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(1)   «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με 
έγγραφη υπεύθυνη δήλωση  
του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο 
υπαίτιος αυτών των πράξεων  
σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή 
σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.» 

  

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της 
διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι: 

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να 
τα περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη 
σελίδα. Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι 
λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση 
εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς 
και η παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά 
στην πηγή. Αναφέρω πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, 
όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται 
από αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι 
αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν 
δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και 
παρουσίασή τους ως δική μου εργασία.  

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των 
παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε 
μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και 
όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι 
πίνακες και τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής. 



 
 

 

 

 



 

ΠΕΡΙΛΗΨΗ 

 
Στόχος της παρούσας διατριβής είναι να παρουσιάσει μια ολοκληρωμένη ανάλυση 

ορισμένων αλγορίθμων βελτιστοποίησης που χρησιμοποιούνται στην εκπαίδευση 

μοντέλων μηχανικής νοημοσύνης. Η μελέτη αυτή θα παράσχει το απαραίτητο 

υπόβαθρο για την κατανόηση των λόγων και των μεθοδολογιών που κρύβονται πίσω 

από την απόδοση κάθε αλγορίθμου σε ένα δεδομένο πλαίσιο. Η λειτουργικότητα των 

αλγορίθμων θα περιγραφεί αναλυτικά και θα καταγραφεί ως προς τους ρυθμούς 

σύγκλισής τους, οι οποίοι θα συζητηθούν στο πλαίσιο της κυρτής και μη κυρτής 

βελτιστοποίησης. Εκτός από τη θεωρητική διερεύνηση, οι αλγόριθμοι θα 

εφαρμοστούν σε συνελικτικά νευρωνικά δίκτυα, σε σύνολο δεδομένων του 

πραγματικού κόσμου και θα αξιολογηθεί η απόδοσή τους. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

ABSTRACT 

 

The objective of this thesis is to present a comprehensive analysis of 

some of the optimization algorithms utilized in the training of machine 

intelligence models . This study will provide the background necessary to 

understand the reasons  and methodologies behind each algorithm ’s  

perfomance in a given context.  The functionality of  the algorithms will 

be described analytically,  and they will be recorded in terms of their 

convergence rates, which will  be discussed in the context of  convex and 

non-convex optimization. In addition to the theoretical  investigation, 

the algorithms will be applied to convolutional  neural networks on real-

world dataset,  and their performance will be evaluated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

  



 
 

 

 

 

 

“As a rule, when many options are available, man’s actions are guided by the need to choose 

the best possible way. Human activity, indeed, implicates solving (conciously or unconciously) 

optimization problems. Moreover, many laws of nature are of a variational character, even if it 

is inappropriate in this case to speak of the existence of a purpose.” 

- Boris Polyak
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Chapter 1 
 

Introduction 

 

1.1 History 
Since antiquity, people have been interested in optimization problems. According to 

Pythagoras of Samos (c. 570-495 BCE), who influenced later philosophers with his ideas, 

“mathematics is the path to enlightenment and understanding of the cosmos” [1]. In the same 

way, mathematicians such as Euclid of Alexandria (c. 325–265 BCE),  Archimedes of Syracuse 

(c. 287-212 BCE), Zenodorus (c. 200-120 BCE), Heron of Alexandria (c. 10-85 CE) and 

Pappus of Alexandria (c. 290-350 CE) worked on optimization problems [2]. In contrast to 

ancient times, the rapid increase in computing power described by Moore's-Law and the 

algorithmic efficiency of the last decade [3] have allowed machine intelligence to make 

significant progress in recent years. With the integration of artificial intelligence, the 

availability of vast quantities of data, and the enhanced computing power, algorithms can be 

applied to solve various tasks including optimization problems. As a result, scientific and 

technological advancement is occurring at an accelerated pace, bringing new knowledge and 

challenges to society. In this context, deep learning models and their new developed 

architectures have the need for efficient implication and the optimization is one of the ways to 

achieve this. As automation continue to advance in our era, it is beneficial to understand the 

underlying principles of the optimization algorithms.  

 

1.2 Optimization Algorithms 
In optimization there are three categories of algorithms distinguished by the type of information 

they use to find the optimum of a function: 

 

▪ Zeroth-order methods 

▪ First-order methods 

▪ Second-order methods 

 

The zeroth-ones, also known as derivative-free or black-box methods, are based on function 

evaluation, rather than gradient information. These methods are suitable for complex and high-

dimensional optimization problems, they can handle noisy and non-differentiable functions, 

but are generally slower compared to gradient-based methods. The next category, first-order 

methods, which this thesis is focused on, typically use the first derivative (the gradient) 

information of the function to guide the optimization process. They have a small per-iteration 

cost and they are widely utilised in machine intelligence problems, especially in large scale 

problems. The final category, second-order methods, are built from a combination of first and 

second derivatives of the function (Hessian Matrix). They are typically more accurate, but more 
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computationally intensive than first-order methods. Specifically, in second-order methods, the 

problem is the managing of the size of the inverse Hessian matrix. This problem can be solved 

with methods that approximate the Hessian matrix.  

 

1.3 Thesis-Structure 

Chapter 2  

Presents the meaning and the basic idea of optimization, the challenges of 

optimization and different methods that are used in machine learning. 

 

Chapter 3  

Focuses on the first-order methods based on Gradient descent and its variants 

explaining the main ideas of how they work, the characteristics and their time 

complexity.  

 

Chapter 4  

Presents the results from the optimizers testing and their perfomance.  

 

Chapter 5  

Offers concluding remarks and future directions. 

 

Appendix A & B 

For better presentation, some basic definitions, illustrations are included in 

Appendix A and Appendix B.  
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Chapter 2  

 

Introduction to Optimization 

 

Optimizing is the process of finding a better solution in a complex system, with or without 

given constraints. In the context of machine intelligence, optimization algorithms are utilised 

in order to minimize the objective function, trying iteratively to find the optimal values of the 

model parameters. The challenge often lies in identifying an algorithm that can reach a possible 

solution, such as a stationary point1 𝑥∗. This is followed by the objective of accelerating the 

convergence of the algorithm and ensuring that it reaches a solution with a low objective value, 

in this case, the global minima. In practice, the goal may not always be to find the best solution 

for various reasons, including computational complexity, uncertainty and real-world 

constraints that limit the feasible solution space. Nevertheless, the final goal of a model is to 

make a function approximation which leads to the desired results. This approximation is 

evaluated using specific metrics that measure the model’s perfomance. However, this goal is 

not solely dependent on the optimization techniques and algorithms employed.  

2.1 Optimization in Machine Intelligence  

In machine intelligence, there are two main branches of continuous optimization2 that are 

widely used: unconstrained and constrained optimization. However, unconstrained 

optimization is encountered in many standard machine learning tasks, whereas constrained 

optimization is employed when the problem exhibits specific limitations or the structure of the 

solution space must be respected. For example, this occurs in Support Vector Machines 

(SVMs), where the margin constraints are fundamental to the problem formulation. 
 

Definition 1 
Unconstrained optimization involves the task of minimizing (or maximizing) a function 𝑓(𝑥) 

without any restrictions on the domain of x. Formally, we seek to find: 

 

𝑚𝑖𝑛
𝑥𝜖𝑅𝑛

 f(x) 

 

𝑤ℎ𝑒𝑟𝑒 𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function. 
 
Definition 2 
Constrained optimization involves optimizing the function 𝑓(𝑥) subject to constraints on 𝑥: 

 

𝑚𝑖𝑛
𝑥𝜖𝑅𝑛

 f(x) 

 
 

 
     1  In optimization a stationary point of a function f,  𝑤ℎ𝑒𝑟𝑒 𝑓: 𝑅𝑛 → 𝑅  is considered a point where the gradient is zero 

(𝛻𝑓(𝑥∗) = 0). The stationary point can be a local minimum or a local maximum or a saddle point.  

     2 Continuous optimization involves finding the optimal value of a function, where variables can take on any value within 

a continuous range. 
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Subject to  𝑔𝑖(x) ≤ 𝑐𝑖 
                     ℎ𝑗(𝑥) = 𝑑𝑗  

 

Where i =1,..,n are inequality constraints and j=1,..,m are equality contraints.  

 

In machine learning, particularly in supervised learning during the training phase of a model, 

an overall loss function L(θ), or empirical risk, is typically implemented to achieve an 

objective.  

𝐿(𝜃) =
1

𝑛
∑ 𝐿

𝑛

𝑖=1

(𝑓(𝑥𝑖; 𝜃), 𝑦𝑖) 

 

Where, θ represents the parameters of a differentiable function f , n is the size of samples and 

𝐿 symbolizes the loss function that quantifies the difference between the predicted label 𝑦𝑖′ =

𝑓(𝑥𝑖; 𝜃) and the true label 𝑦𝑖.  

 

The objective of this formula is achieved by perfoming empirical risk minimization which finds  

the optimal solution 𝜃∗ ∈ arg 𝑚𝑖𝑛 L(θ). In this unconstrained optimization the first and second 

derivatives are crucial for characterizing and computing the optimal solutions and more 

specifically the local minima and the global minima.  

 

Definition 3  
“A vector x* is an unconstrained local minimum of a function 𝑓: ℝ𝑛 → ℝ if  there an 𝜀 > 0 

such that [4] : 

𝑓(x∗) ≤ 𝑓(𝑥),   ∀𝑥 ∈ ℝ𝑛   with ‖𝑥 − 𝑥∗‖ ≤ 𝜀 

 

This means that x* is a local minimum if, within some neighborhood of radius ε, the value of 

the function at x* is less than or equal to the value of the function at any other point in that 

neighborhood. 

 

A vector x* is an unconstrained global minimum of f  if  [4]: 

 

  𝑓(x∗) ≤ 𝑓(𝑥),   ∀𝑥 ∈ ℝ𝑛 

 

This means that x* is a global minimum if the value of the function at x* is less than or equal 

to the value of the function at any other point in the entire domain ℝ𝑛.” 

 

In general, the finding of the global minimum is regarded to belong to the class of NP-hard 

problems. However, for certain classes of functions f, there are some desirable properties with 

strong theoretical guarantees that allow efficient optimization, using algorithms such as 

gradient descent. These functions are referred to as convex functions. The fundamental concept 

is that when f is convex, there is an equivalence between ‖𝛻𝑓(𝑥)‖ = 0 and the fact that x ∈ 

argm𝑖𝑛𝑥∈𝑅𝑑𝑓(𝑥) . For a more comprehensive understanding of the terms, definitions are 

provided in Appendix A.  
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The main algorithms for finding local and global minima using gradients in machine learning 

are gradient descent and its variants, which are described in the next chapter. The classic 

gradient descent (Vanilla gradient descent) algorithm finds applications in various optimization 

problems. Some notable applications include: 

 

▪ Linear Regression: In linear regression, the gradient descent algorithm tries to find the 

optimal values for the regression coefficients that minimize a cost function such as the 

sum of squared errors. 

▪ Logistic Regression: In logistic regression the minimizing of the logistic loss function 

using the gradient descent leads to find the optimal parameters that maximize the 

likelihood of the observed data. 

▪ Support Vector Machines: Gradient descent is used in support vector machines to find 

the optimal hyperplane that separates data in different classes. 

▪ Neural Networks: In neural networks, gradient descent is employed to update the 

weights and biases during the training process. This enables the network to learn and 

have better performance. 

 

In optimization, algorithms such as gradient descent and its variants use the derivative 

information of the objective function f(x) to calculate the search direction. The search direction 

is crucial because it determines the direction in which the algorithm move from each iteration 

point to find a local minimum. Algorithms like exact line search need the search direction to 

find the optimal step size (see in Appendix A). 

 

2.2 Optimization Challenges  

 

One of the main challenges in optimization is the existence of saddle points. Saddle points need 

to be avoided because their slopes have different directions, meaning that they have 

characteristics of both positive and negative curvature, where the gradient is zero. This can 

cause first order methods to get stuck or converge very slowly in suboptimal solutions. 

Therefore, it is important to navigate through them efficiently. Some ways to escape from these 

points are by injecting random perturbation or using the negative eigenvector of Hessian [5].  

 

Moreover, local minima don't help the algorithms to find the best possible model parameters 

during optimization. Especially in non-convex optimization problems, local minima can trap 

the algorithms. Therefore, there is no general guarantee of finding a better local minimum or 

the global minimum. As a result, the optimization can be highly dependent on the initialization 

and algorithm parameters. In general, while first-order methods have good convergence 

guarantees for convex problems, these guarantees are generally weaker for non-convex 

problems.  

 

Another challenge is the ill-conditioned Hessian matrix problems, which can lead to slow 

convergence and difficulty in finding the optimal solution. First order methods do not explicitly 

use the Hessian matrix, but they are affected by issues related to ill-conditioning in the 
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optimization landscape. When the Hessian matrix is ill-conditioned, it implies a large disparity 

between its eigenvalues, leading to steep regions with high curvature and flat regions with low 

curvature in the loss surface. This makes optimization challenging because steep regions 

require small step sizes to avoid overshooting, while flat regions require larger step sizes to 

make progress. Adaptive learning algorithms such as Adam and RMSprop, described in the 

next chapter, are often used to mitigate this problem. 

 

An additional problem in optimization and very common in deep learning training is vanishing 

and exploding gradients. Especially in deep learning, the problem of vanishing or exploding 

gradients can occur, where gradients become extremely small or large as they propagate 

through many layers. This can lead to learning difficulties, and  the methods that are typically 

used to address these issues are proper activation functions, adaptive optimization algorithms, 

batch normalization, residual connections and gradient clipping. 

 

Furthermore, machine intelligence models often require large datasets. This means that, 

substantial computational resources are necessary in order to manage the number of the model 

parameters and the complexity of the algorithms. Thus, limited compute resources pose a 

significant challenge and can limit the number of experiments that can be performed, slowing 

down the research and development process. Consequently, efficient algorithms and hardware 

accelerators such as GPUs and TPUs are essential to overcome these limitations. 

 

One of the most important parameters that needs to be properly adjusted in the optimization 

process is the learning rate. Besides the ability of adaptive algorithms to adapt the learning rate 

of each optimization problem, and the standard method of a fixed learning rate, there are some 

other strategies that adjust the learning rate during the training of machine learning models and 

they are called learning rate schedules. These schedules are designed to improve convergence 

and model performance. Some of these learning rate scheduling techniques are: 

 

▪ Step Decay: This method reduces after a specific number of epochs, the 

learning rate. It is used especially when a high initial learning rate is required 

for fast learning. 

▪ Exponential Decay: This technique decays the learning rate exponentially over 

time. It is used when a smooth and continuous decay is needed, and it doesn’t 

allow the learning rate to become too small very quickly, unlike step decay. 

▪ Polynomial Decay: In this method the learning rate is decreased following a 

polynomial function and can be more stable compared to exponential decay.   

▪ Cosine Annealing: This technique gradually decrease the learning rate 

following a cosine function. It can be combined with restarts.  

▪ Warmup: This method starts with a very low learning rate and gradually 

increases it to the the desired value [6]. It is also combined with other learning 

rate scheduling strategies, thereby enhancing the stability and convergence of 

the training process. 

▪ Cyclical Learning Rates: This technique cycles the learning rate between a 

minimum and a maximum value, following a triangular or sinusoidal pattern. 
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By periodically increasing the learning rate, it helps to escape from local 

minima. 

▪ One-Cycle Policy: This method consists of a single cycle of increasing and then 

decreasing the learning rate, sometimes finishing with an even lower rate than 

where it started. This policy helps to escape poor local minima and then settle 

in a better local minima with a lower learning rate. 

▪ Reduction on Plateau (ReduceLROnPlateau): This technique monitors a 

specific metric during training, usually validation loss. If, after a certain number 

of epochs, there is no improvement in the metric, the learning rate is reduced by 

a chosen factor to allow the model to learn. If the metric stops improving, it may 

indicate a plateau, and that’s why the model continues to learn at a slower rate, 

increasing the likelihood of finding a better minima. Otherwise, the model may 

exhibit overfitting to the training data or oscillate missing out a more optimal 

solution. 

 

 

The challenge of the above scheduling techniques is to use the one that fits better on the specific 

training scenario of the model with the desired rate of learning rate reduction. The scheduling 

techniques can also be combined with adaptive algorithms. The choice of the most appropriate 

technique depends on the specific characteristics of the training process and the model’s 

behaviour. 

 

The last important challenge in deep learning is the choice of the best combination between the 

architecture of the model and the optimizer. The architecture affects the perfomance of the 

optimizer. For example, the deep neural networks with many layers have bigger complexity 

than other models. In this way, the optimization process is more challenging because the 

optimizer need to navigate a more complex loss landscape with possible saddle points and local 

minima. Thus, the choice of optimizer for a specific architecture require testing and tuning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 

 

Chapter 3  

 

First-Order Optimization methods 

 

First-Order optimization methods use the derivative information of the objective function to 

guide the optimization process. This chapter presents an analysis of the fundamental principles 

and the operation of the main algorithms. 

 

3.1 Gradient Descent and its Variants 

 

The earliest known reference to gradient methods dates back to Augustin-Louis Cauchy (1789-

1857) who discussed gradient methods in his work on calculus and optimization [7]. Since that 

time, the algorithm has become a widely used tool in machine intelligence and is commonly 

used in the optimization of neural networks. Specifically, what it does is that it iteratively 

adjusts parameters leading to the direction of the steepest slope. But, because the gradient 

points towards the direction of steepest ascent, the negative term is introduced to ensure that it 

moves downhill, in order to minimize the function. Mathematically, the parameters are updated 

and calculating the derivative they give the slope in every point. In this way, the algorithm 

makes small changes in the input (weights, biases) to obtain the corresponding change in the 

output (predicted value). This section, will present the theoretical background of the three 

variants of the algorithm. 

 

Batch Gradient Descent (BGD) 

The first and classic version of gradient descent where the entire training dataset is used to 

compute the gradient of the cost function at each epoch is called Batch Gradient Descent. It is 

widely used in linear regression and logistic regression, but unlike the next two variants, not 

so much in deep learning where the models have many parameters and the training set is 

typically large. This algorithm is particularly useful for convex optimization, because in the 

case of a convex function, it is implied that any local minimum is also a global minimum 

(Appendix A). Specifically, for a differentiable function f, an initial point 𝑥0 is defined by the 

following update rule: 

 

𝑥𝑡+1 =  𝑥𝑡 − 𝑛𝑡𝛻𝐹(𝑥𝑡), 𝑡 = 0,1, … 

 

Where  xt+1 is the updated state of parameters after applying the above update rule, xt is a  

parameter at iteration t, which represents the current state of the parameters being optimized 

(e.g. weights and biases), the value nt  is the learning rate or otherwise the step size and 

∇F(xt) is the gradient of the loss function for the t-th iteration. This gradient is a vector of 

partial derivatives and gives the rate of change of the function. In general, the learning rate is 

a crucial hyperparameter. It determines the rate at which the parameters are updated. If it is 

small, the algorithm will converge slowly, but if it is too large, the algorithm may oscillate 
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around the minimum or may even diverge. There are a number of methodologies that can be 

employed in order to select an optimal step size. Furthermore, there are techniques that are 

specifically designed for the purpose of finding the optimal step size in the context of 

optimization. These techniques are the backtracking line search and the exact line search which 

are described in Appendix A. 

 

Algorithm: BGD  

Inputs: Cost function J(x), learning rate n, iterations N 
1. Initialize: Random x 
2. For i = 1 to N  
3.          Compute the gradient with respect to x for all the data points: 
4.          gradient  =  𝜵𝐱 𝜮 𝑱(𝒙)    
5.          Update the variable x = x – n * gradient 
6. End For 

7. Return model variable x 

 
The upper bounds3 on the convergence rate with the optimal step sizes of gradient descent for 

each property of the objective function are described by the following theorems [8] : 

 

Theorem 1 

“ Let  𝑓: ℝ𝑛 → ℝ  be convex and L-Lipschitz. For T steps with step size: 

𝑛 =
 ‖𝑥 − 𝑥∗‖2

𝐿√𝑇
 

Then the following holds: 

     𝑓 (
1

𝑇
∑ 𝑥𝑡

𝑇
𝑡=1 ) − 𝑓(𝑥∗) ≤

‖𝑥− 𝑥∗‖𝐿

√𝑇
 ” 

 

 

Theorem 2 
“ Let  𝑓: ℝ𝑛 → ℝ  be convex and β-Smooth with step size n=1/β, then it holds: 
 

𝑓(𝑥𝑡) − 𝑓(𝑥∗) ≤
‖𝑥−𝑥∗‖2

𝑇−1
  ” 

 

In addition to being smooth, if f is strongly convex then there is a geometric decay which is 1-

k, where k is the conditioning of the proplem and is equals to: 𝑘 =
𝛼

𝛽
 4. 

 

Theorem 3 

“ Let 𝑓: ℝ𝑛 → ℝ  be α-strongly convex and β-smooth. Then, gradient descent with step size 

η = 2 / α+β satisfies: 

𝑓(𝑥𝑡) − 𝑓(𝑥∗) ≤
𝛽

2
(1 −

𝛼

β
)

T
‖𝑥 − 𝑥∗‖2 ” 

 
3 An upper bound on the convergence rate is a valuable tool for the assessment of an algorithm's efficiency.  

 
4 Where α and β are, respectively, the strong convexity and the smothness constants.  
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TABLE I 

CONVERGENCE RATE OF GRADIENT DESCENT 

Convex and L-Lipschitz 𝑂(1 ∕ √𝑇) 

Convex and β-Smooth 𝑂( 1 ∕ 𝑇) 

α-Strongly Convex and β-Smooth5 𝑂( 𝑒−𝑇) 

 

 

According to the table, Lipschitz convex functions have a sublinear 6  convergence rate 

𝑂(1/√𝑇), which is slower than the rate of smooth functions, but is useful for functions that are 

not differentiable at their minimum, such as subgradient7 functions. Moreover, the best upper 

bound for gradient descent is achieved with the strong convexity and smoothness conditions 

which give exponential convergence8. 

 

Based on convex optimization problems, gradient descent guarantees convergence to the global 

minimum given a sufficient learning rate. However, in non-convex optimization, the algorithm 

may get trapped in saddle points or plateaus or converge to local minimum instead of the global 

minimum. As mentioned before, when the dataset is large is not so efficient to use this 

algorithm, because it uses all the training data to compute the cost function. Consequently, the 

computational expense and time required to compute are considerable. In such cases, it is 

preferable to utilize alternative optimization algorithms.  

 

 

 
Fig. 1. Saddle point and Plateau as illustrated in [9]. 

 

 

 

 

 

 

 
5 Under certain conditions (1 − 𝑘)𝑇 can approximate 𝑒−𝑇 . This is especially true when 𝑘 is small. 
6  Sublinear means that the the rate at which an algorithm approaches the optimal solution decreases as the number of     

iterations      increase.  An iterative algorithm has sublinear convergence if the error ε at iteration κ satisfies: 𝜀𝑘 ≤
𝑐

𝑘𝜌 for 

constants c, ρ. 
7 Subgradient is a generalization of the gradient concept to convex functions, which may not be differentiable (Appendix A). 
8 Exponential convergence is often referred to as linear convergence because the error decreases in a geometric progression  

  over iterations in the context of iterative optimization algorithms. Suppose 𝜀𝑘 = 𝑓(𝑥𝑘) − 𝑓(𝑥∗), if the error decreases as: 

𝜀𝑘+1 ≤ 𝜌𝜀𝑘, with constant 0<ρ<1 this implies that:  𝜀𝑘 ≤ 𝜌𝑘𝜀0. 
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Stochastic Gradient Descent (SGD)                                                                                                 

Stochastic Gradient Descent selects a random mini-batch of training samples instead of 

processing the entire dataset during each iteration. In particular, the update rule for SGD is: 

 

𝑥𝑡+1 = 𝑥𝑡 − 𝑛𝑡𝛻𝐹𝑖(𝑥𝑡), 𝑡 = 0,1, … 

 

where 𝐹𝑖(𝑥) represents the aggregate of the training loss for a given mini-batch. 

The learning rate 𝑛𝑡  should be properly tuned in order to guarantee efficient convergence 

without oscillations or divergence and it is common to use a diminishing step size. 

In summary, the way the algorithm works is that at the beginning of each epoch, the training 

samples are randomly mixed and divided into multiple mini-batches. Then, at each iteration 

the gradient is computed and an update of weights is perfomed while one data instance is loaded 

into memory. 

 

Algorithm: SGD  

Inputs: Cost Function J(x), learning rate n, iterations N 
1. Initialize: Random x 
2. For i = 1 to N  
3.          Shuffle the data points 
4.          For each data instance (𝑥𝑖 , 𝑦𝑖) 
5.                   Compute the gradient on a training instance (𝑥𝑖 , 𝑦𝑖): 
6.                   gradient  =  𝜵𝐱 𝑱(𝒙, 𝒙𝒊, 𝒚𝒊)    
7.                   Update parameters: x = x – n * gradient  
8.          End For 
9. End For 

10. Return model variable x 

 
SGD is a computationally efficient method, although in theory it has a lower convergence rate 

(TABLE II). In practical terms, however, it is faster than gradient descent because it performs 

more iterations in the same amount of time. Moreover, due to its computational efficiency, it 

requires less memory per iteration and allows for the effective utilization of parallel computing 

resources, making it feasible for typically large datasets. However, the algorithm is 

characterized by high levels of noise and variance due to its stochastic nature, the use of small 

subsets and the fact that we do not take the average gradient over the entire data set. In 

particular, the noise causes fluctuations in the objective function, which leads to slower 

convergence, but sometimes this can help, especially in deep learning models, to obtain 

potentially better local minima, escape saddle points, and improve generalization capabilities. 

Consequently, the same step size will oscillate around the optimum. This is known as the Noise 

Ball effect. To avoid bouncing around the minimum, a decaying step size is used9. In terms of 

the updating cost of SGD, it is independent of the size of the dataset and can reach linear 

convergence. When applied to a convex function the upper bound is 𝐎(𝟏/√𝐓) after T iterations 

and under strong convexity it is 𝐎(𝟏/𝐓) .  

 

 
9 In this case, the algorithm uses a decreasing step size nt =

n0

t
 . 
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TABLE II 

 COMPARISON OF GRADIENT AND STOCHASTIC GRADIENT DESCENT CONVERGENCE RATES 

Algorithm GD SGD 

Convex 𝑂( 1 ∕ √𝑇) 𝑂( 1 ∕ √𝑇) 

Convex and β-smooth 𝑂( 1 ∕ 𝑇) 𝑂( 1 ∕ 𝑇) 

Strongly Convex 𝑂( 𝑒−𝑇) 𝑂( 1 ∕ 𝑇) 

 

Mini-batch Gradient Descent (MBGD) 

This is another variant that uses also a small subset of training examples at a time (mini-batch), 

but operates on small batches of examples with batch size greater than one. As a result, it has 

reduced variance compared to SGD (fig. 2) and more stable convergence, balancing the 

computational efficiency of SGD and the stability of gradient descent as it seems in fig. 3. 

 

MBGD requires tuning of the batch size parameter. According to the authors of [10], “ a batch 

size between 2 and 32 is suitable for optimal performance in deep neural networks, although 

larger batch sizes may be advantageous when parallelism is a priority ”. In particular, if the 

batches are small, additional noise is added to the training process, which reduces the 

generalization error. While, in the case of larger batches, an improvement in stability and a 

reduction in variance are observed, but with a slower convergence towards the solution. The 

resulting accuracy is enhanced and the gradient error is diminished. In terms of generalization, 

the large batch size can maintain the perfomance. 

 
Fig. 2. Differences in training using Gradient Descent variants as illustrated in [11]. 

 

Algorithm: MBGD  

Inputs: Cost Function J(x), learning rate n, iterations N, mini-batch size b 
1. Initialize: Random x 
2. For i = 1 to N  
3.          Shuffle the data points 
4.          Split the data into B mini-batches of size b: 
5.          For each mini-batch B 
6.                    Compute the gradient with respect to x on the mini-batch B: 
7.                    gradient  = 1/b * 𝜵𝐱 𝜮𝑱(𝒙 ; 𝑩)    
8.                    Update parameters x = x – n * gradient  
9.          End For 

10. End For 

11. Return model variable x 
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MBGD is capable of handling data that is not uniformly distributed, as it processes a batch size 

of training examples in each iteration, thereby creating a more balanced representation of 

different classes within each mini-batch. However, it requires careful construction of mini-

batches and potentially additional techniques such as data shuffling, stratified sampling, over-

sampling and under-sampling. 
The convergence rate of MBGD is between that of SGD and BGD, and it achieves linear 

convergence in strongly convex functions with well-chosen batch sizes and learning rates. 

 
Fig. 3. Convergence rates between gradient descent, SGD and mini-batch [12].  

 

In the above left figure it is described how each method reduces the objective function over 

time. The middle figure, which focuses on computational efficiency, shows convergence 

behavior relative to computational cost and the right figure provides a view of  how each 

method converges to the optimal solution, especially when dealing with large differences in 

criterion. In the preceding algorithms, the presence of noise results in a reduction in the rate of 

convergence of the algorithm. The subsequent algorithms try to address this issue. 

3.2 Acceleration Methods 

These algorithms, as the name implies, are employed because they have a larger step size than 

the gradient descent algorithm, and thus achieve better convergence rates under certain specific 

conditions. The main idea here is that the previous gradients influence the current update, 

particularly in regard to its future trajectory. The newly introduced term, the momentum term, 

is of pivotal importance for the performance of these methods. 

  

Momentum 

Momentum is one of the most popular algorithms for large-scale machine learning problems. 

It is usually referred to as Heavy Ball (HB) method, which was introduced by Boris T. Polyak 

[13] and is considered as a simple type of momentum methods. The core idea behind the 

algorithm is that it uses an accumulated velocity vector that represents an exponential moving 

average of all of the gradients influenced by past gradients. The method can be applied to 

gradient descent, but in deep learning it is preferred to be combined with batch methods. 

Specifically, momentum uses the previous two iterates when computing the next one. This 

helps to smooth the noise of the SGD, and in particular is designed to speed up the convergence 

by dealing with high-dimensional spaces, small and noisy gradients [14]. Consequently, the 

method attempts to address the issue of variance, reducing the oscillations, and allows to use a 
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larger step size in regions with low curvature, thereby achieving better convergence and 

stability.  

 
Fig. 4. Gradient descent and the momentum method compared on the Rosenbrock function as illustrated in [15]. 

 

The momentum update rule is:  

𝑣𝑡+1 = 𝛽𝑣𝑡 − 𝑛𝛻𝑓(𝑥𝑡)    

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 

where 𝑣𝑡+1  is the velocity at iteration t+1 and β is the momentum co-efficient which is 

typically between 0 and 1. Some studies suggest the values “ 0.5, 0.9, and 0.99 as common 

settings ” for this value [14] [16]. The largest step size when using momentum is described by 

the formula 
𝑛‖g‖

1−𝛽
 . This means that if the gradient g remains constant, the slope won't change, 

so the algorithm will accelerate until it reaches the terminal velocity. If β=0.9, the terminal 

velocity is equal to 1/(1-0.9) = 10 . Consequently, the rate of change is accelerated ten times 

faster the gradient descent method. 

 

The interpretation of Polyak’s heavy ball method rule is [17]: 

𝑥𝑡+1 =  𝑥𝑡 − 𝑛𝛻𝑓(𝑥𝑡) + 𝛽(𝑥𝑡 − 𝑥𝑡−1)   

where 𝑥𝑡 − 𝑥𝑡−1 is the difference between the current and the previous position and β is the 

momentum co-efficient that heavy ball method use to determine the descent direction. 

 

Algorithm: Momentum 

Inputs: Cost Function J(x), learning rate n, momentum co-efficient β 

1. Initialize: Random x 

2. Initialize: Δv=0 

3. For i = 1 to N  

4.          Shuffle the data points 

5.          Compute the gradient g = 𝜵𝐱 𝑱(𝒙, 𝒙𝒊, 𝒚𝒊)       

6.          Update term Δv=β*Δv+(1-β)*g  

7.          Update parameters x=x-n*Δv 
8. End For 

9. Return model variable x 

   

In a paper [18], it is proved a global sublinear convergence guarantee for HB for convex and 

smooth functions. While, Polyak proved that the HB method has linear convergence when 

minimizing strongly convex quadratic functions for good tuning of the step size n and the 
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coefficient value β. As a result, the algorithm exhibits a faster convergence rate than plain 

gradient descent.  

 

Theorem 4 [19] 
“ Let  f  be a quadratic function which is β-smooth and α-strongly convex. For: 

 

𝑛 =
1

√𝛼𝛽
,  𝛾 = (

√𝛽−√𝛼

√𝛽+√𝛼
)

2

 

 

There exists a constant C such that for any t ∈ ℕ,  
 

𝑓(𝑥𝑡) − 𝑓(𝑥∗) ≤ 𝐶𝑡2 (
√𝛽−√𝛼

√𝛽+√𝛼
)

2

‖𝑥 − 𝑥∗‖2 ” 

The above theorem means that the optimal rate of convergence for strongly convex quadratic 

functions is 𝑂 ((1 − √
𝑎

𝛽
)

𝑇

) but it doesn't work for all strongly convex and smooth functions. 

For example, there is a study [20] that shows that the heavy method fails to converge for certain 

strongly-convex and smooth functions and another that shows that there are simple quadratic 

problem instances that do not improve the convergence speed of SGD [21]. Yet another paper, 

reports that the convergence rate of Stochastic Gradient Descent with Momentum (SGDM) is 

as fast as SGD for smooth objectives under both strongly convex and nonconvex settings.  

 

Nesterov Accelerated Gradient Descent  

One other type of momentum methods is Nesterov’s accelerated gradient (NAG), which have 

been found by Yurii Nesterov. The method has been enhanced through the utilisation of a 

lookahead step and the incorporation of the momentum term. In contrast to the Polyak 

algorithm, the gradient is evaluated at a future approximated point (after the current velocity is 

applied), and not in the current parameters 𝑥𝑡, which helps the algorithm to converge faster and 

more smooth because of the anticipation of future gradients which are used for early correction. 

Moreover, the algorithm converges for general convex functions, not only for some carefully 

built convex optimization problems. 

 
Fig. 5. Nesterov and the momentum method compared on the Rosenbrock function as illustrated in [15]. 

 

The iteration formula of NAG consists of the following steps : 

 
𝑣𝑡+1 = 𝛽𝑣𝑡 − 𝑛𝛻𝑓(𝑦𝑡) 

 
𝑦𝑡 = 𝑥𝑡 + 𝛽𝑣𝑡 
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𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 

 

 

Combining these sequences as one the update rule of the algorithm is [19]: 

𝑥𝑡+1 =  𝑥𝑡 − 𝑛𝛻𝑓(𝑥𝑡 + 𝛽(𝑥𝑡 − 𝑥𝑡−1)) + 𝛽(𝑥𝑡 − 𝑥𝑡−1) 

 

where, 𝑦𝑡 = 𝑥𝑡 + 𝛽(𝑥𝑡 − 𝑥𝑡−1) is the lookahead point at which the gradient is calculated and 

𝛽(𝑥𝑡 − 𝑥𝑡−1) is the momentum term. 

 

Algorithm: Nesterov 

Inputs: Cost Function J(x), learning rate n, momentum co-efficient β 
1. Initialize: Random x 
2. Initialize: Δv=0 
3. For i = 1 to N  
4.          Shuffle the data points 
5.          Compute lookahead 𝒙̂ = x +β*Δv 
6.          Compute the gradient g = 𝜵𝐱 𝑱( 𝒙̂, 𝒙𝒊, 𝒚𝒊)       
7.          Update term Δv=β*Δv-n*g  
8.          Update parameters x=x-n*Δv 
9. End For 

10. Return model variable x 

 

The following theorems describe the convergence rates of the algorithm in each case [19]: 

Theorem 5 

“ Let  f  be an α-strongly convex and β-smooth function, then according to the iteration 

formula, for all 𝑡 ∈ ℕ with n=1/β and 𝛽=
√β−√𝑎

√β+√𝑎
:  

 

𝑓(𝑥𝑡) − 𝑓(𝑥∗) ≤ 2 (1 − √
𝛼

𝛽
)

𝑇

(𝑓(𝑥) − 𝑓(𝑥∗)) ” 

 

According to the above theorem, with the specific choice of parameters Nesterov’s method 

converges at a linear rate with an upper bound complexity of 𝑂 ((1 − √
𝑎

𝛽
)

𝑇

), which is true 

for all stronlgy convex functions and not just the quadratic ones as it happens in the heavy 

ball method. 

 

While, in the case of smooth convex functions the convergence rate of Nesterov’s method is 

𝑂 (
1

𝑇2) according to the next theorem: 

 

 

 



 

17 

 

Theorem 6 

“ Let  f  be an β-smooth convex function, with n=1/β, then for all 𝑡 ∈ ℕ: 

 

𝑓(𝑥𝑡) − 𝑓(𝑥∗) ≤
2𝐿

(𝑇+1)2  ‖𝑥 − 𝑥∗‖2 ” 

 

The importance of NAG algorithm is based to the fact that it achieves the optimal convergence 

rates among gradient methods for both strongly convex and smooth convex functions. The 

table below presents the rates in contrast to the gradient descent algorithm. 

 
TABLE III 

 COMPARISON OF GRADIENT DESCENT AND NESTEROV’S ALGORITHM CONVERGENCE RATES 

Algorithm GD NAG 

Smooth Convex Functions 

 

𝑂( 1 ∕ 𝑇) 𝑂(1 ∕ 𝑇)2 

Strongly Convex and Smooth Functions 
𝑂 (𝑒−

𝑇
𝑘) 𝑂 (𝑒

−
𝑇

√𝑘) 

 

 
 

Fig. 6. Accelerated methods and SGD perfomance as illustrated in [21] 

 

3.3 Adaptive Gradient Methods 

The learning rate is an important hyperparameter for optimization algorithms. As discussed in 

previous sections, if the step size is very small, the updates will take a lot of time to update the 

parameters. Moreover, in some cases where the data is high-dimensional or sparse, the constant 

learning rate may not help the model converge because the learning update is inefficient. 

Therefore, it is necessary to dynamically change the learning rate to achieve convergence. 

That’s the main goal of adaptive gradient methods. They aim to have a better efficiency than 

the other gradient-based optimization algorithms by adjusting the learning rate for each 

parameter. These algorithms approximate the diagonal elements of the Hessian matrix by 

calculating the squared gradients. In practical applications, the squared gradients can be used 

as a surrogate for curvature, providing a way to understand how steep or flat the loss function 

is. This approach can be beneficial in many scenarios, particularly in deep learning, where the 

calculation and utilisation of the full Hessian matrix is a computationally expensive process.  
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Adagrad (Adaptive Gradient) 

Adagrad is an optimization algorithm that adjusts the learning rate for each parameter based 

on the sum of squared gradients calculated during training. This means that the historical 

gradients determine how small or large the learning rate is. Thus, if the parameters have larger 

historical gradients will have smaller learning rates and vice versa. The advantage of Adagrad, 

is that it helps deal with sparse data where the gradient vectors have zero or near-zero 

components by ensuring that the steps taken in each dimension are appropriately scaled based 

on the historical gradients. 

 

The learning rate of the algorithm is adapted by this accumulated sum, of squared past 

gradients: 

𝐺𝑡 = ∑ 𝛻𝑓(𝑥𝑡)𝛻𝑓(𝑥𝑡)𝑇

𝑁

𝑡=1

 

 

However, if this sum keeps growing, it results in exploding sums. This, in turn, causes a 

continual decay of learning rates that tend to zero, which lead to slow convergence and 

ultimately halts the learning process. This can cause the algorithm to stop making progress 

before reaching the optimal solution, especially in non-convex optimization problems or when 

training over long periods.  

The iteration formula of Adagrad is [16]: 

𝑥𝑡+1 = 𝑥𝑡 −
𝑛

√𝐺𝑡 + 𝜀
𝛻𝑓(𝑥𝑡) 

where: “ 𝐺𝑡 is a diagonal matrix, where the diagonal elements are the sum of the squares of the 

past gradients and ε is a small constant with a value usually set to 10-8 , which prevents division 

by zero.” 

 

Algorithm: Adagrad 

Inputs: Cost Function J(x), learning rate n  
1. Initialize: Random x 
2. Initialize: matrix G=0 
3. For i = 1 to N  
4.          Shuffle the data points 
5.          Compute the gradient g = 𝜵𝐱 𝑱( 𝒙, 𝒙𝒊, 𝒚𝒊)       
6.          Update the matrix G=G+g*𝐠𝑻 
7.          Update parameters 𝒙 = 𝒙 −

𝒏

√𝒅𝒊𝒂𝒈(𝑮)+𝜺
𝐠          

8. End For 
9. Return model variable x 

 

In terms of convergence, Adagrad is almost certain to asymptotically convergent10 in the non-

convex problems, meaning in mathematical terms that: 𝑙𝑖𝑚
𝑡→∞

𝛻𝑓(𝑥𝑡) = 0 

 
10 Asymptotic convergence means that as the number of iterations t approaches infinity, the parameters 𝑥𝑡 approach a critical 

point of the objective function. 
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This implies that the gradients become small, indicating that the parameters are approaching a 

point where the objective function is flat and no further improvement can be made. In addition, 

Adagrad provides sublinear convergence 𝑂(1 √𝑇⁄ ) in convex optimization, while for non-

convex objectives a rate of  𝑂(𝑙𝑜𝑔(𝑇) /√𝑇) [22]. 

 

Adadelta 

AdaDelta is an extension of Adagrad designed to address some of its limitations, in particular 

the problem of learning rate decay by using a moving average of squared gradients. The core 

idea is that it keeps track the historical gradients rather than accumulating them over time as 

AdaGrad does. In this way, learning progresses even after many iterations [23]. Adadelta is 

inspired by the exponential moving average that is used in momentum. 

 

 

The update rule of Adadelta [16]: 

 

𝐸[𝑔2]𝑡 = 𝜌𝐸[𝑔2]𝑡−1 + (1 − 𝜌)𝑔𝑡
2 

 

Where 𝐸[𝑔2]𝑡is the exponentially decaying average of past squared gradients, ρ is the decay 

rate, which usually is set to 0.9 and 𝑔t  is the gradient at time step t. 

 

So replacing the diagonal matrix 𝐺𝑡 with the moving average of past squared gradients 𝐸[𝑔2]𝑡, 

the parameter update is equal to: 

 

𝛥𝑥𝑡 = −
𝑛

√𝐸[𝑔2]𝑡 + 𝜀
 𝑔𝑡 

 

Then, the update is: 

  

𝐸[𝛥𝑥2]𝑡 = 𝜌𝐸[𝛥𝑥2]𝑡−1 + (1 − 𝜌)𝛥𝑥𝑡
2 

 

𝑅𝑀𝑆[⋅]𝑡 ⋅= √𝐸[ .2 ]𝑡 + 𝜀 

 

Knowing that Newton's Rearrangement Method is:  

𝛥𝑥 =

𝜕𝑓
𝜕𝑥

𝜗2𝑓
𝜗𝑥2

=>
1

𝜗2𝑓
𝜗𝑥2

=
𝛥𝑥

𝜗𝑓
𝜃𝑥

 

 

Given that the 𝑅𝑀𝑆[𝛥𝑥]𝑡 is unknown, we assume that the curvature is locally smooth and we 

approximate it by taking the square root of the accumulated squared parameter updates from 

previous steps. So, the update parameter of Adadelta is:  
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𝛥𝑥𝑡
= −

𝑅𝑀𝑆[𝛥𝑥]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡 

 

𝑥𝑡+1 = 𝑥𝑡+𝛥𝑥𝑡
 

 

As it seems, Adadelta eliminates the need for an initial learning rate n by normalizing updates 

using the ratio of the RMS (Root Mean Square) of recent gradients to the RMS of recent 

parameter updates. This makes Adadelta more robust in models where manually tuning 

learning rates can be challenging. 

The lack of strong theoretical convergence guarantees in Adadelta can be seen as drawback 

compared to some other optimization methods. But, its empirical performance often 

demonstrates faster convergence compared to other algorithms, particularly in non-convex 

optimization scenarios. 

 

Algorithm: Adadelta 

Inputs: Cost Function J(x), learning rate n 
1. Initialize: Random x 
2. Initialize: matrix G=0 
3. Initialize matrix X=0 
4. For i = 1 to N  
5.          Shuffle the data points 
6.          Compute the gradient g = 𝜵𝐱 𝑱( 𝒙, 𝒙𝒊, 𝒚𝒊)       
7.          Update the matrix G=ρ*G+(1-ρ)g*𝐠𝑻 

8.          Update variable 𝒙 = 𝒙 −
𝒏

√𝒅𝒊𝒂𝒈(𝑮)+𝜺
𝐠    

9.          Δx=−
√𝒅𝒊𝒂𝒈(𝑿)+𝜺

√𝒅𝒊𝒂𝒈(𝑮)+𝜺
𝒈       

10.          Update X = ρ*Χ+(1-ρ)*Χ*𝚾𝑻 
11.          Update parameters x = x+Δχ 
12. End For 
13. Return model variable x 

 

 

RMSprop 

RMSprop (Root Mean Squared Propagation) is another extension of Adagrad, which proposed 

by Geoffrey Hinton. Actually, RMSprop is similar to the initial update vector of Adadelta in 

the previous section. The algorithm, like Adadelta, modifies the accumulation of past gradients 

by giving more weight to recent gradients and less weight to older gradients, thus preventing 

the learning rate from decreasing too fast. The update rule is [16]: 

 

𝐸[𝑔2]𝑡 = 𝜌𝐸[𝑔2]𝑡−1 + (1 − 𝜌)𝑔𝑡
2 

 

𝑥𝑡+1 = 𝑥𝑡 −
𝑛

√𝐸[𝑔2]𝑡 + 𝜀
 𝑔𝑡 
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where ρ is recommended to “be set to 0.9 and a good default value for the learning rate η is 

0.001” [16]. In contrast to Adadelta, RMSprop in his update rule requires the specification of 

an initial learning rate n, which needs to be tuned.  

 

Algorithm: RMSprop 

Inputs: Cost Function J(x), learning rate n 
1. Initialize: Random x 
2. Initialize: matrix G=0 
3. For i = 1 to N  
4.          Shuffle the data points 
5.          Compute the gradient g = 𝜵𝐱 𝑱( 𝒙, 𝒙𝒊, 𝒚𝒊)       
6.          Update the matrix G=ρ*G+(1-ρ)*g𝐠𝑻 
7.          Update parameters 𝒙 = 𝒙 −

𝒏

√𝒅𝒊𝒂𝒈(𝑮)+𝜺
𝐠          

8. End For 
9. Return model variable x 

 

 

In terms of optimization, RMSprop achieves sublinear convergence rates in the context of non-

convex stochastic optimization, for a given batch size. It also converge faster than other 

optimization algorithms, especially in deep neural networks with many layers. This happens 

because it can efficiently adjust the learning rate for each step, which is useful for complex 

with a wide number of feautures optimization models. 

 

Adam 

Adam (Adaptive moment Estimation) is another adaptive learning rate optimization algorithm. 

It is appropriate for big data problems, and it works as a combination of RMSprop and 

momentum. Specifically, Adam utilises the past squared first-order gradients, like RMSprop 

and the past first-order gradients similar to momentum [16]: 

 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

 

“Where: 𝑚𝑡  and 𝑣𝑡  are estimates of the first moment (mean) and the second moment ( 

uncentered variance) of the gradients. The parameter 𝛽1 is the decay rate of the first moment 

and 𝛽2 is the decay rate of second moment which are typically set to around 0.999” [16]. These 

two estimates, make the algorithm to adjust the learning rate for each parameter. 

 

Especially, the exponentially weighted moving average of the gradients (mean) provides 

information about the average direction in which the parameters should be updated and helps 

to smooth them, reducing the noise. While, the exponentially weighted moving average of the 

squared gradients (uncentered variance) measures the magnitude of the gradients, which is 
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essential for ensuring stability and preventing the step size from becoming too small or too 

large, during the optimization process. 

 

The authors of Adam [24], observed that when these two vectors are initialized as zeros, they 

are biased towards zero. This problem is overcomed by computing the bias-corrected first and 

second moment estimates: 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 ,  𝑣𝑡 =

𝑣𝑡

1−𝛽2
𝑡 

 

Then using these estimates yields the Adam update rule: 

 

𝑥𝑡+1 = 𝑥𝑡 −
𝑛

√𝑣𝑡 + 𝜀
 𝑚̂𝑡 

 

The algorithm is stable because of the per-parameter adaptation of the learning rate and works 

well in non-convex problems with sparse or noisy gradients and high dimensional space. 

However, a study [25] shows that the exponential moving average in the Adam and RMSprop 

algorithms can cause non-convergence by providing an example of simple convex optimization 

problem. According to another study [26], Adam achieves the convergence rate of 𝑂(1 ∕ √𝑇) 

in the non-convex stochastic setting “by requiring the batch size to be the same order as the 

number of maximum iterations”.  

 

Algorithm: Adam 

Inputs: Cost Function J(x), learning rate n,decay rates β1,β2 
1. Initialize: vector m=0 
2. Initialize: vector v=0 
3. Initialize: matrix G=0 
4. For i = 1 to N  
5.          Shuffle the data points 
6.          Compute the gradient g = 𝜵𝐱 𝑱( 𝒙, 𝒙𝒊, 𝒚𝒊) 
7.          Update vector m = β1*m+(1-β1)*g 
8.          Update vector v= β2*v+(1-β2)*gg 
9.          Compute bias-corrected 𝒎̂ = 𝒎 ∕ (𝟏 − 𝜷𝟏

𝑻) 
10.          Compute bias-corrected 𝒗̂ = 𝒗 ∕ (𝟏 − 𝜷𝟐

𝑻) 
11.          Update parameters 𝒙 = 𝒙 −

𝒏

√𝑣̂+𝜺
𝑚̂         

12. End For 
13. Return model variable x 

 
In this research [27], Adam is identified as a strong and reliable optimizer that consistently 

performs well across a variety of deep learning tasks. The study demonstrates that despite the 

emergence of newer optimization methods, Adam often remains competitive and is not 

significantly outperformed by these alternatives. Moreover it emphasizes the benefits of 
tuning11 the algorithm and combining it with other optimizers like RMSProp and NAG for 

improved perfomance. If it is combined with NAG, then the following algorithm (Nadam) 

arises.  

 
11 Adjusting the hyperparameters of the optimizer (such as learning rate, momentum). 
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Nadam 

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is an adaptive algorithm that 

extends the Adam by incorporating Nesterov momentum. This implies that the algorithm 

benefits from the accelerated Nesterov method, which accelerates the convergence and 

smooths out the learning process, enhancing in this way the stability. 

 

In his paper [28], Timothy Dozat demonstrates that Nadam outperforms other algorithms, 

including Adam, in terms of training and validation loss for a convolutional autoencoder. 

 

The update rule of Nadam arises from few modifications of NAG and Adam [16] : 

 

𝑥𝑡+1 = 𝑥𝑡 −
𝑛

√𝑣𝑡𝑡 + 𝜀
(𝛽1𝑚̂𝑡 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡 ) 

 

Algorithm: Nadam 

Inputs: Cost Function J(x), learning rate n, decay rates β1,β2 
1. Initialize: m=0 
2. Initialize v=0 
3. For i = 1 to N  
4.          Shuffle the data points 
5.          Compute the gradient, gradient  =  𝜵𝐱 𝑱(𝒙, 𝒙𝒊, 𝒚𝒊)    
6.          Update vector m = β1*m+(1-β1)*g          
7.          Update vector v= β2*v+(1-β2)*gg 
8.          Compute bias-corrected 𝒎̂ = 𝒎 ∕ (𝟏 − 𝜷𝟏

𝑻) 

9.          Compute bias-corrected 𝒗̂ = 𝒗 ∕ (𝟏 − 𝜷𝟐
𝑻) 

10.          Update the parameters 𝒙 = 𝒙 −
𝒏

√𝑣̂+𝜺
 (𝜷𝟏 ∗ 𝒎̂ +

(𝟏−𝜷𝟏)𝒈

𝟏−𝜷𝟏
𝒕  

11. End For 
12. Return model variable x 
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Chapter 4  

 

Experiments 

 
In this chapter, we test the efficiency of the first-order algorithms on a very common 

benchmark dataset, Cifar-10 [29][30], using two different model architectures. The dataset 

contains 60.000 color images with 6.000 images per class. Each image is 32x32 pixels and the 

dataset is characterized by low image resolution and diversity within each class.  

 

 
Fig. 7. Samples from Cifar-10 dataset.  

 

 
Fig. 8. The distribution of classes in Cifar-10 dataset.  

 

The models below, are tested in order to evaluate each algorithm’s perfomance. Every 

algorithm is examined in terms of accuracy, loss behavior, training time efficiency and learning 

rate perfomance. These information, allow to understand the differences between the 

algorithms. Specifically, by plotting training and validation loss over epochs it is described 

how quickly and effectively each optimizer converge. Each loss curve can describe also if there 
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is stability in the model. Moreover, some optimizers might have more fluctuations, which could 

impact the training stability. While, other optimizers in terms of learning rate are more 

sensitive. The figures that are presented in this chapter give an idea of how each optimizer 

behaves in the specific dataset.   

 

4.1 Perfomance in Cifar-10 with a baseline Model Architecture 

Initially, a basic CNN model is implemented in order to understand the perfomance between 

diferent optimizers.  

The structure of the CNN model as shown in the figure below, consists of four Conv2D layers, 

with 32,64,64,128 filters respectively, each of size 3x3. Every convolutional layer is followed 

by a MaxPooling2D layer, except the last one. It has a GlobalAveragePooling2D layer 

which reduces the output of the last convolutional layer to a single vector. Finally, a fully 

connected (Dense) layer with 10 units is added to the model.  

 

 
 

Fig. 9. The Simple CNN model architecture.  

 

In this model, the training uses a batch size of 64 and will run for 30 epochs. To enhance the 

training process a couple of callback funtions are added. 

 

Firstly, the early stopping technique has been implemented, which has resulted in some 

algorithms (in figure 10) exhibiting a reduced number of epochs or a reduced time. This ensures 

that the model will not waste time and computational resources. The parameter patience of the 

callback is set to 6.  

Additionally, ReduceLROnPlateau, a type of learning rate scheduler12 utilized to adjust the 

learning rate for better convergence and efficient training. The function’s factor parameter is 

set to 0.5, the patience parameter is set to 4 and the minimum learning rate is 0.00001.   

Each algorithm is tested at two different learning rates, and each plot shows the accuracy and 

the cross entropy loss in the training and validation sets. Plotting these metrics over epochs can 

also help to explain how well the model learns and generalizes.  

 
12 In Appendix B in figure B1 is also presented the CNN model curves without the learning rate scheduler. 
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Fig. 10. The training accuracy and the cross entropy loss for each case. 
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Fig. 10. The visualization analysis of the first CNN model perfomance in Cifar-10. 

These comparisons highlight the importance of hyperparameter tuning, such as learning rate 

and number of epochs. Especially, the learning rate is very crucial for the final result. In this 

model it is noticed that some algorithms overfit, but others such as Adam and Nadam have 

better stability. The SGD with momentum and SGD with Nesterov algorithms achieve good 

test accuracy and loss in both learning rate cases in contrast to the other algorithms. Also, the 

remaining algorithms are more sensitive to the change of learning rate and the majority of them 

have noise. However, the model performs relatively well depending on its size and the dataset, 

but for better performance a different architecture with more layers can be used. 
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4.2 Perfomance in Cifar-10 with a more complex Model Architecture 

 

This architecture has some extra layers and it is presented how these changes in combination 

with some other add-ons affect the performance of each optimizer. Specifically, the model, 

consists of eight Conv2D layers, which have by two, 32,64,128,256 filters respectively. After 

each of these, a batch normalization layer is introduced to make the optimizer perform more 

consistently and to stabilize the learning process. Moreover, between them, four 

Maxpooling2D layers are imported and afterwards four dropouts. Dropouts improve 

generalization and reduce the risk of over-optimizing, preventing the algorithms to over-

optimize specific paths in loss landscape that lead to poor generalization. Finally, a flatten layer 

and a fully connected layer complete the model architecture. 

 

 
 

 
Fig. 11. The second CNN architecture. 
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Fig. 12 The final results of the optimizers.  
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Fig. 13. The visualization analysis of the second CNN model perfomance in Cifar-10 dataset. 

 
This model uses batch size of size 64, giving better stability, and the number of epochs is 100, 

including the callback earlystopping the learning rate scheduler. In the preprocessing step, 

standardization and data augmentation are employed, smoothing the loss landscape and 

improving generalization. In these graphs the optimizers have in general better perfomance 

than previously. According to the figure 12, the training and validation curves follow similar 

trajectories and converge, without the training metrics significantly outperforming the 
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validation metrics. This suggests that in most cases13 the optimizers are stable and don’t overfit 

or underfit. In terms of accuracy and cross entropy loss in this dataset, Nadam, Adam and 

RMSprop achieve good results. While, algorithms such as SGD, Adagrad and Adadelta with 

lower learning rates converge more slowly.  

 
 

 

 
Fig. 14. The remaining algorithms analysis of the second CNN model 

 

 

 

 

 

 

 

 

 

 

 
13 In SGD and Adagrad with learning rate 0.001 and Adadelta with learning rate 0.01 there are exist signs of overfitting. 
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Chapter 5  

 

Conclusions 

According to the results of Chapter 4, there are many factors that affect the final performance 

of a machine learning model. The optimizers have different complexity and they can perform 

in a different way each time. However, there are many parameters and methods that are used 

to achieve faster training or better final performance. There are also cases, where the most used 

algorithms like Adam or SGD can't work efficiently on the dataset and there are other options 

that can be more effective. This means that no single optimizer consistently outperforms others 

across all problems and each optimizer according to the algorithmic design and the 

hyperparameter settings, may be better suited for certain types of problems. So depending on 

the nature of the data and the different dimensions of it in space landscape, there may be better 

options. The interesting point is that these algorithms can make combinations between them 

and give different results each time. Finally, in terms of optimization, it’s always important to 

evaluate a range of different techniques to get a better outcome.  
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    Convex      Not Convex Not Convex 

Appendix        

 

Convex Sets 

Definition 1 “A set C is convex if the line segment between any of two points of C lies in C. 

If for any 𝑥, 𝑦 ∈ 𝐶 and any λ with 0 ≤ 𝜆 ≤ 1 we have [31]:  

 

𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐶” 

 

 
 

 
                                                    Fig. A1. Convex and nonconvex sets as illustrated in [32, Fig. 2.2] 

 

 

Convex Functions 

Definition 2 “A function 𝑓 ∶ 𝑑𝑜𝑚(𝑓)  →  ℝ, dom(f) ⊆  ℝd  is convex if dom(f) is a convex 

set and for all 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓) and λ with 0 ≤ 𝜆 ≤ 1 we have [31]:  

 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦),  ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓) 

Otherwise, if we have: 

        𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦),         ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓)  

the function is concave”. 

 

The Convexity of f means geometrically, that the line segment connecting two points (x,f(x)) 

to (y,f(y)) on the graph lies above or on the graph of  f. 

 

Fig. A2. A Convex function as illustrated in [31, Fig. 1.3].  

 

 

 

A 
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Proposition  

Let  f  be convex. If x is a local minimum of  f  then x is a global minimum of  f.  

Suppose that x ∈ 𝑑𝑜𝑚(𝑓) is a local minimum of  𝑓 ∶ 𝑑𝑜𝑚(𝑓)  →  ℝ  meaning that any point 

in a neighborhood around x has larger function value (𝑓(𝑦) ≥ 𝑓(𝑥)). Now, for every y ∈
𝑑𝑜𝑚(𝑓) we can find a λ ∈ [0,1] such that:  

 

𝑓(𝑦) ≥  𝑓(𝜆𝑥 + (1 − 𝜆)𝑦)  ≥  𝑓(𝑥) 

 

First and Second order characterization of Convex functions 

Definition 3 Suppose  𝑓 ∶  𝑑𝑜𝑚(𝑓) → ℝ  is differentiable over an open domain. In particular, 

the gradient (vector of partial derivatives) 𝛻𝑓(𝑥) = (
𝜗𝑓

𝜗𝑥1
(𝑥), … ,

𝜗𝑓

𝜗𝑥𝑑
(𝑥)) exists at every point 

x ∈ 𝑑𝑜𝑚(𝑓). Then, f is convex if and only if dom(f) is convex and [33]: 

 

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑇(𝑦 − 𝑥),   x,y ∈ 𝑑𝑜𝑚(𝑓) 

 

Geometrically, this means that the function lies above its tangent hyperplane as in figure A3. 

 
Fig. A3. First-order characterization of convexity as illustrated in [31, Fig. 1.5]. 

 

Definition 4 “While, if  f  is twice differentiable; in particular the Hessian (matrix of second 

derivatives)  

 

 
 

exists at every point x ∈ 𝑑𝑜𝑚(𝑓) and is symmetric, then  f  is convex if only dom(f) is convex 

and for all x ∈ 𝑑𝑜𝑚(𝑓) we have [31]:  

 

𝛻2𝑓(𝑥) ≥ 0” 

 

 

 

In general, the second derivative measures the speed that the slope of a function can change. 

Similarly, the Hessian represents how fast the curvature of a function changes .  More 
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specifically, the Schwarz theorem14 implies that the Hessian matrix is always a symmetric 

matrix and according to the spectral theorem, any symmetric matrix, including the Hessian, 

can be decomposed into the form: 

𝐴 = 𝑉 ⋅ 𝛬 ⋅ 𝑉𝑇 

 

where the matrix of 𝑉 = [𝑣1, … , 𝑣𝑛] is orthogonal (𝑉𝑇𝑉 = 𝑉𝑉𝑇 = 𝐼 ), and contains the 

eigenvectors of A, while the diagonal matrix Λ contains the eigenvalues of A. 

 

Lipschitz Continuity 

Definition 5 A function 𝑓: 𝑑𝑜𝑚(𝑓) → ℝ  is L-Lipschitz continuous if there exists a constant 

L > 0 such that for all x,y ∈ 𝑑𝑜𝑚(𝑓) [33]: 

 
|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿‖𝑥 − 𝑦‖ 

 

Where ‖·‖ denotes the Euclidean norm. 

A Lipschitz continuous function is bounded in how fast it can change. 

 
Smoothness 

Definition 6 In optimization a function f  is β-smooth, if its gradient is Lipschitz continuous 

with Lipschitz constant β [33]: 

 

‖𝛻𝑓(𝑥) − 𝛻𝑓(𝑦)‖ ≤ 𝛽‖𝑥 − 𝑦‖ ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝑓) 
 

This condition restricts the speed of gradient’s change, and β essentially measures the 

maximum rate of change of the gradient. 

Also, the Hessian satisfies:  

𝐻(𝑥) ≤ 𝛽𝐼 

meaning that the eigenvalues of H(x) are at most β (λmax(H(x))≤β). 

 

Some useful implications of smoothness are: 

1. If f is β-smooth then the function 
𝛽

2
‖𝑥‖2 − 𝑓(𝑥) is convex. 

 

2. Ιf f is β-smooth then, there is a quadratic upper bound on the function: 

𝑓(𝑦) ≤ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑇(𝑦 − 𝑥) +
𝛽

2
‖𝑦 − 𝑥‖2 

 

 

14 The second-order partial derivatives satisfy the identity  
𝜗

𝜗𝑥𝑖
(

𝜗𝑓

𝜗𝑥𝑗
) =

𝜗

𝜗𝑥𝑗
(

𝜗𝑓

𝜗𝑥𝑖
). 
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Strict Convexity 

Definition 7 “A Function  𝑓: 𝑑𝑜𝑚(𝑓) → ℝ  is strictly convex if for all 𝑥 ≠ 𝑦 ∈ 𝑑𝑜𝑚(𝑓) and 

all λ ∈ (0,1) [31]:  

 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)” 

Or if:  

𝑓(𝑦) > 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑇(𝑦 − 𝑥) [34] 

   

As evidenced by the definitions, if  f  is strictly convex, then  f  is convex. In general, the strict 

convexity of the optimization process enhances its efficiency, resulting in improved 

convergence rates and stability. This stability ensures that small changes in the input lead to 

predictable changes in the output.  

 

Strong Convexity 

Definition 8 “A function is α-strongly convex if  ∃𝛼 > 0 constant such that the modified 

𝑔(𝑥) = 𝑓(𝑥) − 𝛼‖𝑥‖2 is convex” [34].  

This means that if 𝑔(𝑥) is convex, then 𝑓(𝑥) must be sufficiently “curved upwards” and more 

strongly curved than the quadratic term 𝛼‖𝑥‖2 . Furthermore, there are several significant 

implications of strong convexity [33]: 

 

“1. If  f  is strongly convex then an equivalent definition is that it satisfies the following 

inequality: 

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝛻𝑓(𝑥)𝑇(𝑦 − 𝑥) +
𝛼

2
‖𝑦 − 𝑥‖2,     x, y ∈ dom(f) 

This definition ensures that the function 𝑓 has a quadratic lower bound, which means it curves 

upwards more steeply than a standard convex function. 

 

2. If  f  is twice differentiable, an equivalent characterization is: 

 

𝛻2𝑓(𝑥) ≥ 𝛼𝐼” 

 
Fig. A4. Smooth and Strongly convex function as illustrated in [31, Fig 2.3]. 
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The steepness of strong convex functions have a significant impact on the convergence 

behavior of gradient-based algorithms, making the gradient steps more efficient.  

The above inequality 𝛻2𝑓(𝑥) ≥ 𝛼𝐼 demonstrates that the eigenvalues of the Hessian matrix 

are at least α (λmin(H(x))≥α), which ensures that the Hessian is well-conditioned. This 

implies that the function avoid directions with very small curvature which cause issues like 

slow convergence or overshooting.  

 

In general, the rule is as follows: “Strong convexity ⇒ Strict convexity ⇒ Convexity 

But, the converse is not true” [34].  

 

  

Definition 9 Subgradients are convex functions which are not necessarily differentiable but 

they preserve convexity, such as the max-operation. A subgradient of a function 𝑓 at a point x 

is a vector 𝑔 such that: 

 

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑔𝑇(𝑦 − 𝑥), y ∈ dom(f) 

 

The set of all subgradients at 𝑥 is called the subdifferential and is denoted by ∂𝑓(x). Also, If 𝑓 

is differentiable at x, the subdifferential ∂𝑓(𝑥) contains exactly one element, which is the 

gradient ∇𝑓(𝑥). 

 
Fig. A5. The subgradients of a non-differentiable convex function at point 𝑥2 as illustrated in [35]  

 

 

Definition 10 Let A be a real matrix. The condition number is the ratio of its largest and 

smallest eigenvalues: 

 

k(A) = 
𝜆 𝑚𝑎𝑥(𝐴)

𝜆 𝑚𝑖𝑛(𝐴)
 

 

 

The condition number measures the dynamic range of curvatures of the objective function and 

it is an indicator of the sensitivity in the input data. Moreover, it is of great significance as it 

provides insight into the convergence behavior of gradient descent algorithms. It helps to 

determine the optimal step size for efficient and stable convergence, and it indicates how well-

conditioned the optimization problem is, which in turn affects the speed of finding the solution. 

The ideal condition number is equal to 1 or at least close to 1. In cases where k>>1, the function 

has steep curvature in some directions and flat curvature in others, which means that the 

algorithm will have slow convergence and in practice will need more iterations to converge 

and a small step size to maintain stability. 
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Backtracing Line Search 

Definition 11 Backtracing line search is an inexact method that is used to find an efficient step 

size that decreases the objective function. The goal is to iteratively reduce the step size n, until 

an appropriate value is found [32].  

 

The stopping condition for the backtracking line search is:  

 

𝑓(𝑥 + 𝑛∆𝑥) ≤ 𝑓(𝑥) + 𝛼𝑛𝛻𝑓(𝑥) 𝑇∆𝑥 

 

Where α is a factor that adjusts f, and takes values between 0 and 0,5. These are the values 

that can guarantee convergence and sufficient progress. As it seems in the below figure when 

factor α is reduced the upper dashed line moves downward. Also, for any n, the value of 

𝑓(𝑥+nΔ𝑥) must lie below this new lower line in order for the condition to be satisfied. 

 
 

Fig. A6. The backtracking search method as illustrated in [32, Fig 9.1]. 

 

“Since ∆x is a descent direction, ∇f(x) T∆x < 0, so for small enough n, by the Taylor expansion 

series it is implied [32]: 

𝑓(𝑥 + 𝑛∆𝑥) ≈ 𝑓(𝑥) + 𝑛𝛻𝑓(𝑥) 𝑇∆x 
 
and combining the above formula with the backtracking condition: 

 
𝑓(𝑥) + 𝑛𝛻𝑓(𝑥)𝑇∆𝑥 < 𝑓(𝑥) + 𝛼𝑛𝛻𝑓(𝑥) 𝑇∆𝑥” 

 
This method is considered to be less computationally intensive, dealing with large-scale 

problems and is preferred when the objective function is noisy.  

 
 
Exact Line Search 

Definition 12 Exact line search is used to find the optimal step size n, that has the maximum 

decrease in the objective function f, along a specified search direction Δx. The goal is to select 

n that minimizes the function 𝑓(x + nΔx) solving the one dimensional problem [32]: 

 

𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛a≥0 𝑓(x + aΔx) 

 

This method is useful when the cost of calculating the step size n is low compared to 

determining the direction, which is the computationally intensive part of the optimization 
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process. It is preferred when the objective function is smooth for better calculation of the 

derivatives, which helps to find the exact step size. Exact line search typically needs an 

algorithm to find the search direction first. Some common methods for determining the search 

direction include:  

 

▪ Gradient Descent: The search direction 𝑑𝑡 at iteration t is the negative gradient of the 

objective function -𝛻𝐹(𝑥𝑡) as it is described in Chapter 3. 

 

-While in some other cases: 

 

▪ Newton’s Method: In this case the search direction uses the Hessian matrix and it is 

𝑑𝑡 = −𝐻𝑡
−1𝛻𝐹(𝑥𝑡). 

 

▪ Quasi-Newton Methods: In these algorithms, such as BFGS and L-BFGS the 

Hessian matrix is approximated and this approximation 𝐴𝑡 is used to calculate the 

search direction: 𝑑𝑡 = −𝐴𝑡
−1𝛻𝐹(𝑥𝑡). 

 

▪ Conjugate Gradient Method: In this case the search direction is a combination of 

the negative gradient and the previous search direction adjusted by a factor 𝛽𝑡 as it 

follows:  𝑑𝑡 = −𝛻𝐹(𝑥𝑡) + 𝛽𝑡𝑑𝑡−1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

 

Appendix        

 

The following tables present a summary of the statistical results obtained from the experiments 

conducted in sections 4.1 and 4.2, for the two distinct learning rates that employed in each 

instance. 

 
TABLE B1 

TEST ACCURACY (%) 

 

 

 

 

 

 

 

 

 
 

 

 

 
TABLE B2 

TRAINING TIME (SEC) 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

TABLE B3 

TEST ACCURACY (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimizer Count Mean Min Max 

SGD 2 0.64480 0.5588 0.7647 

SGD WITH MOMENTUM 2 0.77825 0.7752 0.7813 

SGD WITH NESTEROV 2 0.77860 0.7703 0.7869 

ADAGRAD 2 0.68925 0.6151 0.7634 

ADADELTA 2 0.66295 0.5483 0.7766 

RMSPROP 2 0.65355 0.5345 0.7726 

ADAM 2 0.70930 0.6349 0.7837 

NADAM 2 0.69405 0.6076 0.7805 

Optimizer Count Mean Min Max 

SGD 2 45.19 43.59 46.79 

SGD WITH MOMENTUM 2 51.06 50.11 51.92 

SGD WITH NESTEROV 2 45.28 40.27 50.28 

ADAGRAD 2 45.41 41.13 49.69 

ADADELTA 2 47.39 43.22 51.56 

RMSPROP 2 47.01 43.59 49.66 

ADAM 2 48.05 44.61 51.49 

NADAM 2 51.09 50.08 52.11 

Optimizer Count Mean Min Max 

SGD 2 0.64480 0.4576 0.8320 

SGD WITH MOMENTUM 2 0.86225 0.8371 0.8874 

SGD WITH NESTEROV 2 0.87400 0.8650 0.8830 

ADAGRAD 2 0.65185 0.4705 0.8332 

ADADELTA 2 0.63410 0.4327 0.8355 

RMSPROP 2 0.85750 0.8266 0.8884 

ADAM 2 0.86855 0.8419 0.8952 

NADAM 2 0.86400 0.8309 0.8971 

B 
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TABLE B4 
TRAINING TIME (SEC) 

 

 

 

 

 

 

 

 

 

 

In the followimg figure the model perfomance have more noise and inferior metrics compared 

to this from the section 4.1.  

 

 
Fig. B1. The Cnn Model from section 4.1 without learning scheduling. 

Optimizer Count Mean Min Max 

SGD 2 2167 1301 3034 

SGD WITH MOMENTUM 2 3810 3805 3815 

SGD WITH NESTEROV 2 3814 3810 3817 

ADAGRAD 2 1718 963 2472 

ADADELTA 2 2036 962 3111 

RMSPROP 2 3277 2993 3560 

ADAM 2 2887 2585 3190 

NADAM 2 2928 2664 3192 


