informed of the existence 

of the other sites, which results to the limited co-operation in the users’ requests processing. 

Summarizing, in heterogeneous DDBS each site operates like an independent and autonomous 

centralized DBMS which has its own local characteristics i.e., users, transactions and database 

managers. 

 

3.2 PARAMETERS FOR THE DEVELOPMENT OF DISTRIBUTED 

DATABASES MANAGEMENT SYSTEMS ARCHITECTURES 
 

Taking into consideration that a DDBMS consist of computer systems, there exist three 

parameters based on which the DBMS architectural models are created. These parameters 

determine the distribution, the autonomy and the heterogeneity of the computer systems. In [9], 

the authors represent these parameters in as dimensions of a 3-dimensional space as it is presented 

in Figure 1. We can easily distinguish the Parallel DBMS, NoSQL, NewSQL DBMS, Peer-to-

Peer DBMS, Client-Server Systems and MDBSs.  

 

3.2.1 AUTONOMY 

 

One of the first parameters we have to define before the implementation of a DBMS is 

the autonomy. More specifically, when we refer the term autonomy for a DBMS we refer to the 

distribution of control in the system i.e., in the degree of independence in the operation of a 

DBMS. We can classify the DBMS systems in three categories based on the degree of autonomy, 
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systems which characterized by tight integration, semi-automatous systems and systems with total 

isolation. 

  

 Figure 2: Parameters for the development of DBMS architectures [9] 

The first class of the above taxonomy is the tight integrated systems which has the lowest 

degree of autonomy of all classes. In this type of DBMS, a single-image of the entire database is 

available to all users who want to access data and share them even the data belong to multiple 

databases. Τhe users have the view for the data that are logically centralized in one database. An 

important component of DBMS is the data manager which is a set of computer programs that 

provide the database management functionalities. In DBMS with tight integration, the data 

managers are applied with such way to make one of them responsible for control of the processing 

of users’ requests even the requests can be serviced by more than one data managers. 

Additionally, the data managers of tightly integrated systems despite their ability to operate as 

independent DBMS do not operate as such. 

The second category is the semiautonomous systems. The semiautonomous systems are 

comprised by DBMS which usually has independent operation. However, these systems take part 

in a cooperative group to make their data from the local database sharable with the other systems 

in the same group. In order to achieve that they need to modify their operations in 
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semiautonomous operation and specify which parts of their own database will make sharable to 

other users of different DBMS. 

The third and last category, based on the autonomy as it was defined before, is the total 

isolation. This category includes individual DBMSs which do not know either the existence of 

other DBMSs or the way to communicate with them. Consequently, the processing of user 

transactions, which requires data from multiple databases, is extremely difficult due to the 

absence of global control over the execution of individual DBMSs. 

 

3.2.2 DISTRIBUTION 

 

One additional parameter in the development of DDBMSs is the distribution. This 

parameter states the distribution of the data across the computer systems in a DDBMS. However, 

this parameter does not change the view of the users for the data as one undivided set. Taking 

into consideration only this parameter, we can identify three different architectures i.e., 

client/server distribution, peer-to-peer distribution and the option of non-distributed architecture. 

In the first category, the servers are in charge with the responsibility of execution of data 

management processes while the clients make the application environment and user interface is 

available in users to perform data management tasks. Both clients and servers are responsible for 

the communication processes. Due to its characteristics the client/server architecture constitute 

an example of distributed functionality. In contrast with the former architecture in peer-to-peer 

architecture each machine has full DBMS operation, and it can cooperate with other machines to 

execute queries, transactions and other data management processes. For this reason, the peer-to-

peer architecture also called fully distributed.  

 

3.2.3 HETEROGENEITY 

 

The third parameter in the development of DBMSs architectures is the heterogeneity 

among the distributed systems. This heterogeneity results from various reasons, such as 

dissimilarities in the hardware of DBMSs, networking protocols etc. One of the most important 

reasons that causes heterogeneity, is the way that data are represented by various modeling tools 

in different databases, on account of the characteristics of individual data models. Also, the usage 

of data models is strongly related to the choice of the query languages, which may provoke 

heterogeneity. The heterogeneity is created by the usage of different query languages for the 

access in data, not only in different but also in the same data models. 
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3.3 ARCHITECTURES FOR DISTRIBUTED DATABASE SYSTEMS 
 

3.3.1 CLIENT/SERVER SYSTEMS 

 

The first of the architectures that we describe is the client-server architecture. This 

architecture is developed upon the separation of functionality for the server operation and for the 

client respectively. Based on the previous idea, a two-level architecture has been created, that 

facilitates the management of the distribution and consequently the complexity of modern 

DBMSs. The client-server architecture is divided into three categories: single-tier client-server, 

two-tier client server and three-tier client server.  

The single tier client-server architecture in DBMSs is the simplest architecture that can 

be adopted. In this architecture, the client, the server and the database are located in the same 

machine. Users use terminals to send SQL queries into the central computer where the database 

is stored to retrieve the needed data. However, this type of architecture is rarely used in practice 

due to the humongous burden of the computer system which host the database and the terminals.  

The second category has two different implementations: (i) multiple clients/ single server, 

(ii) multiple clients/ multiple servers. The former case is the simplest implementation of the two- 

tier client/server architecture because there is only one server that is used for the answering of the 

queries. Additionally, the database and the appropriate software for the management of the 

database are stored in the server as it is also applied in centralized systems. Nonetheless, the 

multiple client/server architecture differs from the centralized databases in many characteristics 

as the execution of the transactions and the management of caches. The latter case of client/server 

architecture is more complex due to the participation of multiple servers in the system. In this 

architecture, there are two management strategies. In the first management strategy, every client 

manages its connection to the appropriate server. While in the second strategy each client knows 

of only the server with which is connected, which then co-operates with other servers when this 

is necessary. The main difference between the aforementioned strategies is detected in the loading 

of the extra responsibilities in clients in the first strategy, and in the servers in the second strategy. 

Figures 3 & 4 present the multiple clients/ single server implementation and multiple clients/ 

multiple servers respectively.  

Figure 5 presents one additional architecture which is the three-tier client-server 

architecture. This architecture is an extension of two-tier client-server architecture in order to 

make the architecture of client-server more efficient and flexible. In this type, an extra tier which 

is called the application server is added between the client and the database server. Consequently, 
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the client communicates with the server through the application server to access the database and 

the query processing and transaction management take place. 

 

  

Figure 3: Multiple Clients/ Single Server implementation 

 

 

 
Figure 4: Multiple Clients/ Multiple Servers implementation 
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Figure 5: Three- tier client-server architecture 

 

The last client-server architecture is the n-tier client-server. This approach is extended by 

the involvement of multiple database and application servers. The application servers serve one 

or more applications and the same stands for the database servers. Additionally, the interface to 

the application occurs using a load balancer that conveys the queries of the users to the appropriate 

servers. 

 

3.3.2 PEER-TO-PEER SYSTEMS 

 

In this architecture, every peer acts as a client and a server to serve the requests of users 

through cooperation and sharing data with other peers. In peer-to-peer systems, the centralized 

database has its own schema definition which is called global conceptual schema (GCS) and 

depicts the global logical view of data. Each site of the DDBMS has stored a part of the centralized 

database in local databases which has a different schema from the centralized database. The 

schema which expresses the logical data organization for every local database in each site is called 

the local conceptual scheme (LCS). We have to note that the physical data organization on each 

site may be different and as a consequence, each site has a different Local Internal Scheme (LIS). 

Additionally, the schema definition that depicts the user view of data is called External Schema 

(ES). Users sent queries that are created based on the GCS. The DDBMS transforms the global 

queries into a set of local queries based on the query language of each local dataset. Afterwards, 

the DDBMS components execute the set of local queries at different sites which nevertheless 
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communicates among them. There are two major components which is used for the handling of 

the incoming queries; the user processor and the data processor. The first component i.e., user 

processor is responsible for the interaction with the users and the second component has the 

responsibility to deal with the data storage. The user processor consists of the following four sub-

components: 

• User interface handler: it has to interpret the incoming queries and other commands from 

the user and transform the results into appropriate format to answer the queries. 

• Semantic data controller: this sub-component checks the integrity constraints, as defined 

by the database elements, by using the GCS. Also, it inspects the authorizations in order 

to allow access to the appropriate database. 

• Global query optimizer and decomposer: It tries to find the best possible execution 

strategy for the user queries or requests. Its goal is to minimize as much as possible the 

cost function and transform the GCS queries to LCS queries.  

• Distributed Execution monitor: it organizes the distributed execution of the user queries. 

Basically, it is a transaction manager which during the execution of the incoming query 

communicate with the transaction managers of other sites.  

 
Figure 6: Peer-to-Peer DDBMS architecture 
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The second of the components in a Peer-to-Peer DDBMS is the data processor and is comprised 

by the following elements: 

• Local query optimizer: It has similar functionality with the access path selector. The goal 

of this sub-component is to choose the best access path to retrieve or take access to any 

data.  

• Local recovery manager: This sub-component is responsible for the maintenance of the 

consistency of the local databases even when failures occur. 

• Run-time support processor: It accesses the distributed database physically based on the 

strategy that the local query optimizer proposed. Additionally, the run-time support 

processor is the responsible interface for the communication with the operation system 

and contains the database buffer manager for the maintenance of the main memory buffer 

and for the management of the data accesses. 

 

3.3.3 MULTIDATABASE SYSTEMS 

 

The last of the presented architecture for DDBMS is the Multidatabase systems (MDBSs). 

This type of architecture consists of two or more autonomous database systems and can be 

described using six levels of schemas. The first schema definition which is called Multi-database 

View Level describes the view of different users which consist of the subsets of the initial 

integrated distributed database. The second level in the MDBSs is the Multi-database Conceptual 

Level which represents integrated multi-database which consists of global logical multi-database 

structure definitions. Another level in the six-level representation is the Multi-database Internal 

Level. This level gives a view of the data distribution in different sites and multi-database to local 

data mapping. The first level which refers into the local databases is the Local database View 

Level, it expresses the public view of local data. An additional schema is the Local database 

Conceptual Level that shows the way that the data are organized in the local database at every 

site. The last level of the six level of schemas is the Local database Internal Level that expresses 

the organization of the data in physical level at every site. In MDBSs there are two different 

design approaches. The different between these two approaches is the existence of the multi-

database conceptual level. Figures 7 & 8 present these design approaches, respectively. 
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Figure 7: MDBS with Multi-database Conceptual Level 

 

 
Figure 8: MDBS without Multi-database Conceptual Level 

 

3.4 ADVANTAGES OF DISTRIBUTED DATABASES MANAGEMENT 

SYSTEMS 
 

The usage of DDBMSs instead of classical centralized database systems has several 

advantages. In this paragraph, we present four of the most important advantages. The first of the 

presented benefits of the DDBSs is the potentiality of system extension. More specifically, the 
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attempt for an extension in centralized database systems requires the interruption of the 

functionality in the database and a great amount of effort. Nevertheless, the equivalent effort in 

DDBMSs is much simpler since it requires the addition of new computer systems and data to the 

newly created local databases at the respective new sites. Afterwards, the newly created systems 

connect to the DDBMS without having to interrupt the operations that take part at that time. 

Additionally, the DDBMS functionality is much more durable in the failures than centralized 

systems that making the DDBMS more reliable. The architecture design of the DDBMS allows 

them to continue their functionality despite the occurrence of failure at one or more components. 

Furthermore, one significantly important advantage is the better response in the user queries due 

to the distribution manner of data at the local databases of sites. Contrariwise, in the centralized 

databases systems, every query has to pass through the central computer increasing significantly 

the responding time. The last but not least advantage of DDBMSs against centralized databases 

systems is the lower cost of communication. In case that an incoming query requires data that is 

stored in local database where it is mostly used then the communication cost for the data retrieval 

is minimized. 
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CHAPTER 4: DATA CLUSTERING ALGORITHMS  
Clustering is a significant process especially when we have to retrieve data which has to 

satisfy specific requirements. The clustering algorithms are divided into categories based on the 

way that it is used and the purpose which serve. This chapter includes the most widely used 

categories of clustering algorithms and refers some of the most well-known algorithms of these 

categories [11], [12]. 

 

4.1 PARTITION CLUSTERING ALGORITHMS 
Partition clustering algorithms constitute one of the most prominent categories of 

clustering algorithms. These algorithms receive as input a set of ℎ data points and perform cluster 

analysis by partitioning these data into 𝑣 clusters, which is usually pre-defined and must be less 

or equal to ℎ i.e., the size of the dataset. The created clusters are not overlapped, and every cluster 

has at least one data point as a member. More specifically, the partitioning-based clustering 

algorithms perform an initial clustering and afterward is based on an iterative approach which is 

trying to minimize as much as possible the objective function. In the initial partitioning process, 

𝑣 data points are chosen to become the points on which the algorithm will base to create the 

clusters. The choice of these initial points is a significant consideration for the quality of 

clustering and the performance of the algorithm. While the distance between the initial points 

should be as bigger as possible in order to be succeeded the better shaping of clusters. This subject 

has constituted a subject for many research activities which try to find the optimal solution. [13] 

The most representative algorithm of this category is K-Means which will be described in 

paragraph 5.1 together with the description of the Fuzzy C-Means. The Partitioning Around 

Medoids (PAM) algorithm is usually used from the research community. PAM is based on 𝑘-

medoid method for clustering and is more durable in noise and outliers than K-Means. However, 

PAM algorithm does not work well for large scale datasets. The algorithm consists of two phases, 

the Build phase and Swap phase. In former phase the algorithm selects 𝑘 medoids by choosing 

the 𝑘 points which has the minimum cost, with cost being the sum over all distances to all other 

points. The selected 𝑘 points are initially the representative objects for each cluster. In Swap 

phase the algorithm calculates the average dissimilarity to all non-selected objects to the 𝑘 

medoids. Afterward, the algorithm groups the non-selected objects to the closest medoid. The 

Swap phase is repeated until there are not exist better medoids [14]. 

One additional algorithm in this category is the CLARA algorithm which created to 

overcome the disadvantages of PAM and is based on sampling. The idea behind the CLARA is 

that if the samples are sufficiently random, the medoids of the sample approximate the medoids 
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of the dataset. In the first step the algorithm divides the dataset into multiple subsets with a 

specific size. Following the algorithm applies the PAM algorithm on every subset and select the 

corresponding 𝑘 medoids and assigns each observation of the whole dataset to the nearest medoid. 

Afterward, it calculates the dissimilarities of the observations to their nearest medoid. The 

algorithm retains the sub-dataset which has the minimum dissimilarity and performs further 

analysis in the final partition [14]. 

 

4.2 HIERARCHICAL CLUSTERING ALGORITHMS 
 

Another category of clustering algorithms is the hierarchical clustering algorithms. This 

type of algorithms builds a hierarchical decomposition of the dataset which has to be clustered. 

There are two subcategories of hierarchical algorithms, the agglomerative and the divisive 

hierarchical algorithms. The categorization of the hierarchical algorithms in one of the 

aforementioned categories depends on the way that the hierarchical decomposition is created. The 

former category is also called the bottom-up category because the algorithms which belong in 

this category consider every data point as a separate cluster. Afterwards, the algorithms merge 

the clusters which are close using several metrics such as similarity, correlation, distance. The 

merging procedure is executed repetitively until all clusters are merged into one cluster which 

contains all the data points, or a termination criterion is reached. The second subcategory is called 

divisive and is a top-down approach. More specifically, the algorithms of this type begin their 

clustering process by setting all data points in one cluster. Then, in every iteration, the initial 

cluster is split into smaller clusters until a stopping criterion is reached. Hierarchical algorithms 

compared with partition clustering algorithms create clusters that are more informative. However, 

the hierarchical algorithms can’t undo an applied step. 

A typical hierarchical algorithm is the Balanced Iterative Reducing and Clustering using 

Hierarchies (BIRCH) [15]. This algorithm is based on distance and has the ability to cluster the 

data at the same time it scans them. Additionally, BIRCH during the clustering process take into 

consideration many factors such as the efficiency of time and space, the sensitivity of data input 

order, the accuracy etc. The clustering process of BIRCH use the notions of the Clustering Feature 

(CF) and the Clustering Feature Tree (CF-tree). The CF is a triplet (𝑁, 𝐿𝑆, 𝑆𝑆) where 𝑁 depicts 

the number of data which belong to the cluster, 𝐿𝑆 is the linear sum of data in the cluster and 𝑆𝑆 

is the sum of squares of data in the cluster. The 𝐿𝑆 and 𝑆𝑆 are calculated by the equations 1 & 2 

respectively. The CF-tree is a highly balanced tree in which are stored the clustering features of 

the hierarchical clustering. In a CF-tree there are two kinds of nodes the leaf nodes and non-leaf 



~ 26 ~ 
 

nodes where each non-leaf node contains the sums of the CFs of their children. The construction 

of CF-tree affected by three parameters, the branching factor 𝐵 which define the maximum 

number of child nodes that can be connected to a non-leaf node, the maximum number of entries 

𝐿 in every leaf node and 𝑇 which define the maximum diameter of subclusters stored at the leaf 

node of the CF-tree. The BIRCH algorithm consist of two phases as follows 

• Phase 1: BIRCH scans the data and creates a CF-tree with respect to the parameters 

𝐵, 𝐿, 𝑇. 

• Phase 2: BIRCH adopts a clustering algorithm to cluster the leaf nodes. This procedure 

has as result the removal of sparce clusters as outliers and merge the dense clusters into 

bigger one. 
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Chameleon is also a widely used hierarchical clustering algorithm. Chameleon adopts a 

𝑘 −nearest neighbor graph approach to build a sparce graph. In sparce graph each data point 

represented as node of the graph and is connected with the top-𝑘 similar neighbors. The edges of 

the sparce graph are weighted to show the similarity between the data points. Afterwards, 

Chameleon applies a graph partitioning algorithm to split the 𝑘-nearest neighbors graph into a 

large number of subclusters such that minimizes the edge cut. Particularly, the algorithm tries to 

partition a cluster 𝛺 with such way to minimize the weight of the edges that would be cut should 

𝛺 be split into 𝛺𝑖 and 𝛺𝑗, for this reason the Chameleon relies on the absolute interconnectivity 

between clusters 𝛺𝑖 and 𝛺𝑗. In the last phase of the Chameleon an agglomerative hierarchical 

clustering algorithm is adopted to merge the subclusters taking into consideration the similarity 

among the subclusters. The similarity of the subclusters is measured using the relative 

interconnectivity and the relative closeness of the subclusters [16]. 

 

4.3 DENSITY BASED CLUSTERING ALGORITHMS 
 

The category of density-based clustering algorithms introduced to discover cluster with 

arbitrary shape. The clustering process of algorithms of this category is based on the density of 
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data points in an area. Especially, these algorithms assign data points in a cluster as long as the 

number of points i.e., density, within a radius is higher than a threshold. A significant 

characteristic of the density-based algorithms is the ability to detect noise and outliers in the 

examined dataset. 

One of the most famous algorithms in this category is the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) [17], [18]. The clustering process of DBSCAN 

requires the definition of two parameters i.e., the minimum number of data points inside the 

neighborhood of a point (minPts) and the radius (𝜀) which defines the area around a data point 

that constitute the neighborhood of a data point. The DBSCAN based on the two aforementioned 

parameters categorizes the data points as core point, border point and noise point. Core point is 

the point that the number of data points in its neighborhood is greater or equal to minPts. A border 

point is the point where the number of the points in its neighborhood is less than minPts but at 

least one of them is core point. The points which are neither core points nor border points are 

characterized as noise points. The steps of the DBSCAN algorithm are described below: 

• Step 1: The algorithm labels all points as core or noise points. 

• Step 2: It relabels the noise points that have as neighbor at least one core point as border 

points. 

• Step 3: It marks all core and border points as unvisited. 

• Step 4: It selects an unvisited core point and creates a cluster. 

• Step 5: The algorithm starts from the selected core point and groups to the same cluster 

the core points that are within the radius 𝜀 of each other and the points that belong in the 

neighborhood of the core points of the cluster. Each point that is added to a cluster is 

marked as visited. 

• Step 6: It returns to the step 4 until all points are part of a cluster. 

Another algorithm in this category is the Ordering Points To Identify the Clustering 

Structure (OPTICS) [19], [20]. This algorithm generates a distance profile that displays the 

dataset's density structure and may be used to extract clusters using at least two parameters: a 

distance matrix and a number of neighbors. The algorithm iteratively explores point 

neighborhoods in order of lowest to highest core distance, i.e. the maximum distance between a 

point and a given number of its nearest neighbors, and returns the orders and reachability 

distances of successive points, i.e. the maximum distance between the point's core distance and 

the distance from it to the previous point. Valleys with low reachability distances symbolize 

clusters and are separated by peaks, or places with high reachability distances. 
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CHAPTER 5: PRELIMINARIES 
 

In this chapter we present the algorithms that we involve in this research. More 

specifically, we describe the 𝐾-Means (KM) algorithm, the Fuzzy C-Means (FCM) etc. 

5.1 K-Means 
KM is one of the most popular and widely used unsupervised clustering algorithms. This 

algorithm groups the given data into 𝐾 clusters trying to minimize the following objective 

function: 
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The minimization of equation (1) is equivalent to the minimization of distance of points in a 

cluster 𝐺𝑖 with the centroid 𝑔𝑖. We consider a set 𝐷 = {�⃗�1, �⃗�2, … , �⃗�𝑛} which consists of 𝑛 vectors 

each one can be considered as a 𝑑 −dimensional point. KM has as goal to split the 𝑛 vectors into 

𝐾 clusters, where 𝐾 ≤ 𝑛. The algorithm requires the number 𝐾 of clusters is defined in advance. 

The clusters have to have been created in such way such that 𝐺 = 𝐺1 ∪ 𝐺𝑖 ∪, … ,∪ 𝐺𝐾 where 𝐺𝑖 ⊂

𝐺, ∀𝑖 ∈ [1, 𝐾] and 𝐺𝑖 ∩ 𝐺𝑗 = ∅, ∀ 𝑖, 𝑗 ∈ [1, 𝐾].  Each cluster is represented by its centroid. The 

steps of the KM algorithm are described below [21, 22, 23]: 

• At first, 𝐾 points from 𝐷 are randomly selected to be the centroids of the clusters. 

• In the second step, the algorithm computes for every point in 𝐷 the distance from every 

centroid. Hence, the algorithm assigned the examined point to the cluster with nearest 

centroid. The Euclidean distance is the most widely adopted metric for this step. 

• Afterwards the algorithm recalculates the centroids of each cluster. The new value for 

each one of 𝑑 dimensions is equal to the average value that the members have in that 

dimension. 

• The algorithm returns to the second step in case the criterion function does not become 

the minimum, i.e., the clusters does not remain consistent. 

We have to note that the centroids of the clusters may not contained in the dataset 𝐷, since it will 

arise from the previous iteration process. The time complexity of KM depending on three 

parameters; the number 𝑛 of data vectors in 𝐷, the number of clusters 𝐾 and the number of 

iterations 𝑙 that the algorithm needed to cluster the data. Consequently, the time complexity is 

equal to 𝑂(𝑛 ∙ 𝐾 ∙ 𝑙) [23]. 
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5.2 Fuzzy C-Means 
 

The FCM algorithm belongs to the fuzzy clustering algorithms. Contrary to the hard-

clustering algorithms, where each data point belongs only to one cluster, in fuzzy clustering the 

data points can potentially belong to multiple clusters. In the FCM, each data point is associated 

with a cluster by a membership value 𝑢𝑖𝑘  ∈ [0,1]. The membership value shows the similarity 

between the examined data point and the center of the respective cluster. The higher the 

membership value is, the higher the similarity is. Suppose we have a dataset 𝐷 of 𝑛 vectors each 

one has 𝑑 dimensions the FCM outputs a 𝑛 × 𝛤 matrix 𝐔 that shows with which cluster has the 

higher similarity and a set 𝐶 = {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝛤} which contains the centers of the clusters. We 

have to note that the sum of each row in 𝐔 must be equal to one. The FCM aims to minimize the 

following objective function: 
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where 𝑚 is the fuzzier parameter which controls the fuzziness of the clustering. The value of 𝑚 

is any natural number bigger than one i.e., 𝑚 ∈ [1, ∞). The algorithm requires to pre-define the 

fuzzier 𝑚, the number of clusters 𝛤 and the stopping criterion value 𝛽 ∈ [0,1]. An extensive 

research in the parameters of FCM is presented in [24]. The steps of the algorithm are referred 

below [21, 22, 25, 26]: 

• Step 1: Choosing of the parameters 𝑚, 𝛤, 𝛽 

• Step 2: Initializing the membership matrix 𝐔 

• Step 3: Calculating the centers of every cluster in 𝐶 

• Step 4: Updating the membership matrix 𝐔 

• Step 5: Repeating steps 3,4 until the divergence is less than 𝛽 

• Step 6: Output 𝐔, 𝐶 

The updating of the membership value 𝑢𝑖𝑘 and the center for each cluster in FCM are calculated 

by the equations (3), (4) respectively. 
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The time complexity of the FCM is affected by the number of data 𝑛 that need to be clustered, 

the number of clusters Γ which have to be created and the number of iterations 𝑙 that the 

algorithm demands to complete the clustering process. 
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CHAPTER 6: PROBLEM DESCRIPTION 
 

In our scenario, we consider the set 𝐷𝐵 = {𝐷𝐵1, 𝐷𝐵2, … , 𝐷𝐵𝑤} of geo-distributed DBMSs 

and a server (𝑆𝑉). Also, we suppose that a group 𝑍𝑖 of Internet of Things (IoT) devices is 

connected with a DBMS 𝐷𝐵𝑖 such that each 𝑍𝑖 to be connected with only one 𝐷𝐵𝑖 and vice versa. 

The IoT devices collect and report data into the respective 𝐷𝐵𝑖 with form of multivariate vectors 

i.e., 𝑋𝑗
𝑡 = [𝑥1

𝑡 , 𝑥2
𝑡 , … , 𝑥𝑑

𝑡 ], where the index 𝑗 expresses the IoT device that reported the vector and 

the index 𝑡 shows the time instance that the vector was reported. The DBMSs receive the 

multivariate vectors and store them in appropriate format to be ready for further processing 

activities. Table I shows the format in which the data is stored in every DBMS in our scenario. 

 

Table 1:The appropriate format in which the DBMSs store the data 

Time instance 1𝑠𝑡IoT device 2𝑛𝑑 IoT device … 𝑁𝑡ℎ dimension 

𝑡 𝛸1
𝑡 𝛸2

𝑡 … 𝛸𝛮
𝑡  

𝑡 + 1 𝛸1
𝑡+1 𝛸2

𝑡+1 … 𝛸𝛮
𝑡+1 

… … … … … 

𝑡 + 𝑊 𝛸1
𝑡+𝑊 𝛸2

𝑡+𝑊 … 𝛸𝑁
𝑡+𝑊 

 

The 𝑆𝑉 communicates and has access in the DBMSs by using the network as the Figure 

1 depicts. Many applications and tasks need a set of data which are stored distributed in different 

databases to perform their operations. The 𝑆𝑉 receives queries 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑧} from these 

applications and tasks. We consider that every vector can be represented as a point in a 𝑑-

dimensional space. Every query 𝑞𝑖 requires a number 𝛷 of points as an answer. A 𝑞𝑖 can contain 

range selection operators for one or more dimensions to create the boundaries of the area in which 

the data are located. For example, a simple query to the 𝑆𝑉 described as follows:  

 

 
Figure 9: An Example of a query 

 

The above example of query needs all the tuples where the value of the first dimension is range 

($𝑣1, $𝑣2). The 𝑆𝑉 tries to detect the appropriate data as answer to the incoming queries of the 

tasks and applications in the minimum possible time. In this research we propose a mechanism 

for the detection of the data that the queries need. Our mechanism is ‘activated’ every time a 
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query is sent by a user. More specifically, we focus on a hierarchical clustering process where we 

try to group the incoming query with previous received queries. The proposed model performs 

two types of clustering: (a) a fuzzy clustering where the incoming queries are assigned into one 

or more cluster based on a membership function; (b) a hard clustering to identify the subspace 

where the required data are located. 
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CHAPTER 7: ADOPTED METHODS IN OUR RESEARCH 
 

In this chapter, we describe the methods that we adopt for the retrieval of appropriate data 

as answer the incoming queries. Each method is evaluated through the experimental evaluation 

process. 

 

7.1 BASELINE METHOD 
 

The first of the methods for the data retrieval is the baseline method (BM). This method 

is executed every time that a query is coming to the 𝑆𝑉. The 𝑆𝑉 scans the data that exist in the 

distributed databases and choose those data that satisfy the query. More specifically, this method 

detects all the required points for each incoming query and is the optimal solution as far as the 

error is concerned. However, it needs a lot of time to scan for every query all the data that exist 

in the DDBs. This method is based on the searching on the DDBs for the appropriate data which 

satisfy the incoming query. Figure 10 gives a view about the execution of this method. 

 

 
Figure 10: Baseline Method representation 

 

7.2 HARD CLUSTERING BASED METHOD 
 

The second method that we adopt in our research is called Hard Clustering Based Method 

(HCBM). This method uses a different approach for the detection of the appropriate data for every 



~ 34 ~ 
 

incoming query to the 𝑆𝑉. Especially, this method is based on the clustering of the ‘similar’ 

queries, that the 𝑆𝑉 receives during a period of 𝑊 time instances, in order to retrieve the 

appropriate data for the incoming queries. Initially, the HCBM receives a number 𝑧 of incoming 

queries i.e., 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑧} and applies the BM method to find the data which are required 

for the execution of the incoming query. Afterwards, the HCBM applies the KM algorithm to 

cluster the queries which were sent in the 𝑆𝑉 in clusters to group the queries which has similar 

requirements. After the completion of the training phase, the HCBM method is ready to serve 

every incoming query in the server. More specifically, when a query is sent to the server, the 

HCBM is ‘activated’ and finds the top-𝑘 nearest/similar clusters to the incoming query adopting 

a distance/similarity measurement. In our experiments, we use the Euclidean distance metric. The 

HCBM is based on the detected top-𝑘 clusters and retrieve the data points which satisfy the 

queries which belong in these top-𝑘 clusters. 

 

7.3 HIERARCHICAL MIXED CLUSTERING METHOD 
 

 Our proposed model is named Hierarchical Mixed Clustering Model (HMCM). This 

model focuses on the similarity more than the HCBM, relying on a hierarchical clustering. 

HMCM creates a set of clusters by the incoming queries using a soft clustering algorithm and 

then groups the queries which belong to the clusters into a set of subclusters by adopting a hard 

clustering algorithm. The proposed model consists of two phases, the ‘warming’ phase, and the 

‘performance’ phase. The first phase of the HMCM model is a warm-up period in which are 

created the clusters and the subclusters. The clusters and subclusters which are arisen from the 

hierarchical clustering will be used to retrieve the appropriate data for the service of the incoming 

queries in 𝑆𝑉. More specifically, when a query is sent from the user to the 𝑆𝑉 during the warm-

up period, the HMCM model applies a sequential scanning in the entire database to find the 

appropriate data points for the execution of the query. After the detection of the required data 

points for every query, the HMCM performs the hierarchical clustering. Initially, it uses the FCM 

to create a set of clusters 𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝛤} of the queries that were sent to the 𝑆𝑉 in previous 

𝑊 times. Afterward, HMCM divides each cluster in 𝐶 further into a set of  

𝐺 = {𝐺1, 𝐺2, … , 𝐺𝐾} using the K-Means algorithm. In the second phase, the HMCM is activated 

every time a user sends a query to the 𝑆𝑉. Firstly, the proposed model detects the top-𝑘 cluster 

whose members has same requirements with the incoming query using a similarity metric, in our 

case the Euclidean distance. After that, the HMCM detects the top-ℓ subspaces with which the 

incoming query has the higher similarity. A modification is used in order to achieve more accurate 



~ 35 ~ 
 

results in the retrieval of the appropriate data, i.e., we adopt the approach of overlapping between 

the representations of queries. The representation of each query sent by the user is the area of 

points that it needs as answer. For the purposes of the overlap calculation, we propose the 

following metric.  

 

In the Area Overlap Metric (AOM) the numerator is the overlapping area between two 

queries. The 𝑞𝑖𝑛𝑐 is the incoming query, while the 𝑞𝑚𝑒𝑚𝑏𝑒𝑟 is the query which is member of one 

of the top-ℓ subspaces of one cluster which belongs to top-𝑘 clusters. The denominator is the area 

which contains the required data points for the incoming query. The result of the AOM indicates 

the percentage of the 𝑞𝑖𝑛𝑐 area covered by the area of the 𝑞𝑚𝑒𝑚𝑏𝑒𝑟. Hence, the HMCM, after the 

detection of the appropriate clusters and subspaces, examines the members of the detected 

subspaces to find the queries with which the AOM overcomes a threshold 𝜃 and retrieves only 

the data points that belong to them. This approach of selection of the members gives the ability 

to obsolete queries which belong into the same cluster, but they do not require data from a 

common area. Also, it offers the chance not to take into consideration queries with which have 

common area, but the overlapping is under the threshold and, this way, prevents the HMCM to 

increase the error in its predictions. Figures 11-26, we present the overlap cases between the areas 

of two queries. 

 

 

 
Figure 11: First overlap case 

 

  

AOM (𝑞𝑖𝑛𝑐, 𝑞𝑚𝑒𝑚𝑏𝑒𝑟) = 
𝑞𝑖𝑛𝑐 ∩ 𝑞𝑚𝑒𝑚𝑏𝑒𝑟

𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑦 𝑎𝑟𝑒𝑎
 

 

( 7 ) 
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Figure 12: Second overlap case 

 
Figure 13: Third overlap case 

 

 

 

 

 
Figure 14: Fourth overlap case 
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Figure 15: Fifth overlap case 

 

 

 
Figure 16: Sixth overlap case 

 

 

 

 
Figure 17: Seventh overlap case 
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Figure 18: Eighth overlap case 

 

 

 

 

 

 

 
Figure 19: Ninth overlap case 

 

 

 

 

 

 

 

 
Figure 20: Tenth overlap case 
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Figure 21: Eleventh overlap case 

 

 

 

 

 
Figure 22: Twelfth overlap case 

 

 

 

 

 
Figure 23: Thirteenth overlap case 
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Figure 24: Fourteenth overlap case 

 

 

 
Figure 25: Fifteenth overlap case 
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CHAPTER 8: EXPERIMENTAL EVALUATION 
 

The experimental evaluation of the proposed model is relying on the Query Analytics 

Workloads Dataset1. The dataset contains three files of range/radius query workloads from 

Gaussian distributions over a real dataset. In our experiments, we focus on range queries, and are 

based on the file Range Queries Aggregates to create three datasets which are named Warming 

Dataset (𝐷𝑤), Dataset of two-dimensional points (𝐷2𝑑) and Test dataset (𝐷𝑇). Each range-query 

in the file is stored in the following format {𝑋, 𝑌, 𝑋𝑟, 𝑌𝑟, 𝐶𝑜𝑢𝑛𝑡, 𝑆𝑈𝑀, 𝐴𝑉𝐺}. However, we take 

into consideration only the first four attributes which refer to the range query. The first two 

attributes are the coordinates for the x-axis and y-axis for the center of the corresponding 

rectangle, respectively. The third and fourth attributes represent the ranges of the first two 

attributes. The 𝐷𝑤 consists of 1.000 queries of the format 𝑞𝑖 = {𝑋𝑖, 𝑌𝑖, 𝑋𝑟𝑖, 𝑌𝑟𝑖}. We randomly 

generate for each 𝑞𝑖 a number 𝜔𝑖  ∈ [20,30] of two-dimensional data points which are located 

inside the rectangle of 𝑞𝑖. The total number of two-dimensional points is equal to 24.923 and 

constitutes the 𝐷2𝑑 dataset. The last dataset 𝐷𝑇 contains 𝜓=1.000 incoming Range queries with 

the same distribution and format with the 𝐷𝑤. Our goal is to confirm that the proposed model has 

the ability to detect the data that an incoming query into an 𝑆𝑉 needs. We use the 𝐷𝑤 to ‘train’ 

the HCBM and HMCM model while the 𝐷𝑇 dataset is used to test the performance of the models 

BM, HCBM and HMCM. 

We evaluate the described models both for the error levels and the time that they need to 

detect the data. The evaluation of the models is relying on the metrics of Precision (PRE), Recall 

(REC), Accuracy (ACC), False Positive Rate (FPR) and F1-score (FSC) as they ensue from the 

calculation of True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives 

(FN). We define as TP the number of data that an incoming query 𝑞𝑖 needs and they detected 

while TN the number of data that the 𝑞𝑖 does not need and the model correctly reject them. On 

the other hand, FP is the number of data that the 𝑞𝑖 does not need but the model retrieved them, 

and FN is the number of data that the 𝑞𝑖 needs but the model does not detect them. The required 

time for each query is symbolized as 𝜏𝑖 .The formulas of Precision, Recall, FPR and F1-score is 

defined as follows: 

  

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

( 8 ) 

 
1 http://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset 
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𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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𝐴𝐶𝐶 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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𝐹𝑆𝐶 =
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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The aforementioned metrics are used to calculate the performance of models for each 𝑞𝑖. 

However, the performance of the models has to be estimated over all the incoming queries, thus 

we use the average values of the previous metrics to calculate the overall performance of the 

models. Except from the metrics for the error calculation we also calculate the average time that 

every model needs to detect the data which satisfy the incoming queries. The overall metrics are 

defined as follows: 

 

  

𝜇𝑃𝑅𝐸 =
∑ 𝑃𝑅𝐸𝑖𝑞𝑖 ∈ 𝐷𝑇

𝜓
 

 

 

( 13 ) 

  

𝜇𝑅𝐸𝐶 =
∑ 𝑅𝐸𝐶𝑖𝑞𝑖 ∈ 𝐷𝑇

𝜓
 

 

( 14 ) 

  

𝜇𝐴𝐶𝐶 =
∑ 𝐴𝐶𝐶𝑖𝑞𝑖 ∈ 𝐷𝑇

𝜓
 

 

( 15 ) 

  

𝜇𝐹𝑃𝑅 =
∑ 𝐹𝑃𝑅𝑖𝑞𝑖 ∈ 𝐷𝑇

𝜓
 

 

( 16 ) 

  

𝜇𝐹𝑆𝐶 =
∑ 𝐹𝑆𝐶𝑖𝑞𝑖 ∈ 𝐷𝑇

𝜓
 

 

( 17 ) 

  

𝜇𝑇𝑖𝑚𝑒 =
∑ 𝜏𝑖𝑞𝑖 ∈ 𝐷𝑇

𝜓
 

 

( 18 ) 
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The models have the best performance when the metrics 𝜇𝐴𝑐𝑐 , 𝜇𝑃𝑅𝐸 , 𝜇𝑅𝐸𝐶 , 𝜇𝐹𝑆𝐶  reach the 

unity and the metrics 𝜇𝐹𝑃𝑅 and 𝜇𝑇𝑖𝑚𝑒 are closer to zero. In our experiments we pay great attention 

in the metrics 𝜇𝐹𝑃𝑅 and 𝜇𝑇𝑖𝑚𝑒 because the former gives the average rate of data that the models 

retrieve but the incoming queries do not need them, while the latter one gives the average time 

that one of the methods needs to respond into the incoming queries. Figures 26-31, we present 

the performance of models for different number of clusters regardless of the way that they are 

created i.e., from the hierarchical clustering (HMCM) or the non-hierarchical clustering (HCBM). 

We have to mention that in the plots for the error metrics we do not include the BM model because 

it detects all the requirement data without error since it scans sequentially the entire databases. 

 

 

 

Figure 26: Comparison between HMCM and HCBM for Γ=6, M=4 and K=24 
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Figure 27: Average Time comparison between the models for Γ=6, Μ=4, K=24 

In Figure 26 we compare the HMCM and HCBM when they created 24 clusters. As we 

can easily see, the HMCM has better performance for all metrics except the 𝜇𝑅𝐸𝐶 where two 

models have the same performance. The dominance of the HMCM is revealed clearly from the 

Figure 27 where the average time that the HMCM needs to respond to the incoming queries is 

significant less from the BM method and much less from the HCBM model. 

 

 
Figure 28:Comparison between HMCM and HCBM for Γ=6, M=7 and K=42 
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Figure 29:Average Time comparison between the models for Γ=6, Μ=7, K=42 

Figure 28 shows the comparison of the HMCM and HCBM for 42 clusters. We observe 

that the HMCM overcomes the HCBM for all metrics except from the 𝜇𝑅𝐸𝐶, where the HMCM 

has slightly lower performance. Nevertheless, both 𝜇𝐹𝑆𝐶  and 𝜇𝐹𝑃𝑅 metrics confirm that the 

HMCM has better performance in error metrics. Figure 29 strengthens the conclusion that we 

deduce from Figure 28 since HMCM achieve better performance in less time. 

 

 
Figure 30:Comparison between HMCM and HCBM for Γ=6, M=10 and K=60 
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Figure 31:Average Time comparison between the models for Γ=6, Μ=10, K=60 

In figures 30 & 31 we compare the error and time metrics between the models for 60 clusters 

respectively. In figure 30, the HMCM has better performance in the majority of the error metrics. 

As far as the time metric is concerned, the HMCM maps the data in less time that the other models, 

as it is presented in figure 31. Again, in the most important metrics for inferring the conclusion 

of the designation of the best model, the HMCM clearly outperforms the HCBM. 

 

 
Figure 32: Performance of error metrics for different number of subclusters in HMCM 
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Figure 33: Comparison of the time metric for different number of subclusters in HMCM 

 

In Figures 32 & 33, we evaluate the effect of the number of subclusters in the performance 

of our model both for error and time. We can easily observe that the increase of the number of 

subclusters clearly improves the performance of the HMCM model and simultaneously decrease 

the average required time for the mapping of data. 

 

  

Figure 34:Performance metrics for different number of clusters in HMCM 
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Figure 35:Comparison of the time metric for different number of clusters in HMCM 

Figures 34 & 35 present the effect of the increase of clusters in error and time metrics for 

HMCM respectively. We notice that the higher the number of clusters the better the performance 

becomes, while the average time is affected in opposite direction. 

 
Table 2: Comparison of same number of clusters with different combinations for the HCMC for 𝜃 = 0.9, 𝑘 = 2, 𝑚 = 2, ℓ = 1   

Γ Μ 𝝁𝑨𝑪𝑪 𝝁𝑷𝑹𝑬 𝝁𝑹𝑬𝑪 𝝁𝑭𝑷𝑹 𝝁𝑭𝑺𝑪 𝝁𝑻𝒊𝒎𝒆 

6 10 0.850315099 0.71770102 0,99712312 0.254602569 0.822063888 0.032923581 

10 6 0.84192673 0.707488132 0.996146484 0.269502654 0.814642176 0.035121117 

 

 

From the previous figures we have to answer the question whether it is better to choose a 

higher number of clusters than subclusters or vice versa. Based on the previous experiments, we 

compare the performance of HMCM model for 60 clusters, using different combinations of the 

number of clusters and subclusters and present the results in table 2. As we can observe, choosing 

a higher number of subclusters improves the performance of HMCM model for all error metrics. 

At the same time, the required time for data mapping is decreased. 

  



~ 49 ~ 
 

CHAPTER 9: CONCLUSIONS AND FUTURE WORK 
 

Data mapping is a significant data management process which plays an important role in 

many applications domains. This process become more complex when the data are geo-

distributed in different databases around the world. Data mapping can be improved if we can 

identify relations between the data in the DDBs and the queries that the users send to the server. 

In this thesis, we focus on the efficient mapping of data and propose a solution for an effective 

data mapping in minimum possible time. We are based on the answers of past queries, and 

propose an hierarchical clustering scheme which groups the past queries relying on the similarity 

of the requirements of the queries. Also, we involve a mechanism for the calculation of common 

interest data area between two queries. We adopt this type of strategy to create small groups of 

queries with similar data requirements and try to benefit from the exclusion of non-similar groups 

with an incoming query to reduce the time of response and to prevent the caching of unneeded 

data. We perform an extensive set of experiments to evaluate the proposed model in order to 

confirm its ability to map the data in short time with a small amount of extra unrequired data. A 

possible extension of this work could be the involvement of a more complex methodology for the 

improvement both of error and time metrics. Also, we could adopt a deep learning model that will 

be able to adapt our model to changes in user requirements expressed through queries. 
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