YXOAH OETIKQN EINIEXTHMQN

TMHMA ITAHPO®OPIKHYE KAI THAEIIIKOINQNIQN

AAyop1Opolr BeAtiwotommoinong otn Mnxavikn Evguia

NikoAaog Avamng

I[ITYXIAKH EPT'AXIA

YIIEYOYNOZX

Kwovotavtivog KodopBatoog
Emikoupog Kabnyntng

Aapia XentépBprog 2024

YXOAH OETIKQN EINIEXTHMQN

TMHMA ITAHPO®OPIKHYE KAI THAEIIIKOINQNIQN

AAyop1Opolr BeAtiwotommoinong otn Mnxavikn Evguia

NikoAaog Avamng

IITYXIAKH EPT'AXIA

YIIEY®OYNOX

Kwovotavtivog KolopBdatoog
Enikoupog Kabnyntng

Aapia XemtepBprog 2024

UNIVERSITY OF

THESSALY

SCHOOL OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE & TELECOMMUNICATIONS

Optimization Algorithms in Machine Intelligence

Nikolaos Liapis

FINAL THESIS

ADVISOR

Konstantinos Kolomvatsos
Assistant Professor

Lamia September 2024

«Me arouikn pou euBuvn kai yvwpilovrag Tic kupwaoeis (1), mou mpoBAémovrar amrd ¢
oiaraéeig tne map. 6 tou apbpou 22 tou N. 1599/1986, dnAwvw orTi:

1. Aev mapabétw kouudartia BiBAiwv n dpBpwyv 1 epyaciwv dAAwv autoAeéei xwpic va
Ta MEPIKAEIW O€ EICAYWYIKA Kal XWPIS va avapépw 10 ouyypagéa, 1n xpovoloyia,
oehida. H autoAeéei mapdBean xwpic eioaywyikG xwpic avagopd atnv mnyn, Eivai
AoyokAomn. TMNépav ¢ autoAeéei mapdBeang, AoyokAom Bewpeitar Kar n mapdppacn
gdagiwv amé épya GAAwv, auutrepIAauBavouévwy Kai Epywv CULIQOITNTWY LIoU, KaBwWS
Kal n mapabson aroixeiwv mou dAror ouvéeéav n emeéepydabnkav, xwpic avapopd
arnv mnyn. Ava@épw mavrote ue TANPOTNTA TNV TTHYN KATW Q1o TOV TTivaka 1 ox£€O0Io,
omwg¢ ora mapabéuara.

2. Aéxouar ot n autoAséei TapaBeon xwpic eI0aywyikd, akoua Ki av guvoodeUeTal
ammo avapopd otnv mnyn o€ KAmoio dAAo onueio Tou Keluévou f aTo TEAOS Tou, Eival
avriypan. H avagopd otnv mnyn oto TEAOC .. Iag mapaypdeou f uiag oeAidag, dev
OIKaloAoyei ouppan edagiwv Epyou AAAOU auyypagéa, E0TwW Kal TTapa@PACLIEVWY, Kal
mapouaciact) Tous wg SIKN [Iou gpyacia.

3. Aéxouar Om uttGpxel €TTiong TTEPIOPIOUOS OTO LEYEBOS Kai OTN OUXVOTNTA TWV
TapaBeudTwy ToU UTTopW va evidéw OTnv gpyacia pou eviog eloaywylkwy. Kabe
ueyaro mapdBeua (1m.x. o€ Tivaka 1 Aaioio, KAT), mpoUTTOBETEl €I0IKES PUBUITEIS, Kal
orav énuoaisveTal TPOUTTOBETEl TNV AdEIQ TOU OUuyypapéa 1 Tou €kdOTN. To idlo Kail o1
TIVOKES Kal Ta OXEOIA

4. Aéxoual OAES TIS GUVETTEIES OE TTEPITITWAN AOYOKAOTTHS 1 avTiypa@hg.

Huepounvia: ... /.....120......

(1) «Ormoiog ev yvwaoer Tou dnAwvel weudn yeyovora N apveitar i amokpUtTel 1a aAnbiva ue
Eyypaen utretbuvn dnAwon

TOU GpBpou 8 map. 4 N. 1599/1986 miuwpeitar ue QUAAKIOn TOUAGxIaTOV TPIWV LNVWv. Edv o
UTTaiTIOS QUTWV TWV TTPAEEWV

OKOTTEUE va TTPOCTTOPIOEl OTOV EQUTOV TOU N 0 GAAov TTepiouaiakd opeAog BAamrovrag 1pitov n
OKOTTEUE va BAGwer GAAov, Tiuwpeitar pe kGOeipén péxpr 10 eTwv. »

ITEPIAHYH

2TOX0¢ NG Apovoag Satpifrg eival va TapovoIACEL U1 OAOKAT|PWUEVT] AVAALON
0pPIoUEVOV aAYOPIOU®YV PEATIOTOMTOINONG IOV YPTOIUOTOI0VVTAL OTNV eKmaidevon
HOVTEAWV UNXAVIKNG vonuoovvng. H peAém avtn Ba mapdoyel to asmapaitnto
vrtofabpo ya v Katavonomn Tmwv Aoywv Kal Twv pebodoAoyinv stov kpvoval miow
artd v amodoon kabe aiyopibuov oe eva edopevo mAaioto. H Aettovpykotnta tmv
aAyopiBuwv Ba meprypagel avaivtikd kot Ba kataypagel wg mpog tovg pubuoig
OUYKAL0T|C TOUG, 01 ofmoiol Ba oudnBolv oTo MAQICIO TNG KLUPTNG KAl Un KUPTNG
BeAtiotomoinong. Extog amd 1 Oeswpnmikn Siepevivnomn, ot aAyopiBuot Ba
EQPAPUOOTOUV 0€ OUVEAIKTIKA VELPWVIKA OikTtua, o€ oUVoAo Oedopévwv Tou

TPAYUATIKOV KOOoUOoL kal Ba a&lohoynBei n amoSoor) Toug.

ABSTRACT

The objective of this thesis is to present a comprehensive analysis of
some of the optimization algorithms utilized in the training of machine
intelligence models. This study will provide the background necessary to
understand the reasons and methodologies behind each algorithm’s
perfomance in a given context. The functionality of the algorithms will
be described analytically, and they will be recorded in terms of their
convergence rates, which will be discussed in the context of convex and
non-convex optimization. In addition to the theoretical investigation,
the algorithms will be applied to convolutional neural networks on real-

world dataset, and their performance will be evaluated.

“As a rule, when many options are available, man’s actions are guided by the need to choose
the best possible way. Human activity, indeed, implicates solving (conciously or unconciously)
optimization problems. Moreover, many laws of nature are of a variational character, even if it

is inappropriate in this case to speak of the existence of a purpose.”

- Boris Polyak

Table of Contents

I E PIA H W H ..viiitiietiieeeeeeeeceecccescesscssssssscsssssssssssssscsssssssnse II
ABST R A CT eiieiieeeeeeeeceeecescssssssscsscssssssssssssssssssssssssssssssssss I1
CHAPTER 1-INTRODUCTIONccceeeueesurserenseessessssensessssssensensassssssensansasnsnncs 1
I R & Y o] 1 2N 1
1.2 OPTIMIZATION ALGORITHMS cuvurureeeeeerecncesereresessssesesesssesesasesessssssasasssssssesesassssasasasnsnnene 1
1.3 THESIS-STRUCTURE cueeeterererererereeeecerecncesesesessssssasasesssesssasessssssssasssssnsasesessssssssasasnsnnnns 2
CHAPTER 2-INTRODUCTION TO OPTIMIZATIONcccceesueenerenersncesneeneeenenans 3
2.1 OPTIMIZATION IN IMACHINE INTELLIGENCE «evererererereeeeeeeasacnsesesesesessssasesasssssesesesasasasasennns 3
2.2 OPTIMIZATION CHALLENGES .«euteteretererererererereresesessssssasssnsssesessssssssasssssssssssssasassssssnsnns 5
CHAPTER 3-FIRST ORDER OPTIMIZATION METHODSccccceevreereninensnnences 8
3.1 GRADIENT DESCENT AND ITS VARIANTS teueueerereceresrerecacesserosacessssesssassssesssasassssasssassssssasnss 8
3.2 ACCELERATION IVIETHODS..c.tuteeeretrerecacecreresacessesesssassssesssesassssssnssssssosssassssasssasassesasnss 13
3.3 ADAPTIVE GRADIENT IVIETHODS euvtterecuceerererecerseresacessereracesassssssssssserssasassssasssnsassesasnss 17
CHAPTER 4-EXPERIIMENTS.....cccciteteierererererererrersssssssssesssssasasasasssasasasasasas 24
4.1 PeRFOMANCE IN CIFAR-10 WITH A BASELINE IMODEL ARCHITECTURE eveverererereececncecncesesanenes 25
4.2 PEeERFOMANCE IN CIFAR-10 WITH A MORE COMPLEX IMODEL ARCHITECTURE....ceeveeererererererenes 28
CHAPTER 5-CONCLUSIONSccciuieierererererererererersssssssssssssssssssssssssasssssasases 32
BIBLIOGRAPHY ...cuceeieieininiererererererereresesessssssssssssssssssssssssssesesesesssesssasssasassse 33
APPENDIX A ...cuiuiuiieierererererereressssosssssasasasssssssssssssssasassssssssssssssssssssssssssass 33

APPENDIX B ..ciceuuiiieunniiiannisiennsseansisiennsiennssseessssseansssienssssesnsssssnssssennssssens 42

Chapter 1

Introduction

1.1 History

Since antiquity, people have been interested in optimization problems. According to
Pythagoras of Samos (c. 570-495 BCE), who influenced later philosophers with his ideas,
“mathematics is the path to enlightenment and understanding of the cosmos™ [1]. In the same
way, mathematicians such as Euclid of Alexandria (c. 325-265 BCE), Archimedes of Syracuse
(c. 287-212 BCE), Zenodorus (c. 200-120 BCE), Heron of Alexandria (c. 10-85 CE) and
Pappus of Alexandria (c. 290-350 CE) worked on optimization problems [2]. In contrast to
ancient times, the rapid increase in computing power described by Moore's-Law and the
algorithmic efficiency of the last decade [3] have allowed machine intelligence to make
significant progress in recent years. With the integration of artificial intelligence, the
availability of vast quantities of data, and the enhanced computing power, algorithms can be
applied to solve various tasks including optimization problems. As a result, scientific and
technological advancement is occurring at an accelerated pace, bringing new knowledge and
challenges to society. In this context, deep learning models and their new developed
architectures have the need for efficient implication and the optimization is one of the ways to
achieve this. As automation continue to advance in our era, it is beneficial to understand the
underlying principles of the optimization algorithms.

1.2 Optimization Algorithms

In optimization there are three categories of algorithms distinguished by the type of information
they use to find the optimum of a function:

= Zeroth-order methods
= First-order methods
= Second-order methods

The zeroth-ones, also known as derivative-free or black-box methods, are based on function
evaluation, rather than gradient information. These methods are suitable for complex and high-
dimensional optimization problems, they can handle noisy and non-differentiable functions,
but are generally slower compared to gradient-based methods. The next category, first-order
methods, which this thesis is focused on, typically use the first derivative (the gradient)
information of the function to guide the optimization process. They have a small per-iteration
cost and they are widely utilised in machine intelligence problems, especially in large scale
problems. The final category, second-order methods, are built from a combination of first and
second derivatives of the function (Hessian Matrix). They are typically more accurate, but more

computationally intensive than first-order methods. Specifically, in second-order methods, the
problem is the managing of the size of the inverse Hessian matrix. This problem can be solved
with methods that approximate the Hessian matrix.

1.3 Thesis-Structure

Chapter 2
Presents the meaning and the basic idea of optimization, the challenges of
optimization and different methods that are used in machine learning.

Chapter 3

Focuses on the first-order methods based on Gradient descent and its variants
explaining the main ideas of how they work, the characteristics and their time
complexity.

Chapter 4
Presents the results from the optimizers testing and their perfomance.

Chapter 5
Offers concluding remarks and future directions.

Appendix A & B
For better presentation, some basic definitions, illustrations are included in
Appendix A and Appendix B.

Chapter 2

Introduction to Optimization

Optimizing is the process of finding a better solution in a complex system, with or without
given constraints. In the context of machine intelligence, optimization algorithms are utilised
in order to minimize the objective function, trying iteratively to find the optimal values of the
model parameters. The challenge often lies in identifying an algorithm that can reach a possible
solution, such as a stationary point! x*. This is followed by the objective of accelerating the
convergence of the algorithm and ensuring that it reaches a solution with a low objective value,
in this case, the global minima. In practice, the goal may not always be to find the best solution
for various reasons, including computational complexity, uncertainty and real-world
constraints that limit the feasible solution space. Nevertheless, the final goal of a model is to
make a function approximation which leads to the desired results. This approximation is
evaluated using specific metrics that measure the model’s perfomance. However, this goal is
not solely dependent on the optimization techniques and algorithms employed.

2.1 Optimization in Machine Intelligence

In machine intelligence, there are two main branches of continuous optimization? that are
widely used: unconstrained and constrained optimization. However, unconstrained
optimization is encountered in many standard machine learning tasks, whereas constrained
optimization is employed when the problem exhibits specific limitations or the structure of the
solution space must be respected. For example, this occurs in Support Vector Machines
(SVMs), where the margin constraints are fundamental to the problem formulation.

Definition 1
Unconstrained optimization involves the task of minimizing (or maximizing) a function f(x)
without any restrictions on the domain of x. Formally, we seek to find:

min f(x)

X€ERM

where f: R™ — R is a continuously differentiable function.

Definition 2
Constrained optimization involves optimizing the function f(x) subject to constraints on x:

min f(x)
X€ER™

1 In optimization a stationary point of a function f; where f:R™ — R is considered a point where the gradient is zero
(Vf(x*) = 0). The stationary point can be a local minimum or a local maximum or a saddle point.

2 Continuous optimization involves finding the optimal value of a function, where variables can take on any value within
a continuous range.

Subjectto g;(X) < ¢;

Where i =1,..,n are inequality constraints and j=1,..,m are equality contraints.

In machine learning, particularly in supervised learning during the training phase of a model,
an overall loss function L(60), or empirical risk, is typically implemented to achieve an
objective.

1 n
LO) = = > L(f(i 0,7

Where, 0 represents the parameters of a differentiable function f', n is the size of samples and
L symbolizes the loss function that quantifies the difference between the predicted label y;" =
f(x;; 8) and the true label y;.

The objective of this formula is achieved by perfoming empirical risk minimization which finds
the optimal solution 8* € arg min L(0). In this unconstrained optimization the first and second
derivatives are crucial for characterizing and computing the optimal solutions and more
specifically the local minima and the global minima.

Definition 3

“A vector x* is an unconstrained local minimum of a function f: R™ — R if therean € > 0
such that [4] :
f&) < f(x), Vx e R®™ with[[x —x*|| < ¢

This means that x* is a local minimum if, within some neighborhood of radius & the value of
the function at x* is less than or equal to the value of the function at any other point in that
neighborhood.

A vector x* is an unconstrained global minimum of /" if [4]:
fx*) < f(x), Vx e R"

This means that x* is a global minimum if the value of the function at x* is less than or equal
to the value of the function at any other point in the entire domain R™.”

In general, the finding of the global minimum is regarded to belong to the class of NP-hard
problems. However, for certain classes of functions f, there are some desirable properties with
strong theoretical guarantees that allow efficient optimization, using algorithms such as
gradient descent. These functions are referred to as convex functions. The fundamental concept
is that when f is convex, there is an equivalence between ||V f(x)|| = 0 and the fact that x €
argmin,.paf(x). For a more comprehensive understanding of the terms, definitions are
provided in Appendix A.

The main algorithms for finding local and global minima using gradients in machine learning
are gradient descent and its variants, which are described in the next chapter. The classic
gradient descent (Vanilla gradient descent) algorithm finds applications in various optimization
problems. Some notable applications include:

= Linear Regression: In linear regression, the gradient descent algorithm tries to find the
optimal values for the regression coefficients that minimize a cost function such as the
sum of squared errors.

= Logistic Regression: In logistic regression the minimizing of the logistic loss function
using the gradient descent leads to find the optimal parameters that maximize the
likelihood of the observed data.

= Support Vector Machines: Gradient descent is used in support vector machines to find
the optimal hyperplane that separates data in different classes.

= Neural Networks: In neural networks, gradient descent is employed to update the
weights and biases during the training process. This enables the network to learn and
have better performance.

In optimization, algorithms such as gradient descent and its variants use the derivative
information of the objective function f(x) to calculate the search direction. The search direction
is crucial because it determines the direction in which the algorithm move from each iteration
point to find a local minimum. Algorithms like exact line search need the search direction to
find the optimal step size (see in Appendix A).

2.2 Optimization Challenges

One of the main challenges in optimization is the existence of saddle points. Saddle points need
to be avoided because their slopes have different directions, meaning that they have
characteristics of both positive and negative curvature, where the gradient is zero. This can
cause first order methods to get stuck or converge very slowly in suboptimal solutions.
Therefore, it is important to navigate through them efficiently. Some ways to escape from these
points are by injecting random perturbation or using the negative eigenvector of Hessian [5].

Moreover, local minima don't help the algorithms to find the best possible model parameters
during optimization. Especially in non-convex optimization problems, local minima can trap
the algorithms. Therefore, there is no general guarantee of finding a better local minimum or
the global minimum. As a result, the optimization can be highly dependent on the initialization
and algorithm parameters. In general, while first-order methods have good convergence
guarantees for convex problems, these guarantees are generally weaker for non-convex
problems.

Another challenge is the ill-conditioned Hessian matrix problems, which can lead to slow
convergence and difficulty in finding the optimal solution. First order methods do not explicitly
use the Hessian matrix, but they are affected by issues related to ill-conditioning in the

optimization landscape. When the Hessian matrix is ill-conditioned, it implies a large disparity
between its eigenvalues, leading to steep regions with high curvature and flat regions with low
curvature in the loss surface. This makes optimization challenging because steep regions
require small step sizes to avoid overshooting, while flat regions require larger step sizes to
make progress. Adaptive learning algorithms such as Adam and RMSprop, described in the
next chapter, are often used to mitigate this problem.

An additional problem in optimization and very common in deep learning training is vanishing
and exploding gradients. Especially in deep learning, the problem of vanishing or exploding
gradients can occur, where gradients become extremely small or large as they propagate
through many layers. This can lead to learning difficulties, and the methods that are typically
used to address these issues are proper activation functions, adaptive optimization algorithms,
batch normalization, residual connections and gradient clipping.

Furthermore, machine intelligence models often require large datasets. This means that,
substantial computational resources are necessary in order to manage the number of the model
parameters and the complexity of the algorithms. Thus, limited compute resources pose a
significant challenge and can limit the number of experiments that can be performed, slowing
down the research and development process. Consequently, efficient algorithms and hardware
accelerators such as GPUs and TPUs are essential to overcome these limitations.

One of the most important parameters that needs to be properly adjusted in the optimization
process is the learning rate. Besides the ability of adaptive algorithms to adapt the learning rate
of each optimization problem, and the standard method of a fixed learning rate, there are some
other strategies that adjust the learning rate during the training of machine learning models and
they are called learning rate schedules. These schedules are designed to improve convergence
and model performance. Some of these learning rate scheduling techniques are:

= Step Decay: This method reduces after a specific number of epochs, the
learning rate. It is used especially when a high initial learning rate is required
for fast learning.

= Exponential Decay: This technique decays the learning rate exponentially over
time. It is used when a smooth and continuous decay is needed, and it doesn’t
allow the learning rate to become too small very quickly, unlike step decay.

= Polynomial Decay: In this method the learning rate is decreased following a
polynomial function and can be more stable compared to exponential decay.

= Cosine Annealing: This technique gradually decrease the learning rate
following a cosine function. It can be combined with restarts.

* Warmup: This method starts with a very low learning rate and gradually
increases it to the the desired value [6]. It is also combined with other learning
rate scheduling strategies, thereby enhancing the stability and convergence of
the training process.

= Cyclical Learning Rates: This technique cycles the learning rate between a
minimum and a maximum value, following a triangular or sinusoidal pattern.

By periodically increasing the learning rate, it helps to escape from local
minima.

= One-Cycle Policy: This method consists of a single cycle of increasing and then
decreasing the learning rate, sometimes finishing with an even lower rate than
where it started. This policy helps to escape poor local minima and then settle
in a better local minima with a lower learning rate.

= Reduction on Plateau (ReduceLROnPlateau): This technique monitors a
specific metric during training, usually validation loss. If, after a certain number
of epochs, there is no improvement in the metric, the learning rate is reduced by
a chosen factor to allow the model to learn. If the metric stops improving, it may
indicate a plateau, and that’s why the model continues to learn at a slower rate,
increasing the likelihood of finding a better minima. Otherwise, the model may
exhibit overfitting to the training data or oscillate missing out a more optimal
solution.

The challenge of the above scheduling techniques is to use the one that fits better on the specific
training scenario of the model with the desired rate of learning rate reduction. The scheduling
techniques can also be combined with adaptive algorithms. The choice of the most appropriate
technique depends on the specific characteristics of the training process and the model’s
behaviour.

The last important challenge in deep learning is the choice of the best combination between the
architecture of the model and the optimizer. The architecture affects the perfomance of the
optimizer. For example, the deep neural networks with many layers have bigger complexity
than other models. In this way, the optimization process is more challenging because the
optimizer need to navigate a more complex loss landscape with possible saddle points and local
minima. Thus, the choice of optimizer for a specific architecture require testing and tuning.

Chapter 3

First-Order Optimization methods

First-Order optimization methods use the derivative information of the objective function to
guide the optimization process. This chapter presents an analysis of the fundamental principles
and the operation of the main algorithms.

3.1 Gradient Descent and its Variants

The earliest known reference to gradient methods dates back to Augustin-Louis Cauchy (1789-
1857) who discussed gradient methods in his work on calculus and optimization [7]. Since that
time, the algorithm has become a widely used tool in machine intelligence and is commonly
used in the optimization of neural networks. Specifically, what it does is that it iteratively
adjusts parameters leading to the direction of the steepest slope. But, because the gradient
points towards the direction of steepest ascent, the negative term is introduced to ensure that it
moves downhill, in order to minimize the function. Mathematically, the parameters are updated
and calculating the derivative they give the slope in every point. In this way, the algorithm
makes small changes in the input (weights, biases) to obtain the corresponding change in the
output (predicted value). This section, will present the theoretical background of the three
variants of the algorithm.

Batch Gradient Descent (BGD)

The first and classic version of gradient descent where the entire training dataset is used to
compute the gradient of the cost function at each epoch is called Batch Gradient Descent. It is
widely used in linear regression and logistic regression, but unlike the next two variants, not
so much in deep learning where the models have many parameters and the training set is
typically large. This algorithm is particularly useful for convex optimization, because in the
case of a convex function, it is implied that any local minimum is also a global minimum
(Appendix A). Specifically, for a differentiable function f, an initial point x, is defined by the
following update rule:

xt+1 == xt - ntVF(xt), t = 0,1, e

Where x;,; is the updated state of parameters after applying the above update rule, x; is a
parameter at iteration t, which represents the current state of the parameters being optimized
(e.g. weights and biases), the value n; is the learning rate or otherwise the step size and
VF(x.) is the gradient of the loss function for the #-th iteration. This gradient is a vector of
partial derivatives and gives the rate of change of the function. In general, the learning rate is
a crucial hyperparameter. It determines the rate at which the parameters are updated. If it is
small, the algorithm will converge slowly, but if it is too large, the algorithm may oscillate

around the minimum or may even diverge. There are a number of methodologies that can be
employed in order to select an optimal step size. Furthermore, there are techniques that are
specifically designed for the purpose of finding the optimal step size in the context of
optimization. These techniques are the backtracking line search and the exact line search which
are described in Appendix A.

Algorithm: BGD

Inputs: Cost function J(x), learning rate n, iterations N
1. Initialize: Random x

2 Fori=1toN

3. Compute the gradient with respect to x for all the data points:
4, gradient = Vx X J(x)

5 Update the variable x = x - n * gradient

6 End For

7. Return model variable x

The upper bounds® on the convergence rate with the optimal step sizes of gradient descent for
each property of the objective function are described by the following theorems [8] :

Theorem 1
“Let f:R™ - R be convex and L-Lipschitz. For T steps with step size:
llx — x.l2
n=—————

LNT
Then the following holds:

f(FEix) = FGe) < Pt

Theorem 2
“Let f:R™ - R be convex and B-Smooth with step size n=1/f, then it holds:

flxe) = f(x) g% -

In addition to being smooth, if fis strongly convex then there is a geometric decay which is 1-
k, where k is the conditioning of the proplem and is equals to: k = % 4,

Theorem 3
“Let f: R"™ - R be a-strongly convex and f-smooth. Then, gradient descent with step size
n =2 / a+f satisfies:

£ = £ <5 (1=5) e = i

3 An upper bound on the convergence rate is a valuable tool for the assessment of an algorithm's efficiency.

4 Where a and B are, respectively, the strong convexity and the smothness constants.

TABLE I
CONVERGENCE RATE OF GRADIENT DESCENT

Convex and L-Lipschitz 0(1/+T)
Convex and $-Smooth o(1/7T)
a-Strongly Convex and $-Smooth5 0(e™

According to the table, Lipschitz convex functions have a sublinear® convergence rate
0(1 / T), which is slower than the rate of smooth functions, but is useful for functions that are
not differentiable at their minimum, such as subgradient’ functions. Moreover, the best upper
bound for gradient descent is achieved with the strong convexity and smoothness conditions
which give exponential convergence®.

Based on convex optimization problems, gradient descent guarantees convergence to the global
minimum given a sufficient learning rate. However, in non-convex optimization, the algorithm
may get trapped in saddle points or plateaus or converge to local minimum instead of the global
minimum. As mentioned before, when the dataset is large is not so efficient to use this
algorithm, because it uses all the training data to compute the cost function. Consequently, the
computational expense and time required to compute are considerable. In such cases, it is
preferable to utilize alternative optimization algorithms.

Plateau

Saddle Point

Fig. 1. Saddle point and Plateau as illustrated in [9].

5 Under certain conditions (1 — k)T can approximate e~ . This is especially true when k is small.
¢ Sublinear means that the the rate at which an algorithm approaches the optimal solution decreases as the number of
iterations increase. An iterative algorithm has sublinear convergence if the error € at iteration k satisfies: g, < k—cp for

constants c, p.
7 Subgradient is a generalization of the gradient concept to convex functions, which may not be differentiable (Appendix A).
8 Exponential convergence is often referred to as linear convergence because the error decreases in a geometric progression
over iterations in the context of iterative optimization algorithms. Suppose &, = f(x;) — f(x*), if the error decreases as:
gx41 < pEg, with constant 0<p<1 this implies that: &, < p¥e,.

10

Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent selects a random mini-batch of training samples instead of
processing the entire dataset during each iteration. In particular, the update rule for SGD is:

Xep1 = X — N VF(xe), t=01,..

where F;(x) represents the aggregate of the training loss for a given mini-batch.

The learning rate n, should be properly tuned in order to guarantee efficient convergence
without oscillations or divergence and it is common to use a diminishing step size.

In summary, the way the algorithm works is that at the beginning of each epoch, the training
samples are randomly mixed and divided into multiple mini-batches. Then, at each iteration
the gradient is computed and an update of weights is perfomed while one data instance is loaded
into memory.

Algorithm: SGD

Inputs: Cost Function J(x), learning rate n, iterations N
1. Initialize: Random x

2 Fori=1toN
3 Shuffle the data points
4 For each data instance (x;, y;)
5. Compute the gradient on a training instance (x;, y;):
6. gradient = VxJ(x, x;,y;)
7 Update parameters: x = x - n * gradient
8 End For
9. End For
10. Return model variable x

SGD is a computationally efficient method, although in theory it has a lower convergence rate
(TABLE II). In practical terms, however, it is faster than gradient descent because it performs
more iterations in the same amount of time. Moreover, due to its computational efficiency, it
requires less memory per iteration and allows for the effective utilization of parallel computing
resources, making it feasible for typically large datasets. However, the algorithm is
characterized by high levels of noise and variance due to its stochastic nature, the use of small
subsets and the fact that we do not take the average gradient over the entire data set. In
particular, the noise causes fluctuations in the objective function, which leads to slower
convergence, but sometimes this can help, especially in deep learning models, to obtain
potentially better local minima, escape saddle points, and improve generalization capabilities.
Consequently, the same step size will oscillate around the optimum. This is known as the Noise
Ball effect. To avoid bouncing around the minimum, a decaying step size is used’. In terms of
the updating cost of SGD, it is independent of the size of the dataset and can reach linear
convergence. When applied to a convex function the upper bound is 0(1/VT) after T iterations
and under strong convexity it is 0(1/T) .

. . . . n,
° In this case, the algorithm uses a decreasing step size n, = TO .

11

TABLE I
COMPARISON OF GRADIENT AND STOCHASTIC GRADIENT DESCENT CONVERGENCE RATES

Algorithm GD SGD
Convex 0(1/ﬁ) 0(1/\/T)
Convex and -smooth o(1/7) 0(1/T)
Strongly Convex 0(e™ 0(1/T)

Mini-batch Gradient Descent (MBGD)

This is another variant that uses also a small subset of training examples at a time (mini-batch),
but operates on small batches of examples with batch size greater than one. As a result, it has
reduced variance compared to SGD (fig. 2) and more stable convergence, balancing the
computational efficiency of SGD and the stability of gradient descent as it seems in fig. 3.

MBGD requires tuning of the batch size parameter. According to the authors of [10], ““ a batch
size between 2 and 32 is suitable for optimal performance in deep neural networks, although
larger batch sizes may be advantageous when parallelism is a priority ”. In particular, if the
batches are small, additional noise is added to the training process, which reduces the
generalization error. While, in the case of larger batches, an improvement in stability and a
reduction in variance are observed, but with a slower convergence towards the solution. The
resulting accuracy is enhanced and the gradient error is diminished. In terms of generalization,
the large batch size can maintain the perfomance.

(1)Batch (2)Stochastic (3)Mini Batch
Gradient Descent Gradient Descent Gradient Descent

M The Learning Rate % The Minimum Value

Fig. 2. Differences in training using Gradient Descent variants as illustrated in [11].

Algorithm: MBGD

Inputs: Cost Function J(x), learning rate n, iterations N, mini-batch size b
1. Initialize: Random x
Fori=1to N
Shuffle the data points
Split the data into B mini-batches of size b:
For each mini-batch B
Compute the gradient with respect to x on the mini-batch B:
gradient =1/b*Vx ZJ(x;B)
Update parameters x = x - n * gradient
End For
End For
Return model variable x

=
FooXNRE W

[l

12

MBGD is capable of handling data that is not uniformly distributed, as it processes a batch size
of training examples in each iteration, thereby creating a more balanced representation of
different classes within each mini-batch. However, it requires careful construction of mini-
batches and potentially additional techniques such as data shuffling, stratified sampling, over-
sampling and under-sampling.

The convergence rate of MBGD is between that of SGD and BGD, and it achieves linear
convergence in strongly convex functions with well-chosen batch sizes and learning rates.

— Ful . \ — Ful
Stochastic \ \ tochastic
Mini-batch, b=10 \ \ ini-batch, b=10

Mini-batch, b=100 ini-batch, b=100

|
|

0.65
1

0.65

Criterion fk
0.60
1
0.80
1

Criterion fk
Criterion gap fk-fstar

0.55

— Full
\ \ Stochastic
PN o Ay Mini-balch, b=10
R L VIV \ Mini-batch, b=100
. . 1 © T T T T T T
1e+02 1e+04 1e406 0 10 20 s0 40 s0

0.50
L
5
)]
N
)
<|
/
(
0

Iteration number k Flop count Iteration number k

Fig. 3. Convergence rates between gradient descent, SGD and mini-batch [12].

In the above left figure it is described how each method reduces the objective function over
time. The middle figure, which focuses on computational efficiency, shows convergence
behavior relative to computational cost and the right figure provides a view of how each
method converges to the optimal solution, especially when dealing with large differences in
criterion. In the preceding algorithms, the presence of noise results in a reduction in the rate of
convergence of the algorithm. The subsequent algorithms try to address this issue.

3.2 Acceleration Methods

These algorithms, as the name implies, are employed because they have a larger step size than
the gradient descent algorithm, and thus achieve better convergence rates under certain specific
conditions. The main idea here is that the previous gradients influence the current update,
particularly in regard to its future trajectory. The newly introduced term, the momentum term,
is of pivotal importance for the performance of these methods.

Momentum

Momentum is one of the most popular algorithms for large-scale machine learning problems.
It is usually referred to as Heavy Ball (HB) method, which was introduced by Boris T. Polyak
[13] and is considered as a simple type of momentum methods. The core idea behind the
algorithm is that it uses an accumulated velocity vector that represents an exponential moving
average of all of the gradients influenced by past gradients. The method can be applied to
gradient descent, but in deep learning it is preferred to be combined with batch methods.
Specifically, momentum uses the previous two iterates when computing the next one. This
helps to smooth the noise of the SGD, and in particular is designed to speed up the convergence
by dealing with high-dimensional spaces, small and noisy gradients [14]. Consequently, the
method attempts to address the issue of variance, reducing the oscillations, and allows to use a

13

larger step size in regions with low curvature, thereby achieving better convergence and
stability.

gradient descent
momentum

xq

Fig. 4. Gradient descent and the momentum method compared on the Rosenbrock function as illustrated in [15].

The momentum update rule is:

Vep1 = Bve — nVf(xy)

Xt+1 = X¢ + Vpiq

where v;,4 is the velocity at iteration t+1 and f is the momentum co-efficient which is
typically between 0 and 1. Some studies suggest the values “ 0.5, 0.9, and 0.99 as common

settings ” for this value [14] [16]. The largest step size when using momentum is described by
gl
1-B
so the algorithm will accelerate until it reaches the terminal velocity. If =0.9, the terminal
velocity is equal to 1/(1-0.9) = 10 . Consequently, the rate of change is accelerated ten times
faster the gradient descent method.

the formula . This means that if the gradient g remains constant, the slope won't change,

The interpretation of Polyak’s heavy ball method rule is [17]:

Xep1 = Xe — V() + B — x¢-1)
where x; — x;_ 1s the difference between the current and the previous position and /S is the
momentum co-efficient that heavy ball method use to determine the descent direction.

Algorithm: Momentum

Inputs: Cost Function J(x), learning rate n, momentum co-efficient 8
1. Initialize: Random x
Initialize: Av=0
Fori=1to N
Shuffle the data points
Compute the gradient g =VxJ(x,x;,y;)
Update term Av=F*Av+(1-B)*g
Update parameters x=x-n*Av
End For
Return model variable x

© ook Wi

In a paper [18], it is proved a global sublinear convergence guarantee for HB for convex and
smooth functions. While, Polyak proved that the HB method has linear convergence when
minimizing strongly convex quadratic functions for good tuning of the step size n and the

14

coefficient value B. As a result, the algorithm exhibits a faster convergence rate than plain
gradient descent.

Theorem 4 [19]
“Let f be a quadratic function which is B-smooth and a-strongly convex. For:

)

There exists a constant C such that for any t € N,

2
Fo) = £Ge) < €62 (Bl e — a2

The above theorem means that the optimal rate of convergence for strongly convex quadratic
T
functions is O <(1 — \/%) > but it doesn't work for all strongly convex and smooth functions.

For example, there is a study [20] that shows that the heavy method fails to converge for certain
strongly-convex and smooth functions and another that shows that there are simple quadratic
problem instances that do not improve the convergence speed of SGD [21]. Yet another paper,
reports that the convergence rate of Stochastic Gradient Descent with Momentum (SGDM) is
as fast as SGD for smooth objectives under both strongly convex and nonconvex settings.

Nesterov Accelerated Gradient Descent

One other type of momentum methods is Nesterov’s accelerated gradient (NAG), which have
been found by Yurii Nesterov. The method has been enhanced through the utilisation of a
lookahead step and the incorporation of the momentum term. In contrast to the Polyak
algorithm, the gradient is evaluated at a future approximated point (after the current velocity is
applied), and not in the current parameters x;, which helps the algorithm to converge faster and
more smooth because of the anticipation of future gradients which are used for early correction.
Moreover, the algorithm converges for general convex functions, not only for some carefully
built convex optimization problems.

—— momentum
Nesterov momentum

x1

Fig. 5. Nesterov and the momentum method compared on the Rosenbrock function as illustrated in [15].
The iteration formula of NAG consists of the following steps :
Verr = ve —nVf (ye)

Ve = x¢ + By,

15

Xt41 = Xt + Veyq

Combining these sequences as one the update rule of the algorithm is [19]:
Xep1 = X — Ve + B(xe — x¢-1)) + BOcr — x¢-1)

where, y; = x; + B(x; — x¢_1) 1s the lookahead point at which the gradient is calculated and
B (x; — x;_1) is the momentum term.

Algorithm: Nesterov

Inputs: Cost Function J(x), learning rate n, momentum co-efficient 3
1. Initialize: Random x
2 Initialize: Av=0
3 Fori=1toN
4 Shuffle the data points
5 Compute lookahead x = x +*Av
6. Compute the gradient g =Vx J(X, x;, y;)
7 Update term Av=B*Av-n*g
8 Update parameters x=x-n*Av
9 End For
0

10. Return model variable x

The following theorems describe the convergence rates of the algorithm in each case [19]:

Theorem 5

“Let f be an a-strongly convex and -smooth function, then according to the iteration
R _J/B-Va,

formula, for all t € N with n=1/f and 8 JRiva

fe) - fex) <2(1- J;)T (FG) - Fx) ™

According to the above theorem, with the specific choice of parameters Nesterov’s method
T
converges at a linear rate with an upper bound complexity of O <(1 - \/%)), which is true

for all stronlgy convex functions and not just the quadratic ones as it happens in the heavy
ball method.

While, in the case of smooth convex functions the convergence rate of Nesterov’s method is

0 (T_12) according to the next theorem:

16

Theorem 6
“Let f be an f-smooth convex function, with n=1/B, then for all ¢t € N:

2L ”
fOe) = f(x) < o I — xall?

The importance of NAG algorithm is based to the fact that it achieves the optimal convergence
rates among gradient methods for both strongly convex and smooth convex functions. The
table below presents the rates in contrast to the gradient descent algorithm.

TABLE III
COMPARISON OF GRADIENT DESCENT AND NESTEROV’S ALGORITHM CONVERGENCE RATES
Algorithm GD NAG
Smooth Convex Functions o(1/T) 0(1/T)?
Strongly Convex and Smooth Functions _r 2
gly 0 (e k) A PRC
0.9 0.7
= SHB_0.001 = SHB_0.001
0.8 — SNAG_0.01 — SNAG_0.01
— 5G_0.01 0.5 — 5G6_0.01
07
5 0.6! 5 05
'go.s @
0.4
< 04 £
= 0
Los Zos
0.2
02
0.1
0'00 50 100 150 200 250 300 0'10 10 20 30 40 50 60
iterations (*10000) iterations (*50000)

Fig. 6. Accelerated methods and SGD perfomance as illustrated in [21]

3.3 Adaptive Gradient Methods

The learning rate is an important hyperparameter for optimization algorithms. As discussed in
previous sections, if the step size is very small, the updates will take a lot of time to update the
parameters. Moreover, in some cases where the data is high-dimensional or sparse, the constant
learning rate may not help the model converge because the learning update is inefficient.
Therefore, it is necessary to dynamically change the learning rate to achieve convergence.
That’s the main goal of adaptive gradient methods. They aim to have a better efficiency than
the other gradient-based optimization algorithms by adjusting the learning rate for each
parameter. These algorithms approximate the diagonal elements of the Hessian matrix by
calculating the squared gradients. In practical applications, the squared gradients can be used
as a surrogate for curvature, providing a way to understand how steep or flat the loss function
is. This approach can be beneficial in many scenarios, particularly in deep learning, where the
calculation and utilisation of the full Hessian matrix is a computationally expensive process.

17

Adagrad (Adaptive Gradient)

Adagrad is an optimization algorithm that adjusts the learning rate for each parameter based
on the sum of squared gradients calculated during training. This means that the historical
gradients determine how small or large the learning rate is. Thus, if the parameters have larger
historical gradients will have smaller learning rates and vice versa. The advantage of Adagrad,
is that it helps deal with sparse data where the gradient vectors have zero or near-zero
components by ensuring that the steps taken in each dimension are appropriately scaled based
on the historical gradients.

The learning rate of the algorithm is adapted by this accumulated sum, of squared past
gradients:

N
Ge=) VfC)Vf T
t=1

However, if this sum keeps growing, it results in exploding sums. This, in turn, causes a
continual decay of learning rates that tend to zero, which lead to slow convergence and
ultimately halts the learning process. This can cause the algorithm to stop making progress
before reaching the optimal solution, especially in non-convex optimization problems or when
training over long periods.
The iteration formula of Adagrad is [16]:

n

Xe+1 = Xt —
¥ VG + €

where: “ G, 1s a diagonal matrix, where the diagonal elements are the sum of the squares of the

Vf(xe)

past gradients and ¢ is a small constant with a value usually set to 10 , which prevents division
by zero.”

Algorithm: Adagrad
Inputs: Cost Function J(x), learning rate n
1. Initialize: Random x
2 Initialize: matrix G=0
3 Fori=1toN
4 Shuffle the data points
5. Compute the gradient g = Vx J(x, x;, ¥;)
6. Update the matrix G=G+g*g”
7
8
9

n

Jdiag(G)+e g

Update parameters x = x —

End For
Return model variable x

th

In terms of convergence, Adagrad is almost certain to asymptotically convergent'” in the non-

convex problems, meaning in mathematical terms that: gim Ve(xe) =0

10 Asymptotic convergence means that as the number of iterations t approaches infinity, the parameters x; approach a critical
point of the objective function.

18

This implies that the gradients become small, indicating that the parameters are approaching a
point where the objective function is flat and no further improvement can be made. In addition,

Adagrad provides sublinear convergence 0(1 /NT) in convex optimization, while for non-
convex objectives a rate of 0(10 g(T) NT) [22].

Adadelta

AdaDelta is an extension of Adagrad designed to address some of its limitations, in particular
the problem of learning rate decay by using a moving average of squared gradients. The core
idea is that it keeps track the historical gradients rather than accumulating them over time as
AdaGrad does. In this way, learning progresses even after many iterations [23]. Adadelta is
inspired by the exponential moving average that is used in momentum.

The update rule of Adadelta [16]:

E[g*]; = pE[g®]i—1 + (1 — p) g

Where E[g?],is the exponentially decaying average of past squared gradients, p is the decay
rate, which usually is set to 0.9 and gt is the gradient at time step t.

So replacing the diagonal matrix G, with the moving average of past squared gradients E[g?],,
the parameter update is equal to:

Ay = ——=¢g
‘ E[g?]; + ¢ ‘

Then, the update is:
E[Ax?]; = pE[Ax?]¢—1 + (1 — p)Ax?
RMS[']t': E[.z]t‘l'g

Knowing that Newton's Rearrangement Method is:
0
-
9T 9 Of

Ix? I9x2 Ox
Given that the RMS[A,]; is unknown, we assume that the curvature is locally smooth and we

approximate it by taking the square root of the accumulated squared parameter updates from
previous steps. So, the update parameter of Adadelta is:

19

RMS[Ay]e—1

= " TRMS[g], ¥
Xep1 = Xe Ay,

As it seems, Adadelta eliminates the need for an initial learning rate n by normalizing updates
using the ratio of the RMS (Root Mean Square) of recent gradients to the RMS of recent
parameter updates. This makes Adadelta more robust in models where manually tuning
learning rates can be challenging.

The lack of strong theoretical convergence guarantees in Adadelta can be seen as drawback
compared to some other optimization methods. But, its empirical performance often
demonstrates faster convergence compared to other algorithms, particularly in non-convex
optimization scenarios.

Algorithm: Adadelta
Inputs: Cost Function J(x), learning rate n
Initialize: Random x
Initialize: matrix G=0
Initialize matrix X=0
Fori=1toN
Shuffle the data points
Compute the gradient g = Vx J(x, x;, ¥;)
Update the matrix G=p*G+(1-p)g*g”
n

Update variable x = x — NG g
0. Ax=— JdiagQX)+e g

10. Update X = p*X+(1-p)*X*XT

11. Update parameters x = x+Ay

12. End For

13. Return model variable x

®NOUE WD

RMSprop

RMSprop (Root Mean Squared Propagation) is another extension of Adagrad, which proposed
by Geoffrey Hinton. Actually, RMSprop is similar to the initial update vector of Adadelta in
the previous section. The algorithm, like Adadelta, modifies the accumulation of past gradients
by giving more weight to recent gradients and less weight to older gradients, thus preventing
the learning rate from decreasing too fast. The update rule is [16]:

E[g*]; = pE[g®]i—1 + (1 — p) g

Xe41 =X = (77— Ot
E[g*]e + €

20

where p is recommended to “be set to 0.9 and a good default value for the learning rate n is
0.001” [16]. In contrast to Adadelta, RMSprop in his update rule requires the specification of
an initial learning rate n, which needs to be tuned.

Algorithm: RMSprop
Inputs: Cost Function J(x), learning rate n
Initialize: Random x
Initialize: matrix G=0
Fori=1toN
Shuffle the data points
Compute the gradient g = Vx J(x, x;, ;)
Update the matrix G=p*G+(1-p)*gg”
Update parameters x = x — m g
End For
Return model variable x

L0 NOUTE W=

In terms of optimization, RMSprop achieves sublinear convergence rates in the context of non-
convex stochastic optimization, for a given batch size. It also converge faster than other
optimization algorithms, especially in deep neural networks with many layers. This happens
because it can efficiently adjust the learning rate for each step, which is useful for complex
with a wide number of feautures optimization models.

Adam

Adam (Adaptive moment Estimation) is another adaptive learning rate optimization algorithm.
It 1s appropriate for big data problems, and it works as a combination of RMSprop and
momentum. Specifically, Adam utilises the past squared first-order gradients, like RMSprop
and the past first-order gradients similar to momentum [16]:

my = Bime_q + (1 — B1)g:
Ve = Boveog + (1 = Br)gs”

“Where: m; and v, are estimates of the first moment (mean) and the second moment (
uncentered variance) of the gradients. The parameter 5, is the decay rate of the first moment
and [, is the decay rate of second moment which are typically set to around 0.999” [16]. These
two estimates, make the algorithm to adjust the learning rate for each parameter.

Especially, the exponentially weighted moving average of the gradients (mean) provides
information about the average direction in which the parameters should be updated and helps
to smooth them, reducing the noise. While, the exponentially weighted moving average of the
squared gradients (uncentered variance) measures the magnitude of the gradients, which is

21

essential for ensuring stability and preventing the step size from becoming too small or too
large, during the optimization process.

The authors of Adam [24], observed that when these two vectors are initialized as zeros, they
are biased towards zero. This problem is overcomed by computing the bias-corrected first and

second moment estimates:
me A V¢
T, Ve = T
1-61 1-p;

T,ﬁ,tz

Then using these estimates yields the Adam update rule:

n

Xt41 = X — —F/——
VUt €

The algorithm is stable because of the per-parameter adaptation of the learning rate and works

~

mg

well in non-convex problems with sparse or noisy gradients and high dimensional space.
However, a study [25] shows that the exponential moving average in the Adam and RMSprop
algorithms can cause non-convergence by providing an example of simple convex optimization
problem. According to another study [26], Adam achieves the convergence rate of 0(1 /T)
in the non-convex stochastic setting “by requiring the batch size to be the same order as the
number of maximum iterations”.

Algorithm: Adam

Inputs: Cost Function J(x), learning rate n,decay rates 31,32
1. Initialize: vector m=0

2 Initialize: vector v=0

3 Initialize: matrix G=0

4 Fori=1toN

5. Shuffle the data points

6. Compute the gradient g =Vx J(x, x;, ¥;)

7 Update vector m = f1*m+(1-B1)*g

8 Update vector v= B2*v+(1-B2)*gg

9. Compute bias-corrected m =m / (1 — ;")
10. Compute bias-corrected ¥ = v / (1 — B,")

n ~

11. Update parameters x = x — e
12. EndFor

13. Return model variable x

In this research [27], Adam is identified as a strong and reliable optimizer that consistently
performs well across a variety of deep learning tasks. The study demonstrates that despite the
emergence of newer optimization methods, Adam often remains competitive and is not
significantly outperformed by these alternatives. Moreover it emphasizes the benefits of
tuning'! the algorithm and combining it with other optimizers like RMSProp and NAG for
improved perfomance. If it is combined with NAG, then the following algorithm (Nadam)
arises.

1 Adjusting the hyperparameters of the optimizer (such as learning rate, momentum).

22

Nadam

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is an adaptive algorithm that
extends the Adam by incorporating Nesterov momentum. This implies that the algorithm
benefits from the accelerated Nesterov method, which accelerates the convergence and
smooths out the learning process, enhancing in this way the stability.

In his paper [28], Timothy Dozat demonstrates that Nadam outperforms other algorithms,
including Adam, in terms of training and validation loss for a convolutional autoencoder.

The update rule of Nadam arises from few modifications of NAG and Adam [16] :

n ., (1=P1)g
Xe41 = X¢ _A—<31mt +—1tt
Dot + € 1-p

Algorithm: Nadam

Inputs: Cost Function J(x), learning rate n, decay rates 1,52
1. Initialize: m=0

2. Initialize v=0
3. Fori=1toN
4, Shuffle the data points
5. Compute the gradient, gradient = VxJ(x, x;,¥;)
6. Update vector m = 1*m+(1-B1)*g
7. Update vector v= B2*v+(1-B2)*gg
8. Compute bias-corrected i =m / (1 — ;")
9. Compute bias-corrected ¥ = v / (1 — B5")
10. Update the parameters x = x — \/% (BL+m+ %
11. End For
12. Return model variable x

23

Chapter 4

Experiments

In this chapter, we test the efficiency of the first-order algorithms on a very common
benchmark dataset, Cifar-10 [29][30], using two different model architectures. The dataset
contains 60.000 color images with 6.000 images per class. Each image is 32x32 pixels and the
dataset is characterized by low image resolution and diversity within each class.

CIFAR-10 Sample Images

Fig. 7. Samples from Cifar-10 dataset.

Distribution of each class in CIFAR-10 Dataset

6000 1

5000 4

4000 4

Count

3000

2000 4

1000 4

& . . Y '3
& & & I
S &

N
ke

Class

Fig. 8. The distribution of classes in Cifar-10 dataset.

The models below, are tested in order to evaluate each algorithm’s perfomance. Every
algorithm is examined in terms of accuracy, loss behavior, training time efficiency and learning
rate perfomance. These information, allow to understand the differences between the
algorithms. Specifically, by plotting training and validation loss over epochs it is described
how quickly and effectively each optimizer converge. Each loss curve can describe also if there

24

is stability in the model. Moreover, some optimizers might have more fluctuations, which could
impact the training stability. While, other optimizers in terms of learning rate are more
sensitive. The figures that are presented in this chapter give an idea of how each optimizer
behaves in the specific dataset.

4.1 Perfomance in Cifar-10 with a baseline Model Architecture

Initially, a basic CNN model is implemented in order to understand the perfomance between
diferent optimizers.

The structure of the CNN model as shown in the figure below, consists of four Conv2D layers,
with 32,64,64,128 filters respectively, each of size 3x3. Every convolutional layer is followed
by a MaxPooling2D layer, except the last one. It has a GlobalAveragePooling2D layer

which reduces the output of the last convolutional layer to a single vector. Finally, a fully
connected (Dense) layer with 10 units is added to the model.

Model: "sequential_4"

Layer (type) Output Shape Param #
conv2d_16 (Conv2D) (, 32, 32, 32) 396
max_pooling2d_12 (MaxPooling2D (, 16, 16, 32)) e
conv2d 17 (Conv2D) (, 16, 16, 64)) 18,496
max_pooling2d_13 (MaxPooling2D (s, 8, 8, 64))]
conv2d_18 (Conv2D) (, 8, 8, 64)) 6,928
conv2d_19 (Conv2D) (, 8, 8, 128)) 73,856
global_average_pooling2d (, 128)] 8
(GlobalAveragePooling2D)

dense_4 (Dense) (, 18)) 1,298

Total params: 131,466 (513.54 KB)
Trainable params: 131,466 (513.54 KB)
Non-trainable params: @ (©.€@ B)

Fig. 9. The Simple CNN model architecture.

In this model, the training uses a batch size of 64 and will run for 30 epochs. To enhance the
training process a couple of callback funtions are added.

Firstly, the early stopping technique has been implemented, which has resulted in some
algorithms (in figure 10) exhibiting a reduced number of epochs or a reduced time. This ensures
that the model will not waste time and computational resources. The parameter patience of the
callback is set to 6.

Additionally, ReduceLROnPlateau, a type of learning rate scheduler!? utilized to adjust the
learning rate for better convergence and efficient training. The function’s factor parameter is
set to 0.5, the patience parameter is set to 4 and the minimum learning rate is 0.00001.

Each algorithm is tested at two different learning rates, and each plot shows the accuracy and
the cross entropy loss in the training and validation sets. Plotting these metrics over epochs can
also help to explain how well the model learns and generalizes.

12 In Appendix B in figure Bl is also presented the CNN model curves without the learning rate scheduler.

25

550, =01
Tt Ace: 07647, st € 07341
TMalring Time: 4505

— Taring acauracy
et ey

Aiagrag. =01
Test dex- 06151, Teat CT: 16866
Traiing Tene: 49 3

— g ey
it Az

; ae
Loy o
£
B
Lot d
E
.
w

Adagrag. =01
Test b D.TRI, Tt CF: 07679
Training Tme: 41125

0

— Toring aecuracy
— st sy

— T
[

s
»
adelta, Ir=1.0
staee D175 oA C2. w030
i Tomts 115%8
pemey—
088 { 3 o errary _— an
a
[l B
s f
§
Tmstmce " visionce
=y -
[—— [——
et At 3305, R CEL 3185 st O 7126 o 1734
Ty Tine: 38672 Seiring Tive 44575
e —
- —
Wi
as = — an —

ress gy o

retEneuny e

oer o
am, r=0.081 .y
et g D340, O L0331 st 001, ML CE, D120
nig oy 501 i v 44515
EET— e —
— S valiien iy | itaton scuiey ——
e e 18 —
i
¥ B
Sow]
LI
ane e, 2
oo an
Madam, =00001 Madam, = 001
et ace 6078, o CE- 110 estace 7955, w8 CE 07700
Teining Teme: 33112 “Vaning Tives 35.0%.
— e
" wslidation dcuracy
as Y
. .
i
§ £ ge
3o 5
1
o
an L as
o -
ErT——— St Mamertum, Ir-.05
T A b0 T G 0. T b 0.7, ey L 08155
g T 110 i e 120

g 7 EJ

SO0 With Nesterow Momentum, =001

TestAct
i

— Teming Aeauracy
— s ey

3 E] 3 ¥ g
e

7669, Tost CE- 06360

ining Trme: 4028

— g sy

—manten iy

rainia ce
aldsten c2

) 3
[y
S0 With Nesterow Momenturm, Ir=0.005
oSt ALc: 0.7703. 71 CE: 0.6016
me:

Fig. 10.

The training accuracy and the cross entropy loss for each case.

s Bt Lo

26

Model Performance Analysis

Accuracy vs Epochs Loss vs Epochs

—— SGD, I=0.01
- SGD, h=0.1

—8— SGD, Ir-0.01
—8— SGD, I=0.1

09 —4— Adagrad, Ir=0.01 200 —4— Adaprad, I=0.01
—a— Ad 0.1 i —_ 1
~¥— Adadel —%— Adat

—& Adadella, Ir=
RMSprop, I1=0.0001
RMSprop, I1=0.001
Adam, Ir=0.0001

178 RMSprop, Ir=0.0001

RMSprop, Ir=0.001
Adam, 1=0 0001

o7 Adam, Ir=0.001 150 /Adam, k=0.001
—— Nadam, I--0.0001 —— Nadam, Ir-0.0001
2 —*= MNadam, Ir=0.001 == Nadam, Ir=0.001
& o gt
a =)
§ 5
s 100
04 0.75
050
03
025
02
o 5 10 15 20 25 a0 0 5 10 15 20 25 0
Epoch Epoch
Time vs Accuracy Learning Rate vs Accuracy
® SGD ® SGD
- * ® Adagrad M L] ® Adagrad
* . W Adadelta ® " Adadela
RMSprop RMSprop
075 Adam 075 Adam
+ Nadam + Nagam
o7 0.70
= =
g Z
a g
E E
3 3
= =]
< oss < oes
@ 7
e =
® x
+ -
as0 060
L] L]
055 L] 0. -
42 — 46 43 50 52 107 107 1072 107t 10°
Training Time (s) Learning Rate
0.80 - sGD
. - B Adagrad
- T T B Adadela
- 30 RMSprop
[Agam
L B Madam
0.70
o
3
3 06s
0.60 =
055 o
& B &
é\,oc\ &P @,5? &
o s
& ¢ >
&

Metric

Fig. 10. The visualization analysis of the first CNN model perfomance in Cifar-10.

These comparisons highlight the importance of hyperparameter tuning, such as learning rate
and number of epochs. Especially, the learning rate is very crucial for the final result. In this
model it is noticed that some algorithms overfit, but others such as Adam and Nadam have
better stability. The SGD with momentum and SGD with Nesterov algorithms achieve good
test accuracy and loss in both learning rate cases in contrast to the other algorithms. Also, the
remaining algorithms are more sensitive to the change of learning rate and the majority of them
have noise. However, the model performs relatively well depending on its size and the dataset,
but for better performance a different architecture with more layers can be used.

27

4.2 Perfomance in Cifar-10 with a more complex Model Architecture

This architecture has some extra layers and it is presented how these changes in combination
with some other add-ons affect the performance of each optimizer. Specifically, the model,
consists of eight Conv2D layers, which have by two, 32,64,128,256 filters respectively. After
each of these, a batch normalization layer is introduced to make the optimizer perform more
consistently and to stabilize the learning process. Moreover, between them, four
Maxpooling2D layers are imported and afterwards four dropouts. Dropouts improve
generalization and reduce the risk of over-optimizing, preventing the algorithms to over-
optimize specific paths in loss landscape that lead to poor generalization. Finally, a flatten layer
and a fully connected layer complete the model architecture.

Layer (type) Output Shape | Param #
conv2d (Conv2D) (, 32, 32, 32)) 896
batch_normalization (, 32, 32, 32)] 128
(BatchNormalization)

conv2d_1 (Conv2D) (, 32, 32, 32)) 9,248
batch_normalization_1 (, 32, 32, 32)] 128
(BatchNormalization)

max_pooling2d (MaxPooling2D) (, 16, 16, 32)) 2
dropout (Dropout) (, 16, 16, 32))]
conv2d 2 (Conv2D) (, 16, 16, 64)) 18,496
batch_normalization_2 (, 16, 16, 64)] 256
(BatchNormalization)

conv2d_3 (Conv2D) (, 16, 16, 64)) 36,928
batch_normalization_3 (, 16, 16, 64)] 256
(BatchNormalization)

max_pooling2d 1 (MaxPooling2D) (, 8, 8, 64)) [:]
dropout_1 (Dropout) (, 8, 8, 64)) a
conv2d_4 (Conv2D) (, 8, 8, 128)) 73,856
batch_normalization 4 (, 8, 8, 128)] 512
(BatchNormalization)

conv2d 5 (Conv2D) (, 8, 8, 128)) 147,584
batch_normalization_5 (. 8, 8, 128)] 512
(BatchNormalization)

max_pooling2d_2 (MaxPooling2D) (4, 4, 128)) a
dropout_2 (Dropout) (4, 4, 128)) a
conv2d_6 (Conv2D) (4, 4, 256)) 295,168
batch_normalization_6 (4, 4, 256)] 1,024
(BatchNormalization)

conv2d_7 (Conv2D) ({ 4, 4, 256)) 598,036
batch_normalization_7 (4, 4, 256)] 1,024
(BatchNormalization)

max_pooling2d_3 (MaxPooling2D) (, 2, 2, 256)) a
dropout_3 (Dropout) (» 2, 2, 256)) a
flatten (Flatten) (, 1@24)) a
dense (Dense) (, 1@)) 18,25@

Total params: 1,186,346 (4.53 MB)
Trainable params: 1,184,426 (4.52 MB)
Non-trainable params: 1,920 (7.56 KB)

Fig. 11. The second CNN architecture.

28

550, 11-0.001
Test Acc; 0.4576, Tost CE: 15789
raining Time: 1301 155

560, Ir=0,01
ot Acc: 08320, oat CE: 05148
Traiming Tme: 3034.065

[

L

s
w
300
W
5
203
Bia
mE F
™
s
eon
diagrad, =0 001
Test Acc: 04103, Test CE: 15488
Taining Tie: 965,795

Adagrad, =001
Test Acc. 08333, Teat CE: 05827
Taining Tm: 2472725

H
H
™
wse
sdsdea, w=001 Adasats, =01
et aed B4S0) et -1 1193 et e DS, e L 0 5601
“airing Time: 362,073 Training Time: 3111225 .
20
¥
o
©
, =0.0001 [r——
T A 015266 s CE: 06116 st e 08884, Tt CE: 03223
Taig Time: 3560803 Tanina Tm: 2993615
20
as
g
anf
2008
w
et A BT, e - 03155
Training Time: 3190 605
o 2
= v v
| ey .
o
. a
a0t g
gae ey A
H I ok
H t H
os e 100§
on
o " s
a0
o R
e
Nacam, I=0.081
et e B9, Tt CE: 03053
rping it 3192 662
o
o
o
H
H
os
o
a

S0 with Momarturn, =0 b1
ot A DB, et CE 0 3631
Taining rime: 3835115

560 with Momertur, <0001
Tosk A, 08371 o3t CE. 0,565
aiing Time: 3805135

g accuracy

2 T escuon sy
wf |
ivg R
HE
u

SG0 with Nesteroy Mamerum, #=0 D1
et e 0.6830, RSLCE- 05127
Taining Time: 3810 965

P
S0 with Nesteraw Momentu. =0.001
“Test Ace. 08650, Test CE. 0.4909
Taiing Tie: 3817.29

[er—
Y el acrancy

pach

Fig. 12 The final results of the optimizers.

29

Model Performance Analysis

Accuracy vs Epochs

—8— SGD, Ir=0.001
—m— SGD, Ir=0.01
—#— Adagrad, Ir=0.001
—i— Adagrad, Ir=0.01
—¥— Adadelta, Ir=0.01
—< Adadelta, I=0.1
RMSprop, Ir=0.0001
RMSprop, Ir=0.001
Adam, Ir=0,0001
Adam, Ir=0,001
—— Nadam, Ir=0.0001
~— Nadam, Ir=0.001

Loss vs Epochs

—e— SGD, Ir=0.001
—®— SGD, Ir=0.01
—#— Adagrad, Ir=0.001
—&— Adagrad, Ir=0.01
—¥— Adadelta, Ir=0.01
—< Adadelta, Ir=0.1
RMSprop, Ir=0.0001
RMSprop, Ir=0.001
Adam, Ir=0.0001
Adam, Ir=0.001
~—+— Nadam, Ir=0.0001
~+~ Nadam, Ir-0.001

>
3
s 7
3 5
Zos 20
04 15
03 1.0
0.2 05
0 20 40 60 80 L] 20 40 60 80
Epoch Epoch
Time vs Accuracy Learning Rate vs Accuracy
08 & ® sGD 09 * ® SGD
% Adagrad ® Adagrad
B Adadelta " Adadella
RMSprop RMSprop
E or Adam be % = Adam
+ Nadam + Nadam
08 08
> >
E o7 E 07
5 E
3 3
3 5
< <
3 %
2 e
0.6 06
05 0.5
x x
[] L]
. .
1000 1500 2000 2500 3000 3500 104 0% 10z 10t
Training Time (s) Learning Rate
Performance Metrics Comparison
09 . . - SGD
T T T B Adagrad
R Adadelta
L =1 RMSprop
- 4 - [Adam
B nadam
0.8
07
2
Q
o
(2]
0.6
05
04
o) & & &
35‘1& ee"@ & s
R § o7
z
@fa

Metric

Fig. 13. The visualization analysis of the second CNN model perfomance in Cifar-10 dataset.

This model uses batch size of size 64, giving better stability, and the number of epochs is 100,
including the callback earlystopping the learning rate scheduler. In the preprocessing step,
standardization and data augmentation are employed, smoothing the loss landscape and
improving generalization. In these graphs the optimizers have in general better perfomance
than previously. According to the figure 12, the training and validation curves follow similar
trajectories and converge, without the training metrics significantly outperforming the

30

validation metrics. This suggests that in most cases!?® the optimizers are stable and don’t overfit
or underfit. In terms of accuracy and cross entropy loss in this dataset, Nadam, Adam and
RMSprop achieve good results. While, algorithms such as SGD, Adagrad and Adadelta with
lower learning rates converge more slowly.

Model Performance Analysis

Aceuracy vs Epochs Loss s Epochs

F w @ W ® w
Epoth Epoct

Time vs Accuracy Leaming Rate s Accuracy

TestaceLracy

a0 o we am
Training Time (s} Leaming Rate

Performance Metrics Comparison
W SCD wilth Momentum

[Eprr—————
0s8
oa7
o
3
& ose
085

N S
& & &
o

Metric

Fig. 14. The remaining algorithms analysis of the second CNN model

13 In SGD and Adagrad with learning rate 0.001 and Adadelta with learning rate 0.01 there are exist signs of overfitting.

31

Chapter 5

Conclusions

According to the results of Chapter 4, there are many factors that affect the final performance
of a machine learning model. The optimizers have different complexity and they can perform
in a different way each time. However, there are many parameters and methods that are used
to achieve faster training or better final performance. There are also cases, where the most used
algorithms like Adam or SGD can't work efficiently on the dataset and there are other options
that can be more effective. This means that no single optimizer consistently outperforms others
across all problems and each optimizer according to the algorithmic design and the
hyperparameter settings, may be better suited for certain types of problems. So depending on
the nature of the data and the different dimensions of it in space landscape, there may be better
options. The interesting point is that these algorithms can make combinations between them
and give different results each time. Finally, in terms of optimization, it’s always important to
evaluate a range of different techniques to get a better outcome.

32

Bibliography

[1] J. J. Mark, “Pythagoras,” World History Encyclopedia. World History Encyclopedia,
May 23,2019.[Online].Available:https://www.worldhistory.org/Pythagoras/#citation_info

[2] S. Kiranyaz, T. Ince, and M. Gabbouj, “Optimization Techniques: An Overview,” in
Multidimensional Particle Swarm Optimization for Machine Learning and Pattern
Recognition, vol. 15, in Adaptation, Learning, and Optimization, vol.15.,Berlin,
Heidelberg:Springer Berlin Heidelberg,2014, pp.13—44.d0i:10.1007/978-3-642-37846-

1 2.

[3] D. Hernandez and T. B. Brown, “Measuring the Algorithmic Efficiency of Neural
Networks,” May 08, 2020, arXiv: arXiv:2005.04305. Accessed: Apr. 22, 2024. [Online].
Available: http://arxiv.org/abs/2005.04305

[4] D. P. Bertsekas, Nonlinear programming, 3rd ed.Belmont, Mass: Athena scientific, 2016.

[5] Z. Allen-Zhu, “Natasha 2: Faster Non-Convex Optimization Than SGD,” Jun. 11, 2018,
arXiv: arXiv:1708.08694. [Online]. Available: http://arxiv.org/abs/1708.08694

[6] R.-Y. Sun, “Optimization for Deep Learning: An Overview,” J. Oper. Res. Soc. China,
vol. 8, no. 2, pp. 249-294, Jun. 2020, doi: 10.1007/s40305-020-00309-6.

[7] M. A. Cauchy, “Méthode générale pour la résolution des systémes d’équations
simultanées,” Comptes Rendus de I'Académie des Sciences, vol. 25, pp. 536-538, 1847.

[8] S. Bubeck, “Convex Optimization: Algorithms and Complexity,” Found. Trends® Mach.
Learn., vol. 8, no. 3—4, pp. 231-357, 2015, doi: 10.1561/2200000050.

[9] R. Grosse, "Lecture 7: Advanced Optimization," course slides, CSC321: Deep Learning,
University of Toronto, [Online]. Available:
https://www.cs.toronto.edu/~rgrosse/courses/csc321 2017/slides/lec7.pdf.

[10] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural
Networks,” Apr. 20, 2018, arXiv: arXiv:1804.07612. [Online]. Available:
http://arxiv.org/abs/1804.07612

[11] S.Y.Khamaiseh, D. Bagagem, A. Al-Alaj, M. Mancino, and H. W. Alomari,
“Adversarial Deep Learning: A Survey on Adversarial Attacks and Defense Mechanisms
on Image Classification,” IEEE Access, vol. 10, pp. 102266—-102291, 2022, doi:
10.1109/ACCESS.2022.3208131.

[12] R Tibshirani, “R. Tibshirani ‘Stochastic Gradient Descent,” scribe notes, Convex
Optimization course, Carnegie Mellon University,.” [Online]. Available:
https://www.stat.cmu.edu/~ryantibs/convexopt/scribes/stochastic-gd-scribed.pdf

[13] B.T. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1-17, Jan. 1964, doi: 10.1016/0041-
5553(64)90137-5.

[14] 1 Goodfellow, Y. Bengio, and A. Courville, Deep learning. in Adaptive computation
and machine learning. Cambridge, Massachusetts: The MIT Press, 2016.

[15] M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization. Cambridge,
Massachusetts: The MIT Press, 2019.

[16] S. Ruder, “An overview of gradient descent optimization algorithms,” Jun. 15, 2017,
arXiv: arXiv:1609.04747. [Online]. Available: http://arxiv.org/abs/1609.04747

[17] IFT 6085, “Accelerated Methods - Polyak’s Momentum (Heavy Ball Method) lecture
notes, [Online].” [Online]. Available: https://mitliagkas.github.i0/ift6085-2019/ift-6085-
lecture-5-notes.pdf

[18] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson, “Global convergence of the
Heavy-ball method for convex optimization,” Dec. 23, 2014, arXiv: arXiv:1412.7457.
[Online]. Available: http://arxiv.org/abs/1412.7457

33

[19] 1. Waldspurger, "Advanced Gradient Descent," course notes, Université Paris
Dauphine,[Online].Available:https://www.ceremade.dauphine.fr/~waldspurger/tds/22 23
_sl/advanced gradient descent.pdf.

[20] L. Lessard, B. Recht, and A. Packard, “Analysis and Design of Optimization
Algorithms via Integral Quadratic Constraints,” SIAM J. Optim., vol. 26, no. 1, pp. 57—
95, Jan. 2016, doi: 10.1137/15M1009597.

[21] R. Kidambi, P. Netrapalli, P. Jain, and S. M. Kakade, “On the insufficiency of
existing momentum schemes for Stochastic Optimization,” Jul. 31, 2018, arXiv:
arXiv:1803.05591. [Online]. Available: http://arxiv.org/abs/1803.05591

[22] A. Défossez, L. Bottou, F. Bach, and N. Usunier, “A Simple Convergence Proof of
Adam and Adagrad,” Oct. 17, 2022, arXiv: arXiv:2003.02395. [Online]. Available:
http://arxiv.org/abs/2003.02395

[23] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” Dec. 22, 2012,
arXiv: arXiv:1212.5701. [Online]. Available: http://arxiv.org/abs/1212.5701

[24] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 29,
2017, arXiv: arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/1412.6980

[25] S.J.Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and Beyond,” Apr.
19, 2019, arXiv: arXiv:1904.09237. [Online]. Available: http://arxiv.org/abs/1904.09237

[26] F.Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A Sufficient Condition for
Convergences of Adam and RMSProp,” Jun. 24, 2019, arXiv: arXiv:1811.09358.
[Online]. Available: http://arxiv.org/abs/1811.09358

[27] R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a Crowded Valley
- Benchmarking Deep Learning Optimizers,” Aug. 10, 2021, arXiv: arXiv:2007.01547.
[Online]. Available: http://arxiv.org/abs/2007.01547

[28] T. Dozat, "Incorporating Nesterov Momentum into Adam," in Proceedings of the 4th
International Conference on Learning Representations (ICLR), San Juan, Puerto Rico,
May 2016.

[29] A. Krizhevsky, "Learning Multiple Layers of Features from Tiny Images," M.S.
thesis, Dept. Comput. Sci., Univ. of Toronto, Toronto, ON, Canada, 2009.

[30] Unknown, “CIFAR-10.” UCI Machine Learning Repository, 2009. doi:
10.24432/C58891.

[31] B. Gartner and M. Jaggi, “Optimization for Machine Learning Lecture Notes CS-439,
Spring 2023

[32] S. Boyd and L. Vandenberghe, Convex Optimization, 1st ed. Cambridge University
Press, 2004. doi: 10.1017/CB0O9780511804441.

[33] M. Hardt, "EE227C: Convex Optimization and Approximation," Lecture Notes, Dept.
Elect. Eng. and Comput. Sci., Univ. of California, Berkeley, CA, USA, 2015. [Online].
Available: https://www.eecs.berkeley.edu/~hardt/ee227c/

[34] A.A. Amini, "Lecture 7: Convexity II," ORF 523: Convex and Conic Optimization,

Princeton University, Princeton, NJ, 2017. [Online]. Available:

https://www.princeton.edu/~aaa/Public/Teaching/ ORF523/ORF523 Lec7.pdf.

[35] A. Anderson, "Subgradient optimization," Optimization in Chemical Engineering,

Cornell University, [Online]. Available:

https://optimization.cbe.cornell.edu/index.php?title=Subgradient optimization.

34

https://www.princeton.edu/~aaa/Public/Teaching/ORF523/ORF523_Lec7.pdf

Appendix A

Convex Sets

Definition 1 “A set C is convex if the line segment between any of two points of C lies in C.
If for any x,y € C and any A with 0 < 1 < 1 we have [31]:

Ax+(A-Dyec”

]
I

Convex Not Convex Not Convex

Fig. Al. Convex and nonconvex sets as illustrated in [32, Fig. 2.2]

Convex Functions

Definition 2 “A function f : dom(f) —» R, dom(f) € RY is convex if dom(f) is a convex
set and for all x,y € dom(f) and A with 0 < A < 1 we have [31]:

fAx+ (A -Dy) <Af(x0)+ A —-Df (), Vx,y € dom(f)
Otherwise, if we have:
fAx+ (A -Dy) = Af(x) + (1 = Df (), Vx,y € dom(f)

the function is concave”.

The Convexity of f means geometrically, that the line segment connecting two points (X,f(x))
to (y,f(y)) on the graph lies above or on the graph of f.

Fig. A2. A Convex function as illustrated in [31, Fig. 1.3].

35

Proposition

Let f be convex. If x is a local minimum of f then x is a global minimum of f.

Suppose that x € dom(f) is a local minimum of f : dom(f) — R meaning that any point
in a neighborhood around x has larger function value (f(y) = f(x)). Now, for every y €
dom(f) we can find a A € [0,1] such that:

f =z fAx+ A=Ay = f(x)
First and Second order characterization of Convex functions
Definition 3 Suppose f : dom(f) — R is differentiable over an open domain. In particular,
the gradient (vector of partial derivatives) Vf (x) = <1;L;1 (x), wn) 1;% (x)) exists at every point
x € dom(f). Then, fis convex if and only if dom(f) is convex and [33]:

fOZ2f)+Vf)'(y—x), xyE€dom(f)

Geometrically, this means that the function lies above its tangent hyperplane as in figure A3.

)
|
I
I
I
I
1
X y
Fig. A3. First-order characterization of convexity as illustrated in [31, Fig. 1.5].

Definition 4 “While, if f is twice differentiable, in particular the Hessian (matrix of second

derivatives)
A% f a2 f A2f
(F)‘a:f‘i dr10x:9 e dx10xy
2 _ ;
Vaf(z) = : : :
o%f 9% 9>
Ox 4017 x40z 8:::;_{

exists at every point x € dom(f) and is symmetric, then f is convex if only dom(f) is convex
and for all x € dom(f) we have [31]:

V2f(x) =07

In general, the second derivative measures the speed that the slope of a function can change.
Similarly, the Hessian represents how fast the curvature of a function changes. More

36

specifically, the Schwarz theorem'# implies that the Hessian matrix is always a symmetric
matrix and according to the spectral theorem, any symmetric matrix, including the Hessian,
can be decomposed into the form:

A=V-A-VT

where the matrix of V = [vy, ..., v,] is orthogonal (VTV = VVT =I), and contains the

eigenvectors of A, while the diagonal matrix / contains the eigenvalues of A.

Lipschitz Continuity

Definition 5 A function f: dom(f) — R is L-Lipschitz continuous if there exists a constant
L > 0 such that for all x,y € dom(f) [33]:

|f() = fFOI < Lllx = yli

Where ||+|| denotes the Euclidean norm.
A Lipschitz continuous function is bounded in how fast it can change.

Smoothness

Definition 6 In optimization a function f* is f-smooth, if its gradient is Lipschitz continuous
with Lipschitz constant 5 [33]:

IVFG) = VIl < Bllx =yl vx,y € dom(f)

This condition restricts the speed of gradient’s change, and f essentially measures the
maximum rate of change of the gradient.
Also, the Hessian satisfies:

H(x) < BI

meaning that the eigenvalues of H(x) are at most £ (Amax(H(x))<p).

Some useful implications of smoothness are:
1. If f'is S-smooth then the function g lIx]|? — f(x) is convex.

2. If fis f-smooth then, there is a quadratic upper bound on the function:

FO) < FG+ TGy~ + 5y — 2l

" Th d-ord tial derivati tisfy the identit 0 (BL) 2 (ﬁf)
€ seconda-oraer partia erivatives satisty el enlyﬁxi 19xj _19x]- 19xl- .

37

Strict Convexity

Definition 7 “A Function f:dom(f) — R is strictly convex if for all x # y € dom(f) and
allA € (0,1) [31]:

fAx+ (A =Dy) <Af(x)+ A -Df)"
Or if:

fO) > fe)+ V)" —x) [34]

As evidenced by the definitions, if f is strictly convex, then f is convex. In general, the strict
convexity of the optimization process enhances its efficiency, resulting in improved
convergence rates and stability. This stability ensures that small changes in the input lead to
predictable changes in the output.

Strong Convexity

Definition 8 “A function is a-strongly convex if Ja > 0 constant such that the modified
g(x) = f(x) — a||x||? is convex” [34].

This means that if g(x) is convex, then f(x) must be sufficiently “curved upwards” and more
strongly curved than the quadratic term al|x||?. Furthermore, there are several significant
implications of strong convexity [33]:

“1. If f is strongly convex then an equivalent definition is that it satisfies the following
inequality:

a
fO) 2+ V)T =x) +5lly—xI% xy€dom(f)
This definition ensures that the function f has a quadratic lower bound, which means it curves
upwards more steeply than a standard convex function.

2. If f 1s twice differentiable, an equivalent characterization is:

Vif(x) = al”
3

\ S+ V0T - %)+ Sk - yI?
| - -7

: () + V)T (y — x) + 5llx -yl

X y
Fig. A4. Smooth and Strongly convex function as illustrated in [31, Fig 2.3].

38

The steepness of strong convex functions have a significant impact on the convergence
behavior of gradient-based algorithms, making the gradient steps more efficient.

The above inequality V?f(x) = al demonstrates that the eigenvalues of the Hessian matrix
are at least o (Amin(H(x))=a), which ensures that the Hessian is well-conditioned. This
implies that the function avoid directions with very small curvature which cause issues like
slow convergence or overshooting.

In general, the rule is as follows: “Strong convexity = Strict convexity = Convexity
But, the converse is not true” [34].

Definition 9 Subgradients are convex functions which are not necessarily differentiable but
they preserve convexity, such as the max-operation. A subgradient of a function f at a point x
is a vector g such that:

fO) = f)+4g"(y—x), y € dom(f)
The set of all subgradients at x is called the subdifferential and is denoted by 0f (x). Also, If f

is differentiable at x, the subdifferential Of(x) contains exactly one element, which is the
gradient Vf(x).

f(z)

f(z1) + g1 (z — 1)
: __,f(ZL“Q) + g3 (x — x2)
(@) + g3 (z — x2)

T N 2

Fig. A5. The subgradients of a non-differentiable convex function at point x, as illustrated in [35]

Definition 10 Let A be a real matrix. The condition number is the ratio of its largest and
smallest eigenvalues:

Amax(A)
Amin(A4)

k(A) =

The condition number measures the dynamic range of curvatures of the objective function and
it is an indicator of the sensitivity in the input data. Moreover, it is of great significance as it
provides insight into the convergence behavior of gradient descent algorithms. It helps to
determine the optimal step size for efficient and stable convergence, and it indicates how well-
conditioned the optimization problem is, which in turn affects the speed of finding the solution.
The ideal condition number is equal to 1 or at least close to 1. In cases where k>>1, the function
has steep curvature in some directions and flat curvature in others, which means that the
algorithm will have slow convergence and in practice will need more iterations to converge
and a small step size to maintain stability.

39

Backtracing Line Search

Definition 11 Backtracing line search is an inexact method that is used to find an efficient step
size that decreases the objective function. The goal is to iteratively reduce the step size n, until
an appropriate value is found [32].

The stopping condition for the backtracking line search is:
f(x +nAx) < f(x) + anVf(x) TAx

Where a is a factor that adjusts £, and takes values between 0 and 0,5. These are the values
that can guarantee convergence and sufficient progress. As it seems in the below figure when
factor a is reduced the upper dashed line moves downward. Also, for any n, the value of
f(x+nAx) must lie below this new lower line in order for the condition to be satisfied.

f r) ~:;T,(H ’AJ vfw'w vu‘\vf | J_Lﬁ
n=0 No

Fig. A6. The backtracking search method as illustrated in [32, Fig 9.1].
“Since Ax is a descent direction, Vf(x) TAx < 0, so for small enough n, by the Taylor expansion
series it is implied [32]:
f(x +nAx) = f(x) + nVf(x) TAx
and combining the above formula with the backtracking condition:

fxX) +nVf(x)TAx < f(x) + anVf(x) TAx”

This method is considered to be less computationally intensive, dealing with large-scale
problems and is preferred when the objective function is noisy.

Exact Line Search

Definition 12 Exact line search is used to find the optimal step size n, that has the maximum
decrease in the objective function £, along a specified search direction Ax. The goal is to select
n that minimizes the function f(x + nAx) solving the one dimensional problem [32]:

n = argmingso f (x + aAx)
This method is useful when the cost of calculating the step size n is low compared to

determining the direction, which is the computationally intensive part of the optimization

40

process. It is preferred when the objective function is smooth for better calculation of the
derivatives, which helps to find the exact step size. Exact line search typically needs an
algorithm to find the search direction first. Some common methods for determining the search
direction include:

= Gradient Descent: The search direction d; at iteration t is the negative gradient of the
objective function -VF (x;) as it is described in Chapter 3.

-While in some other cases:

= Newton’s Method: In this case the search direction uses the Hessian matrix and it is
dt - _Ht_lvF(xt).

= Quasi-Newton Methods: In these algorithms, such as BFGS and L-BFGS the
Hessian matrix is approximated and this approximation A; is used to calculate the
search direction: d, = —A, *VF(x,).

= Conjugate Gradient Method: In this case the search direction is a combination of

the negative gradient and the previous search direction adjusted by a factor f; as it
follows: dt = _VF(xt) + ﬁtdt—l'

41

Appendix

B

The following tables present a summary of the statistical results obtained from the experiments
conducted in sections 4.1 and 4.2, for the two distinct learning rates that employed in each

instance.

TABLE Bl

TEST ACCURACY (%)
Optimizer Count Mean Min Max
SGD 2 0.64480 0.5588 0.7647
SGD WITH MOMENTUM 2 0.77825 0.7752 0.7813
SGD WITH NESTEROV 2 0.77860 0.7703 0.7869
ADAGRAD 2 0.68925 0.6151 0.7634
ADADELTA 2 0.66295 0.5483 0.7766
RMSPROP 2 0.65355 0.5345 0.7726
ADAM 2 0.70930 0.6349 0.7837
NADAM 2 0.69405 0.6076 0.7805

TABLE B2

TRAINING TIME (SEC)
Optimizer Count Mean Min Max
SGD 2 45.19 43.59 46.79
SGD WITH MOMENTUM 2 51.06 50.11 51.92
SGD WITH NESTEROV 2 45.28 40.27 50.28
ADAGRAD 2 45.41 41.13 49.69
ADADELTA 2 47.39 4322 51.56
RMSPROP 2 47.01 43.59 49.66
ADAM 2 48.05 44.61 51.49
NADAM 2 51.09 50.08 52.11

TABLE B3

TEST ACCURACY (%)
Optimizer Count Mean Min Max
SGD 2 0.64480 0.4576 0.8320
SGD WITH MOMENTUM 2 0.86225 0.8371 0.8874
SGD WITH NESTEROV 2 0.87400 0.8650 0.8830
ADAGRAD 2 0.65185 0.4705 0.8332
ADADELTA 2 0.63410 0.4327 0.8355
RMSPROP 2 0.85750 0.8266 0.8884
ADAM 2 0.86855 0.8419 0.8952
NADAM 2 0.86400 0.8309 0.8971

42

TABLE B4

TRAINING TIME (SEC)

Optimizer Count Mean Min Max
SGD 2 2167 1301 3034
SGD WITH MOMENTUM 2 3810 3805 3815
SGD WITH NESTEROV 2 3814 3810 3817
ADAGRAD 2 1718 963 2472
ADADELTA 2 2036 962 3111
RMSPROP 2 3277 2993 3560
ADAM 2 2887 2585 3190
NADAM 2 2928 2664 3192

In the followimg figure the model perfomance have more noise and inferior metrics compared
to this from the section 4.1.

Fig. B1. The Cnn Model from section 4.1 without learning scheduling.

43

