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Abstract

In the era of digital transformation, the convergence of ground-
breaking computing paradigms, namely the Internet of Things, Edge
Computing, Cluster Computing, and Pervasive Computing stands at
the forefront of technological evolution. These paradigms are not
only reshaping the technological landscape, but are also redefining the
boundaries of efficiency, scalability, resource optimization, and adapt-
ability in distributed systems. This thesis embarks on an in-depth
exploration of these interconnected technologies, focusing on enhanc-
ing data processing and machine learning efficiency in edge computing
environments, driven by both data characteristics and uncertainty.

The research develops novel frameworks and algorithms in five key
areas: (1) a synopsis-based similarity extraction framework that en-
ables distributed nodes to identify and collaborate with peers hold-
ing similar datasets, optimizing data exchange and reducing redun-
dancy in distributed environments; (2) a data-aware training accel-
eration framework that optimizes machine learning model training in
resource-constrained environments, reducing the training time and im-
proving efficiency while maintaining models’ performance over time;
(3) a transfer learning model that enhances knowledge transfer be-
tween nodes in edge environments, leveraging model selection tech-
niques to improve accuracy and efficiency in resource-constrained set-
tings; (4) a drift-aware task management mechanism that dynamically
adapts task allocation strategies based on evolving data distributions,
ensuring efficient resource utilization and system adaptability in edge
computing; (5) a correlation-aware task scheduling approach that op-
timally assigns tasks by detecting dependencies and resource avail-
ability, improving execution efficiency and minimizing bottlenecks in
distributed systems.

These contributions provide robust solutions to critical challenges
in edge and cluster computing environments, where traditional meth-
ods struggle with scalability, resource constraints, and real-time data
evolution. By integrating advanced statistical methods, adaptive learn-
ing, and task optimization techniques, the frameworks proposed in
this thesis pave the way for more efficient and adaptive distributed
systems. These developments contribute to the ongoing evolution of
Internet of Things, Edge Computing, and related domains, offering
practical applications in smart cities, autonomous systems, and large-
scale industrial networks.
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1 Introduction

The convergence of Internet of Things (IoT), Edge Computing (EC), Cluster
Computing (CC), Pervasive Computing (PC), and Artificial Intelligence (AI)
forms the crux of contemporary digital ecosystems, presenting unparalleled
technological advancements alongside complex challenges. This thesis delves
into these interconnected paradigms, scrutinizing their roles, synergies, and
the collective impact they wield on modern digital infrastructures. The rapid
growth of data generated by distributed systems, such as those found in IoT
networks and cloud computing environments, has necessitated the develop-
ment of advanced data processing and Machine Learning (ML) techniques.
This thesis explores several cutting-edge methodologies aimed at enhancing
the efficiency and effectiveness of data handling and learning processes in
distributed systems. The focus is on five key areas:

e similarity extraction;

e data-aware incremental learning;

e Transfer Learning (TL);

e task management/scheduling and task offloading.

Each of these areas addresses a unique challenge faced by distributed systems.

Similarity extraction techniques enable the identification of related datasets
across distributed nodes, facilitating collaborative processing, knowledge shar-
ing and redundancy reduction. Commonly used approaches in distributed
systems include locality-sensitive hashing for scalable similarity search in
high-dimensional spaces [1], and vector-based similarity search through effi-
cient approximate nearest neighbor algorithms [2], so as to enable efficient
data alignment and retrieval. Data-aware incremental learning provides a
framework for continuously updating MLL models as new data arrives, ensur-
ing that the models remain relevant and accurate over time. This is crucial in
dynamic environments where data distributions are subject to changes over
time. In [3] the authors introduce an approach which preserves knowledge
on not recently encountered tasks through selective decelerating learning on
the weights related to them. Furthermore, continual learning strategies on
streaming data where data distributions alter over time are proposed in [4].
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TL allows models trained in one context, e.g. large-scale source do-
main to be adapted for use in another domain with limited data availabil-
ity, significantly reducing the time and computational resources required for
training new models. In computer vision, fine-tuning a pretrained Convolu-
tional Neural Network (CNN), e.g., ResNet, VGG, has demonstrated strong
performance in domain-specific applications such as medical imaging and
remote sensing [5]. Similarly, in natural language processing, pretrained
transformer-based models like BERT have shown that previously acquired
knowledge can be efficiently transferred to downstream tasks with minimal
fine-tuning, yielding state-of-the-art results across benchmarks [6]. Finally
effective task management and scheduling are crucial for optimizing resource
utilization and ensuring timely execution of processes in distributed environ-
ments. In [7] a framework that utilizes Deep Reinforcement Learning (DRL),
DeepRM, is introduced. This framework can learn scheduling policies that
adapt to varying resource demands and job characteristics, outperforming
classical methods in terms of job completion time and system utilization.
Additionally scheduling algorithms that consider task deadlines and energy
constraints have been shown to significantly improve quality of service and
system efficiency [8].

The existing literature often overlooks critical aspects such as the contin-
uous update requirements for ML models in distributed systems, the need
for efficient similarity extraction techniques across distributed datasets, and
the challenges of transferring learning models across different contexts in EC
environments. Despite the exponential growth of IoT networks and cloud
computing driving advancements in data processing and ML, traditional
methods for task management, scheduling, and learning struggle with the
resource constraints of EC. These constraints are particularly significant in
data similarity extraction, adaptive task management , and effective TL.
This thesis addresses these gaps by proposing innovative frameworks and al-
gorithms specifically designed for edge and CC environments. It builds upon
the outcomes of five research papers [9], [10], [11], [12], [13], each tackling dif-
ferent aspects of the aforementioned challenges. We integrate their method-
ologies and findings into a set of complementary approaches that collectively
enhance distributed system performance through advanced ML techniques.
These frameworks provide robust solutions to the unique challenges posed by
edge and CC environments, paving the way for more efficient and adaptive
distributed systems.
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Figure 1: Timeline of the historical development and evolution of IoT

1.1 The Internet of Things

The term IoT refers to a network of interconnected physical devices [14]. ToT
represents a significant advance in digital connectivity, as billions of devices
are now connected to the internet, gathering and exchanging data worldwide.
Digital intelligence is now present in the actual world thanks to this enormous
network of linked gadgets, giving rise to a level of digital omnipresence that
was previously only seen in science fiction. The percentage of [oT devices in
regard to total devices has exploded from 9% in 2010 to 66% in 2023 and is
expected to reach 75% by 2025 [15]. It is important to note that the number
of devices has experienced enormous growth as well. More specifically the
number has gone from 8.8 billion devices in 2010 to 30 billion devices in 2023
and is projected to reach 41.2 billion by 2025. This growth aligns with key
milestones in IoT development [16], such as those illustrated in Figure 1.
The aforementioned devices are equipped with sensors, actuators, connec-
tion capabilities, memory and software. The main objectives are, capturing
data from the environment, storing them, perform computations and send-
ing raw data or calculated results to other IoT devices, an Edge server or
the Cloud, through the network for further processing. In detail, sensors
are utilized so as to capture data from their environment. Some examples
include temperature/CO2 measurements in a room, the soil moisture in an
field, etc. Actuators guide the behaviour of the devices based on a prede-
fined control system, making task automation feasible. Various instructions
are given based on the data that are captured by the device. For example
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a ventilation system is opened when the CO2 in the room exceeds a cer-
tain threshold value or an air conditioner stops working when the desirable
temperature is achieved. Connection capabilities allow the interaction be-
tween devices through Wi-Fi or Bluetooth and the transfer of the collected
data to the Edge or the Cloud through the Internet. Transferring the data
aims to utilize the increased computational capabilities that both Edge and
Cloud present compared to IoT devices, in order to provide insights through
advanced processing and analysis.

The architecture of IoT consists of multiple elements that collaborate in
order to capture data from the environment, transfer them if needed, process
these data and take decisions that lead to actions based on the insights
derived through processing of the data. These elements are structured in
four basic layers [17], which include:

e Sensing Layer: it represents the physical layer of the IoT architecture
and is the basis for all operations. It consists of sensors, actuators and
connects the real world to the digital one.

e Network Layer: this layer is responsible for transmitting the data
captured by the previous layer, between devices, to a server or the
Edge/Cloud. Some basic components are Internet/network gateways
and data acquisition systems.

e Data Processing Layer: in this layer, the data transmitted through
the previous layer are subject to advanced processing through ML algo-
rithms, analytics and aggregation techniques. Based on this processing,
insights are derived which are, then, used for decision making.

e Application Layer: this layer allows users to interact with the system
through an interface, and use services provided based on the processing
of data conducted in the previous layer.

[oT has a significant impact on various industries including healthcare,
smart buildings, predictive maintenance, agriculture and logistics among oth-
ers. It would be safe to say that it vastly revolutionizes these industries,
through the ability of extracting knowledge from the data. Commonly used
practices are altering as new possibilities arise. By enabling automation, [oT
causes a foundational shift in the way industries operate, interact and inno-
vate. IoT integration will only improve in the future, having a greater and
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greater impact on various industries as it enhances productivity, efficiency,
cost reduction and innovation. To prosper in this networked environment,
businesses will have to embrace IoT technologies and fully utilize their ca-
pabilities. To thoroughly understand the impact of IoT in industry we will
examine a practical use case scenario.

Case 1: In the context of smart buildings, an ’intelligent’ Heating, Ven-
tilation, and Air Conditioning (HVAC) system, that is enhanced with IoT
capabilities, can optimize energy efficiency, occupant comfort and cost re-
duction. By monitoring building/room measurements such as CO2 concen-
tration, energy consumption, temperature, humidity, etc. through devices
equipped with sensors, the system can adjust heating, turn on/off devices,
etc. The basic components of such a system are:

the IoT devices, placed throughout the building to collect data;

the actuators that are integrated into HVAC components to adjust the
HVAC system operation based on the observed data;

a control system that processes the data in real time through AI/ML
algorithms and sends instructions to actuators based on the knowledge
derived from the data;

e a user interface, where occupants can receive notifications, view build-
ing conditions and set preferences.

1.2 Edge Computing

EC is an emerging distributed computing paradigm that aims to bring storage
and computation near to the location that data are initially generated [18].
Hence, improving response times, reducing latency, saving bandwidth and
providing results in real time. This contradicts the well established Cloud
computing , where data are transferred to remote data centers to be pro-
cessed. The core idea of the EC is to minimize the distance between data
and computational resources. EC shifts the processing of data from remote
data centers to distributed architectures at the edge of the network. The
basic principles of EC [18] are:

e Decentralization: EC decentralizes data storage and processing as it
assigns these tasks to a wide network of devices and computers/servers
that work/function as a whole;
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¢ Real-time Processing: By processing data close to the source, EC
makes real-time processing viable;

e Latency Reduction: By performing data processing close to the
source, EC significantly reduces the reaction time of the system to
data;

e Bandwidth Conservation: By processing the majority of data close
to the source, EC minimizes bandwidth usage;

e Scalability: EC enables scalability through utilizing multiple devices
and computers, making it feasible to adapt workloads and redistribute
resources based on application needs;

e Resilience: By distributing processing to multiple independent edge
nodes, EC enhances the resilience of the system. Even if some nodes
fail the system will continue to function;

e Security: Transmitting data through various networks to the Cloud in-
creases the probability for unauthorized access due to security breaches
in some of these networks. Instead by sending data to the edge, this
probability is significantly reduced, as data remain in the same network
they are captured in.

EC consists of four basic components, which are synchronized to process data
at the edge. The basic components of EC [19] are listed below:

e Edge devices: The aforementioned IoT devices, present at the edge
of the network.

e Gateways: functions that translate IoT protocols to data formats
that are compatible for edge processing and aggregation. These enable
communication between IoT devices and edge nodes.

e Edge nodes: The computing resources, i.e., computers/servers, lo-
cated close to the source of data. These nodes store the data sent to
them by the IoT devices and perform processing activities.

e Communication networks: Wired and wireless technologies such as
Wi-Fi, 5G and Ethernet, that allow data transfer between IoT devices
and edge nodes.
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EC has already been adopted in many real-world applications to improve
data management and enhance operational efficiency. Some examples include
smart cities, healthcare, retail, energy sector, agriculture and autonomous ve-
hicles. We extend the use case provided in the previous subsection, Case 1,
to exhibit the benefits that EC provides in such a system. As mentioned be-
fore, the main targets are to optimize energy efficiency, occupant comfort and
cost reduction. Data captured by the established IoT devices throughout the
building can be processed in real time with EC. Hence, allowing instant de-
tection of anomalies or alterations in occupancy and any other measurement
being monitored. This gives the system the ability to make rapid adjust-
ments, such as adjusting the temperature based on occupancy or turning on
the ventilation based on CO2 values to improve air quality. The superior
computational capabilities of edge nodes compared to IoT devices makes it
feasible to process the data through ML/AI algorithms, to derive knowledge
that enables the system to adapt to patterns in building measurements. For
example, the system can predict future CO2 values ahead of time and proac-
tively open the ventilation, if "high’ CO2 values are expected, to maintain
optimal air quality in the room.

1.3 Cluster Computing

CC is a collaborative approach, where multiple computers work as a whole
in order to compose a powerful system [20]. Thus allowing the processing
of large data sets and performance of resource intensive computations that
would be unfeasible in a single computer. The vast amount of available data
significantly prevails the technological advancements in terms of processing
power and storage capacity. CC and its ability to combine the resources of
multiple computers is a vital solution to this problem. Each computer in a
cluster is referred to as a node. A cluster consists of several nodes (individual
computers), connected through a fast Local Area Network (LAN). These
nodes work together under the guidance of a specific node (server/master)
which is responsible for receiving tasks and distributing the workload to
other nodes in the system. This distributed computing approach is extremely
effective for tasks that can be parallelized, so large tasks can be divided in
smaller sub-tasks that can be solved concurrently.

CC has revolutionized large-scale data processing. Frameworks such as
Apache Hadoop [21] and Apache Spark [22] are built on the principles of
CC, enabling efficient processing of vast amounts of data across many nodes.
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These technologies are the base for big data analytics, allowing organizations
to derive knowledge from huge datasets at remarkable speeds. CC has also
had a significant impact in advancing scientific research, accelerating discov-
eries and innovations. Complex data analysis and simulations that used to
take months to complete are now realized in days or even hours. Clusters
can be categorized based on their purpose or the type of tasks they perform.
Some common types include [23]:

e High-Performance Computing Clusters: designed for intensive
computation tasks that require a large amount of processing power,
such as simulations and data analysis;

e High-Availability Clusters: focused on ensuring that services re-
main available at all times, even in the event of hardware or software
failures;

e Load-Balancing Clusters: used to distribute incoming requests among
multiple servers to improve the performance of web services, databases,
and other networked services;

e Data Processing Clusters: optimized for processing and analyzing
large datasets, such as those used in big data analytics and ML appli-
cations;

e Storage Clusters: provide reliable and scalable storage solutions, dis-
tributing data across multiple nodes to improve access speed and data
redundancy.

CC’s ability to process large volumes of data efficiently complements [oT
and EC by providing a robust back-end infrastructure that can handle the
aggregation, processing, and long-term storage of the collected data. CC’s
integration with IoT and EC is extremely beneficial for data processing. Edge
nodes can process data locally for immediate insights, and more complex
analyses are offloaded to CC setups, which can be formed through combining
various edge nodes, for in-depth processing. This hybrid approach not only
enables real-time analytics and decision-making at the edge but also leverages
the computational power of clusters for resource intensive tasks. As IoT
devices multiply, leading to an exponential growth in data generation, CC
offers the necessary scalability. More nodes can be added to the cluster
with minor modifications, ensuring that the system will be able to cope with
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this immense data increase. CC distributive nature provides fault tolerance,
which is crucial for IoT applications where data availability and integrity
are crucial. If one node fails, others can undertake the execution of tasks,
ensuring uninterrupted data processing. Another important benefit of CC is
load balancing, the workload can be divided in smaller tasks, which are then
assigned to multiple nodes in the system. Hence, ensuring that all nodes
have tolerable computational load, enhancing the system’s reliability and
performance.

We further extend the aforementioned Case 1, to depict how CC can im-
prove the computational power, scalability and reliability of the HVAC sys-
tem. A cluster of nodes/servers can be utilized to aggregate data collected
by edge nodes in various buildings (instead of one building). Upon these ag-
gregated data, advanced analytics/processing and ML/ Deep Learning (DL)
algorithms can be performed in order to identify trends and predictive main-
tenance needs. Complex processing that requires data from various sources
and induces heavy computational burden can be realized. Also, simulations
for HVAC operations under various conditions can be generated in order to
contribute to optimizing the overall system’s efficiency.

1.4 Pervasive Computing

PC refers to the concept of integrating computing capabilities (usually micro-
processors) into everyday objects, making technology and computing power
widely available. PC transcends the traditional desktop computing setting
as it includes various types of devices such as laptops, smartphones, smart-
watches, notebooks, tablets, IoT devices etc. In this setting, computing
devices are omnipresent, embedded in everyday environments and activities,
and operate discreetly in the background to support people’s daily lives.
Connectivity functionalities are integrated into all these devices, making it
possible to interact with one another and automate tasks, requiring minimal
human effort if any. PC systems are aware of their context and environ-
mental conditions such as location, time of day, occupancy, user behavior
etc. Hence, allowing them to anticipate needs and provide relevant informa-
tion/services to the end user without explicit instructions. PC systems can
scale based on the number of devices and the scope of services, supporting
many applications from smart homes to large-scale urban environments.
The relationship between PC and the underlying infrastructures of 10T,
EC, and CC is foundational to the modern digital ecosystem, enabling seam-
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less, efficient, and scalable applications that improve people’s lives. IoT
devices are the sensory and actuation endpoints of pervasive applications.
They gather data from the environment (e.g., temperature, motion, humid-
ity) and perform actions (e.g., adjusting thermostats, lighting, and security
systems) based on the applications’ requirements. This enables pervasive
applications to be context-aware and responsive to the physical world. EC
serves as an intermediate processing layer for [oT data. By processing data
closer to where they are generated, EC platforms can analyze and act on IoT
data in real-time, supporting pervasive applications that require immediate
response, such as autonomous vehicles or real-time analytics for industrial
control systems. CC provides the back-end computational power needed for
processing the vast amounts of data generated by IoT devices and aggre-
gated through EC platforms. This can involve complex analytics, ML model
training, and long-term data storage. CC environments can scale to handle
the processing load, ensuring that pervasive applications have the necessary
computational resources to function effectively. Together, these technologies
enable pervasive applications to be both intelligent and responsive, adapting
to changes in the environment and user needs with minimal latency. This
integration is crucial for applications in smart cities, healthcare, industrial
automation, and beyond, where real-time data processing and analysis are
vital for decision-making and operational efficiency.

PC has already been adopted in many real-life applications, such as smart
cities, agriculture, healthcare, marketing, etc. Finally, we once again extend
the aforementioned Case 1, to depict how PC can be combined with IoT, EC
and CC in order to improve the HVAC system in terms of intelligence, inter-
activity, and ubiquity. By extending the smart HVAC system with pervasive
computing, the focus shifts to creating an intuitive, adaptive environment
that not only optimizes operational efficiency but also prioritizes the comfort,
health, and preferences of occupants. By incorporating pervasive computing,
the HVAC system can recognize individual occupants and adjust environmen-
tal conditions according to their preferences and patterns. For example, if
a particular user tends to get cold easily, the system could automatically
increase the temperature in spaces they frequently occupy. Pervasive com-
puting allows the HVAC system to interact with wearable devices, enabling it
to monitor health indicators like body temperature or stress levels. This data
can be used to make real-time adjustments to the environment, enhancing
comfort and well-being.
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1.5 Research Question

The rapid proliferation of IoT devices and the evolution of EC and CC have
introduced significant challenges in managing and processing large volumes
of distributed data efficiently. Traditional methods for task management,
scheduling, and learning are not well-suited to the resource-constrained envi-
ronments of EC. Specifically, the issues of data similarity extraction, efficient
training, adaptive task management/scheduling, and effective TL in edge en-
vironments present critical challenges. These problems are compounded by
the dynamic nature of data and resource availability in IoT ecosystems. This
thesis aims to address these challenges by developing novel frameworks and
algorithms that enhance the efficiency and effectiveness of data processing,
task management, and learning in edge and CC environments. The research
will focus on:

e Efficient similarity extraction methods for distributed datasets to im-
prove data processing tasks.

e A data-aware incremental learning framework that provides a contin-
uous update of ML models as new data arrives. This ensures that the
models remain relevant and accurate over time without the need for
complete retraining, thus, saving computational resources and improv-
ing response times.

e Effective TL techniques tailored for EC, optimizing when and how
knowledge transfer occurs to improve model accuracy and reduce train-
ing times.

e Adaptive task management mechanisms that can dynamically respond
to data and concept drift, ensuring optimal resource utilization and
task performance.

e Advanced task scheduling algorithms that consider task-data correla-
tion to minimize resource wastage and execution failures.

By tackling these issues, the thesis aims to contribute to the develop-
ment of more robust and scalable EC frameworks, capable of supporting the
growing demands of IoT and pervasive applications.
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1.6 General Setting

We contemplate a group of N edge nodes n;,¢ = 1,..., N with every mem-
ber being able to directly communicate with the other ones. Each node
processes and stores data coming from registered IoT devices, forming its
own dataset D;,i = 1,2,..., N. Each dataset D; is consisted of multivariate
vectors © = [r1,Z9,...,24], T € IR¢ where each z; depicts a distinct fea-
ture (e.g., COy measurements, occupancy, ventilation, etc.). Nodes derive
insights, support predictions, or trigger actions, by processing their datasets
with statistical or ML methodologies. However, these nodes operate under
resource constraints and may hold only a partial view of the global system.
The problem involves developing frameworks and algorithms to enhance the
performance and efficacy of data processing, task management, and learning
in EC and CC environments.
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2 Dataset Similarity in Distributed Systems

2.1 Context and Motivation

Data are created and stored in several nodes which makes it difficult to
retrieve valuable insights from local datasets alone in IoT and EC environ-
ments. The amount of data each node possesses is limited and often a non-
representative subset of the global data. Hence, obtaining the similarity
across datasets is very important for simultaneous processing across nodes.
This capability is especially critical for the effectiveness of ML and data an-
alytics, which often require broader context and diversity to produce reliable
results. The problem is figuring out how to determine dataset similarity
without sharing big amounts of data which is time and resource demanding.
Most approaches are built around mostly static datasets and do not account
the distributed and dynamic nature of data in edge systems [24-27]. This
work intends to fill the void through the development of a synopsis-based
similarity detection mechanism designed for dynamic, high volume datasets.
These mechanism will enable distributed systems to work together and utilize
resources more efficiently. Hence, enhancing decision making, and real-time
analytics performance.

2.2 Related Work

The research community has given significant effort in developing distance
functions that identify similarity among datasets. So as to assess the overall
similarity various methods have been proposed.

2.2.1 Methods that utilize L1/L2 Norms

Some distance measures utilizing L1 and L2 norms are Edit Distance with
Real Penalty (ERP), and Dynamic Time Warping (DTW). ERP [28], com-
bines Ll-norm with edit distance and allows local time shifts. DTW [29]
achieves a correspondence between two time series by ‘warping’ the time axis.
Further improvements by [30] on DTW add incremental warping windows for
improved performance. Various methods use matching thresholds for similar-
ity scores, such as the Edit Distance on Real Sequence (EDR) [31] or Longest
Common Sub-sequences (LCSS) [32]. These methods are considered robust
against noise, shifts in data, scaling errors, sensor drops, misdetection, and
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changes in rates of sampling [31], [32]. Re-sampling a time series to match
the length of another time series is explored, and Euclidean distance is used
as the similarity measure in [33]. The results indicate that similarity detec-
tion is not affected by this transformation in many experimental cases. Also,
in [34] it is shown that uniform re-sampling sequences of different lengths is
not detrimental to the accuracy and recall /precision metrics.

2.2.2 Methods that utilize Transformations of Time-Series Rep-
resentations

Representations of time series data can be transformed and subsequently
analyzed with common methods, such as Euclidean distance on Discrete
Wavelet Transform (DWT) or Discrete Fourier Transform (DFT) coefficients
[35]. As explained in [36], DFT transforms signals in the time domain to
the frequency domain, allowing for the capture of global periodic frequencies.
DWT, however, takes wavelets and discretely samples them, since it analyzes
both frequency and time characteristics through space [36]. [37] analyzes
DFT and DWT for the purpose of performing similarity searches in time-
series databases. The analysis performed, shows that both approaches are
practically achievable since the results are similar.

2.2.3 Methods that utilize Clustering

Time-series data clustering is an unsupervised approach of grouping time-
series data based on similarity measures, which is a technique of exploratory
data analysis that allows for a certain degree of freedom when analyzing [38].
In [39], a clustering approach that utilizes global structural features of time-
series such as trend, seasonality, periodicity, or skewness is presented. To
perform clustering, an optimal combination of features needs to be applied,
and a feature selection process can be used. In a similar way, [40] proposes a
two-stage approach where distance for each samples-pair is calculated first,
and then samples are clustered based on distance.

2.2.4 Methods that utilize Data Summarization

Recent developments have paid great attention to the problem of sharing
data synopses with the aim of decision making which is based on similarity
of datasets. A synopsis data structure aims to summarize a dataset using
succinct representations [41]. On the one hand, sharing datasets in their full
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form is rarely possible because of time and storage limitations. On the other
hand, edge nodes need to gain deep insight into peer datasets for proper
execution of queries and algorithms on appropriate data [42]. As IoT de-
vices are capturing data continuously, the distributed datasets are expected
to grow and possibly alter. Hence, synopses created out of such datasets will
be required to be periodically updated. Recent progress in the area of data
summarization has been described in [43] while some gaps are also identi-
fied on aspects to be researched in the future. Outlined in [44] are multiple
synopsis approaches and their applications which deal with selectivity esti-
mation, kmeans clustering and spatial partitioning. In [45], Synopses Data
Engine (SDE) is presented, where streamline data summarization and par-
allel processing are integrated together in order to offer scalable analytics.
Likewise, the Condor framework [46] permits streaming tasks based on syn-
opses, abstracting away the internal execution details of the processes. In
addition, [47] presents the SJoin algorithm that keeps a joint synopsis for
dynamic databases that undergo continuous changes.

The Tree Summaries model of [48] is used to generate block summaries
on multidimensional hierarchically organized datasets. A Tree Summary is
an embedded weighted tree in the lattice that is generated using the cross-
product of all hierarchies of the dimensions. The weight of the nearest an-
cestor in the tree is used to estimate each data element. The authors in [49]
propose a model for supporting the main concepts of a wide numeric domain,
aiming at integrating attributes which have an outcome effect attribute. The
EDA4Sum system [50] is designed to interconnect different summaries at var-
ious stages of an Exploratory Data Analysis (EDA)process. The aim is to
process EDA techniques so that the combined use of heterogeneous datasets
is maximized, while permitting the user to specify the importance of unifor-
mity, diversity, and novelty during the generation of summaries.

2.2.5 Trade-Off in Decision Making and Cost of Synopsis Ex-
change

The balance in the transfer of synopses and the quality of decision making
represents a critical trade-off. In [51], the authors utilize the Ll-norm to
quantify differences between synopses pairs, use a clustering model to assess
the temporal changes of these differences, and generate a final ranking of
the most similar peers based on hosted data. Based on these ideas, [42]
recommends a time-effective procedure for supervising the range of changes
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in synopsis updating. This scheme identifies when the synopses should be
sent for maximum effectiveness with minimum communication cost. Also,
[52] applies a probabilistic model for estimating the distance between two
uncertain time-series. It allows to ensure accuracy/performance trade-off,
where small sacrifices in accuracy result in large gains in scalability and
processing speed.

2.2.6 Existing literature gap

Despite the remarkable advancement of similarity extraction techniques, con-
temporary approaches still rely heavily on static datasets or single-point-in-
time analysis. This creates an obvious gap for working with updated sets of
data, especially in the dispersed EC context with rapid and large volumes
of data. Some approaches using distance functions based on L.1/L2 norms,
DTW, and some forms of clustering do not take into consideration the fact
that data evolves over time. Recently developed models continuously de-
pend on simplistic distance functions that disregard temporal change and
inter-correlations within multi-dimensional data. Along with this, the prob-
lem of the trade-off between the computational resources needed for detection
of similarities, and accuracy of the output has not been fully investigated,
especially for the edge nodes that have resource constraints. There is a need
for enhanced methods that integrate time series analysis and probabilistic
models, in order to enhance similarity detection accuracy and efficiency, dy-
namically determining dataset similarity in the context of continuous data
updates and real-time processing.

2.3 Problem Statement

Having established the broader problem space in 1.6, we now turn our atten-
tion to the critical issue of dataset similarity within distributed systems. A
data synopsis S is a concise summary of a dataset, designed in such a way that
captures its key characteristics, while significantly reducing its size. With-
out limiting the scope, each synopsis is depicted as an [-dimensional vector
s = [s1, 89, ..., 1] € Rl. The purpose of a data synopsis is to enable efficient
analysis, query processing, or decision-making without requiring access to the
full dataset. It is especially useful in scenarios where the full dataset is too
large to be processed or stored effectively. Types of data synopses techniques
include sampling, sketching, histograms, wavelets, clustering, dimensionality
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reduction, data cubes etc. [53].

Synopsis use case: Clustering refers to the procedure of grouping a
set of similar data points into groups (clusters). The grouping is conducted
in such a way that data points in the same cluster are more similar to each
other than to those in other clusters. These clusters are summarized through
their centroids and sizes. For the commonly used Iris dataset !, a clustering
synopsis could group flowers based on their petal length and petal width into
clusters using a clustering algorithm (e.g. K-Means, number of clusters set to
3). Each cluster represents a group of flowers with similar petal dimensions,
and the clustering could produce centroids such as (1.5 cm petal length, 0.2
cm petal width, 50 flowers), (4.5 cm petal length, 1.5 cm petal width, 50
flowers), and (5.5 cm petal length, 2.2 cm petal width, 50 flowers). In this
case, the dataset’s synopsis vector is s = (1.5,0.2,50,4.5,1.5,50,5.5,2.2, 50).

Our goal is to identify similar datasets through their synopses vectors.
Since these vectors are multidimensional, we investigate each dimension sep-
arately and summarize the findings in a final similarity score. Relying solely
on the distance between two vectors is insufficient to effectively capture the
semantics of the similarity between pairs of synopses. Since each synopsis is
a lightweight representation of a dataset, the obtained results are approxi-
mate [41].

Definition 1. A synopsis vector S is a lightweight representation of the
dataset D; hosted by the node n;, extracted in a specific time interval.

2.4 Similarity Extraction based on Synopses

This section addresses the problem of how to evaluate the similarity between
two pairs of synopses, which is the enabling factor of decision making and
collaborations. As it was explained in [51], the incoming data is gradually
updating synopses vectors at local nodes. In this context, the sequences of
synopses vectors are considered as time series with a specific window T =
[1,...,w]. We involve an interval strategy in which we select the most recent
w observations of the synopses vectors that are selected for integration into
the decision making process. By utilizing a sliding window technique, we
focus on recent data to increase relevance of the result which is particularly
important in collaborative processes. In this view, SI is the local node’s
synopsis, while Sp is the peer node’s synopsis, which is the one undergoing

Thttps://archive.ics.uci.edu/dataset /53 /iris
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similarity detection. Now, specifically, Sl[j] = (Sli[j], Sl[j], ..., SUL[j]) is
the synopsis vector for the local node at time j (j = 1,...,w) and Sp[j] =
(Sp1lj], Spaljl, - -, Smlj]) is the corresponding synopsis vector for the peer
node. This window-based approach enables us to observe the dynamics of S
and Sp, rather than focusing solely on the most recent observation.

2.4.1 Synopses Correlation Analysis

The identification of correlation within the data is an essential step regarding
the relations between data and their direction. Our methodology adopts the
classic measure of correlation of two variables (datasets synopses’ SI and Sp
within our setting), the Pearson Correlation Coefficient (PCC) [54]. PCC
scores lie between -1 and 1, with zero signifying that SI and Sp have no
correlation, positive values mean that Sl is increasing with Sp and negative
correlation means that Sl is decreasing with Sp. The phenomenon of both
variables tightly coupling is termed as correlation, and values closer to 1
denote correlation being strong positive. Correlation between the two is

evaluated for each point in time for Sl and Sp through different perspectives
Sl; and Sp;.

(. any Y, (SLilj]—MSl)-(Spilj)—MSp;)
CORRZ<Sl175p’L> \/Z;L]:l (Sll[]}*MSlz)2\/z;ﬂ:1 (SpZ[J},MSpl)Q (].)
with:
v SLd Y Spilj
MSl; = —Zj_lw 9 arsp - —Zj_lw n (2)

Individual elements from Si’s and Sp’s correlation for ¢ = 1,2,... [, are
compiled and represented as a vector to depict the correlation of Sl and Sp
for a specific period T' = [1, ..., w]. The outcome correlation is computed as:

CORR(SI, Sp) = (CORRy,CORR,, ...,CORRR)) (3)

Definition 2. The correlation for the i-th dimension between Sl; and Sp; is
assumed to be strong-positive if CORR;(Sl;, Sp;) > 0. In this context, 6 is a
fixed parameter.

In order to classify outcomes of correlation we have defined a two com-
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ponent decision function:

4

f(CORRi(Slia sz‘)) = {

This is then further aggregated to provide an overall correlation summary
across all dimensions as follows:

l
CORR(SI, Sp) = iz f(lCORRZ),z' =1,...,1 (5)

which is used to decide if there exists strong-positive correlation between S
and Sp.

Definition 3. If CORR(SI, Sp) > 0, the synopses vectors Sl and Sp are
considered to have strong-positive correlation. In this context, 6 is a fized
parameter.

2.4.2 The Probabilistic Model

Two synopsis vectors can differ significantly from each other in one or more
dimensions, even if they show a strong-positive correlation. Hence, apart
from correlation, a distance-based similarity metric is also integral for as-
sessing discrepancies between synopsis vectors and determining the similarity
potential. The probabilistic model estimates the relevance of two synopsis
vectors for future data, while correlation displays if the vectors are tracking
each other’s trends through the most recent observations. As data streams
come continuously at high volumes, synopses vectors change swiftly. The
precise measurement of distance between two synopsis vectors over a speci-
fied time interval can be difficult to obtain when dealing with high volumes
of data, and constantly evaluating each dimension can be extremely costly.
To solve this problem, we use approximate distance measurement that accu-
rately addresses our problem while simultaneously increasing system response
speed.

Each dimension of the synopsis vectors Sl; and Sp;, is modeled as a
stochastic process, a time series over a given window w. According to [52],
the i-th dimension of Sl over the time interval is considered a continuous ran-
dom variable (Sl; = [SI;[1], SL;[2],. .., SL]w]]). These random variables are
normally labeled as unknown continuous random variables. However, their
mean and standard deviation can be derived from observed samples. In the
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same manner, so is Sp; given by Sp; = [Sp;[1], Spi[2], ..., Sp;[w]] . In order to
determine a distance-based similarity, we begin with the two time series as
uncertain random variables that are separated by an unquantified distance.
The L1 norm serves as a starting metric along this uncertain distance.

Definition 4. The distance measure, dist, between the two unknown random
variables is defined as:

dist(Sl;, Spi) = |Sl; — Spi| = Z |(SLi[j] — Spilj])| (6)

We run into some challenges in determining a precise distance metric
using the L1 norm. For this reason, we establish a probabilistic distance
similarity measure query over the uncertain time series. First, it has to
be established that distance-based similarity measures will not work if the
two time series random variables, SI; and Sp;, are weakly linked. Thus, we
declare that they are strongly correlated random variables before using the
probabilistic model. The distance dist(Sl;, Sp;), is itself a random variable
and thus has a mean and variance. These may be computed as follows:

E(dist(Sl;, Spi)) = E(|Sl; — Spil) = [E(SL) — E(Spi)| (7)

Var(dist(Sl;, Sp;)) = Var(Sl;) + Var(Sp;)
—2 - Cov(Sl;, Sp;) (8)

where

Cov(Sl;, Sp;) = /Var(SL) - /Var(Sl;) - CORR;(Sl;, Sp;) (9)

and CORR;(Sl;, Sp;) accounts for the earlier established correlation co-
efficient.

To evaluate the gap between the two random variables, Chebyshev’s in-
equality is employed, as it ensures that only a limited proportion of values fall
outside a specified range, defined by k standard deviations from the mean.
In the case of Chebyshev’s inequality, it can easily be shown that for any real
value k, only the case (k > 1) is feasible, as other values lead to either nega-
tive or exceeding unity probability values. Hence while applying Chebyshev’s
inequality, we conclude:
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> k- /Var(dist(Sl;, Sp;

|
]

~—| ~—

< (10)

Tl =

This can be transformed to:

P||dist(Sl;, Sp;) — E(dist(Sl;, Sp;))|

< k-+/Var(dist(Sl;, Sp;)] =

1 — P[|dist(Sl;, Sp;) — E(dist(Sl;, Spi))|
> k- /Var(dist(Sl;, Sp;)]

1 k?—1
Zl—ﬁ: 2 (11)

We set E(dist(Sl;, Sp;)) = p, Var(dist(Sl;, Sp;) = o thus:

| dist(Sl;, Spi) —pl < k-0 <
—k -0 4 p < dist(Sl;, Sp;)
<k -o+p

(12)

Since we are interested in identifying an upper bound, we consider only
the right hand part of the inequality.
If k-o+4+pu < B (B is a constant number) then dist(Sl;, Sp;) < f with

probability greater or equal to kigl.

Definition 5. Let 8 be a distance bound, p is a probability threshold, k > 1
1s a real number, and let p,o be the mean and standard deviation of the
random variable dist(Sl;, Sp;). The pair Sl; and Sp; are considered similar
if the following conditions are satisfied:

k*—1
> p. (13)

B>k-o+u, and 2 2
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In light of this definition, we formally propose a multivariate indicator
function to summarize the similarity results from all of the dimensons:

0, if k;~a+,u>60rk1§1<p,

14
1, ifk;-a—l—,ugﬁandkigl (14)

f(k, o, ) :{

The average for all dimensions denotes the similarity indicator between
Sl and Sp:

op = iz J (b B(dist(SL, Spil))’ VVarldist(5t, Sp)) ) (g5

Definition 6. Ifsp > B then Sl, Sp are distance-based similar, and unsimilar
in any other case. B depicts a fixed parameter.

Thus, two synopses vectors Sl and Sp are considered similar if both
CORR(SZ Sp) > 6 and sp > § conditions are true. This means that the
distance between the vectors is less than or equal to § with high probability
p, and the vectors are strongly positively correlated. Within the definition
of an EC system, we describe a local node and search for peers that contain
similar data, which can be investigated with synopses vectors SI and Sp. The
result is a subset of nodes that hold data that are considered appropriate for
allocation of tasks, as well as migration of data.

2.4.3 Similarity Extraction Mechanism

The proposed Data Similarity Computation Mechanism (DSCM) is illus-
trated in Algorithm 1. The algorithm computes whether the local node (S1)
and the peer node (Sp) share similar data at a specific level. The algo-
rithm receives these two vectors together with the correlation threshold 6,
probability threshold p, and distance bounds B,B as inputs. As long as the
number of strongly correlated dimensions is equal to or more than a thresh-
old fraction é, and their distance is lesser or equal to 3, with a probability
value larger or equal to p, the two are considered similar. The algorithm
computes CORR;(Sl;, Sp;), for every dimension, and evaluates if it adheres
to the condition in Definition 2. If this holds true, the expected distance
and variance E(dist(Sl;, Sp;)) and Var(dist(Sl;, Sp;)) are computed next. A
variable k is defined to be 1.01 and increased continuously by 0.01 until the
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value 4 is reached. During the process, if the condition in Definition 5 is
satisfied somewhere along the expected limit of four standard deviations, the
counter for similarity increases by 1 and the procedure continues with the
next dimension. If not, the algorithm moves to a new dimension without any
further calculations. Finally, we compute sp = counter/l. If the result meets
or exceeds B , we conclude that the two nodes possess similar data.

Algorithm 1 DSCM: Algorithm description

Input: S = Sly,...Sl;, Sp = Sp1,...Spi, 0, p, 3, 3
Output: Nodes with datasets similar to the local node.

counter < 0
fori=1tol (i=1+1) do
Compute CORR;(SI;, Sp;)
if CORR;(Sl;,Sp;) > 6 then
Compute E(dist(Sl;, Sp;)), Var(dist(Sl;, Sp;))
for k=1.01 to 4 (k =k + 0.01) do
if k*o+pu<pBand X351 >p then
counter + =1
break
end if
end for
end if
end for
Compute sp = counter/l
if sp > B then
Sl is similar to Sp
end if

2.5 Experiments and Results
2.5.1 Setup and Performance Metrics

We compare the performance of DSCM against the DTW algorithm [29] by
conducting various experimental scenarios on three performance metrics. We
regard Mean Squared Error (MSE) [55] as the first metric we consider. It
measures the quality of the forecasting model, and all models aim to achieve
an MSE close to zero. If the MSE value approaches 0 the similar peer nodes
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are determined with high accuracy, whereas if the value approaches 1 the
similar peer nodes are misidentified. A measure derived from precision and
recall, F-score is the second metric we evaluate. An outcome of F-score
close to 1 points out that the model is highly effective in retrieving similar
peer nodes, while close to zero portrays a poor ability to identify similar peer
nodes. The final evaluation metric we will assess is Mean Absolute Percentage
Error (MAPE) [55] . It measures the effectiveness of the predicting technique
in numeral proportions. A MAPE value of 0% implies a significant ability of
retrieving similar peer nodes, while a value of 100% indicates a poor ability
to identify similar peer nodes.
We perform the experiments on three datasets:

e Dataset D; [56]: This dataset contains cooler fan vibration accelerom-
eter data with attached weights. Each vector has five dimensions
(I = 5) and includes the weight configuration ID, fan RPM speed per-
centage, and x, y, and z axis accelerometer readings. Data was gathered
at 20 ms intervals for 1 minute over a range of 17 rotation speeds (20%

to 100% of maximum fan speed). There is a 5% increment after each
RPM range.

e Dataset D, [57]: This dataset holds recordings of a gas multi-sensor
device used in a Italian city. This device along with a certified ana-
lyzer’s gas concentration references, record hourly averages. The data
comprises fifteen-dimensional vectors (I = 15) which contain tempera-
ture, relative humidity, absolute humidity, and other parameters. The
date and time dimensions are omitted from the experiments.

e Dataset D; [58]: is synthetic and implements real-data structures
encountered in industry. Each vector has fourteen dimensions (I = 14)
, with relative humidity, sensor resistances, and target pollutants (e.g.
CO, NOs) being some of the attributes.

To ensure the amount of data is manageable, each dataset is subdivided
into five sub-datasets. The first sub-dataset contains the dataset of the local
node while the remaining four reflect the datasets of peer nodes. Each sub-
dataset is independently divided into six sub-divisions and hence we simulate
6 timestamps. For every dimension of the data vectors, synopses vectors are
calculated which gives rise to two distinct scenarios. Mean and standard
deviation synopses are calculated as the model assumes all data to be from
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the same source. Hence, similarity is assumed between the local node and
peer nodes.

Parameters (0, p, 5) of the model are set by users for every specific task
or dataset and differ for various cases. In this particular setting:

e The correlation threshold is set to # = 0.7.
e The values regarding the probability threshold are p = 0.6 and p = 0.8

e The bound of distance f3, is a delicate parameter and can potentially
change through the different dimensions of a single scenario. In par-
ticular, for each dimension, [ is set to a value which is a fraction,

1Loo’t =1,...,100 of the average of the dimension’s mean values.

For comparison, (8 is also used as a threshold for the DTW algorithm
so that a constant upper bound is achieved. The correlation/probability
thresholds € and p are not meaningful in DTW, thus they are ommited.
When working with data streams, a common practice is to calculate simple
statistical measures such as averages, means, and standard deviations. In
many cases, sketches or histograms may prove useful in predicting frequency
counts [59]. Nonetheless, this set of experiments is restricted to numerical
values and attributes such as frequency counts and item identifiers [60] are
irrelevant. Under these conditions, synopsis sampling is performed by using
basic aggregates like mean and standard deviation.

2.5.2 Evaluation on Dataset D,

Initially, we evaluate our approach using dataset D;. Figures 2 and 3 il-
lustrate the performance when synopses are computed using the mean and
standard deviation, respectively. The probability threshold p is set to 0.6
and 0.8 in both cases.

e When the synopses are calculated using the mean (Figure 2), our model
achieves MSE = 0 at t = 17 for p = 0.6 and at t = 18 for p = 0.8.
Correspondingly, F-Score = 1 and MAPE = 0% are attained at the
same time steps.

e Using standard deviation for synopses (Figure 3), the lowest MSE of 0
is achieved at t = 65 (p = 0.6) and t = 69 (p = 0.8). The same trend
holds for F-Score and MAPE.
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Figure 2: Performance metrics of MSE, F-Score and MAPE (Dataset D1 -
Synopses = Mean).

e In comparison, DTW reaches a minimum MSE of 0.25, a lowest MAPE
of 25%, and a peak F-Score of 0.85 at ¢t = 80.

Our findings indicate that MSE, F-Score, and MAPE remain similar for
both probability thresholds p = 0.6, 0.8, regardless of whether mean or stan-
dard deviation is used for synopses. However, utilizing mean enables our
model to identify similar nodes more rapidly and precisely relative to the
distance bound f.

2.5.3 Evaluation on Dataset D,

We extend our evaluation to dataset Dy, with results depicted in Figures 4
and 5. The performance trends observed are consistent with those from D;.

e With mean-based synopses (Figure 4), our model attains MSE = 0 at
= 15 for p = 0.6 and ¢t = 16 for p = 0.8. Corresponding values of
F-Score = 1 and MAPE = 0% are reached at the same time steps.
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Figure 3: Performance metrics of MSE, F-Score and MAPE (Dataset D1 -
Synopses = Standard Deviation).

e Using standard deviation-based synopses (Figure 5), MSE reaches 0
at t = 44 (p = 0.6) and ¢ = 46 (p = 0.8), with F-Score and MAPE

following the same pattern.

e DTW, in contrast, achieves a minimum MSE of 0.75, a lowest MAPE
of 75%, and a peak F-Score of 0.4 at t = 58.

Again, results are comparable for both probability thresholds, but using
the mean improves the speed and precision of identifying similar nodes rel-
ative to . When relying on standard deviation, DTW fails to retrieve 75%
(3 out of 4) of similar nodes.

2.5.4 Evaluation on Dataset D;

Finally, we assess our approach using dataset D3, applying the same method-
ology. Figures 6 and 7 summarize the outcomes.

e With mean-based synopses (Figure 6), MSE = 0 is attained at ¢t = 40
for p = 0.6 and t = 43 for p = 0.8. F-Score and MAPE reach optimal
values at these respective time steps.
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e When using standard deviation-based synopses (Figure 7), MSE = 0 is
achieved at t = 62 (p = 0.6) and t = 64 (p = 0.8). F-Score and MAPE
follow a similar trend.

e DTW attains a lowest MSE of 0.5, a minimum MAPE of 50%, and a

T
20 40 60 80 100

peak F-Score of approximately 0.66 at ¢ = 90.

Again, results for Dataset D3 are consistent across both probability thresh-
olds (p = {0.6,0.8}), but using the mean significantly enhances both the
speed and accuracy of identifying similar nodes with respect to 5. When
relying on standard deviation for synopses, DTW struggles to retrieve 50%
(2 out of 4) of the similar nodes, further highlighting the advantages of our

approach.

Across all three datasets, our model consistently outperforms DTW in
terms of effectiveness and efficiency. Additionally, we observe slightly im-
proved performance for p = 0.6 compared to p = 0.8. This is attributed to
the fraction % increasing as k grows, leading to faster threshold attainment
for p = 0.6. Consequently, our model identifies similar nodes more quickly

in these cases.
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2.6 Summary and Key Findings

100

d MAPE (Dataset D3 -

In the previous section, we evaluated the accuracy of the similarity extraction
mechanism based on the provided synopses. The sliding window method fa-
cilitated seamless pre-fetching of summaries at the different distributed nodes
in a timely manner. With this approach the model was able to establish the
existence of correlations between the synopses and then, using the distance
estimation model, find the corresponding nodes with similar datasets. The

most important results are:

e Enhanced accuracy of similarity detection: With the correlation

approach the robustness of the similarity dete

ction algorithm and its

performance was much higher than the compared DTW solution and,
thus, allowing for more efficient task offloading based on dataset simi-

larity.

e Reduction in resource consumption: Usi

ng the above methods,

instead of full datasets, only a minimum statistical information was
needed to be exchanged, thus greatly alleviating network congestion.
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e Quick response to changes: The use of the sliding window approach
allowed the system to track the evolving patterns of data outflow as
they occur and thus simultaneuosly keep the similarity detection system
relevant.
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3 Accelerating Machine Learning/Deep Learn-
ing Training

3.1 Context and Motivation

Models for ML and DL are becoming increasingly significant for real-time
analytics in IoT and EC systems. These models are expensive to train due
to the extensive time and resources they consume. In EC settings, which have
resource constraints, this presents a bottleneck which adversely affects the
speed of intelligent application deployment. With the ever increasing need
for real-time data pulled from edge systems, it is clear that more efficient
training processes are needed while maintaining proper accuracy. Traditional
training approaches are oftentimes less than ideal for these scenario. This
work is primarily aimed at meeting the challenge of improving model quality
while simultaneously reducing training times. It develops methods for better
data selection and loss function minimization, thus enabling more effective
ML in environments that lack sufficient resources.

3.2 Related Work

Accelerating ML and DL training is essential for real-time data processing in
EC environments, where computational resources are often limited. There
are several research efforts that focus on making the training process more
efficient.

3.2.1 Broad Strategies for Enhancing Training Efficiency

This section outlines key strategies, which can be used in various neural net-
works (NNs) and ML models. These strategies seek to enhance the entire
training paradigm, frequently implementing optimizations that are applica-
ble to a broad range of settings. The objective here is to increase training
velocity and efficacy at different levels. In [61], the authors provide a new
architectural design to increase the training efficacy of NNs. Aiming at a
faster convergence speed, Batch Normalization [62] and Dropout [63] are
incorporated into an Independent Component layer, reducing the correla-
tion coefficient and the mutual information among all the possible neuron
pairs. The Selective-Backprop model presented in [64] further improves per-
formance by restricting the focus of the backpropagation process to examples
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that the model had higher loss values during the last training iteration. The
approach is to establish whether an example’s gradient is computed and pa-
rameters changed, or just the next example is taken.

In [65], the authors suggest the deployment of the greedy DropSample
technique, which improves the training of CNNs when used as image clas-
sifiers. It works by concentrating on those samples which after the forward
pass are found to yield a big gradient and discarding those which do not
affect the minimization loss value. Instead of computing the entire gradient,
model parameters are updated with a limited number of entries utilizing the
sparse backpropagation method in [66]. The method of forward propagation
remains the same, however, the gradient vectors that are set to be modified,
are sparsified by preserving only the top k components with the highest ab-
solute values. Consequently, just a subset of k rows or columns in the weight
matrix are updated, effectively reducing the computational overhead. The
multi-sample dropout technique [63] aims to reduce training time by generat-
ing multiple dropout samples within a single forward pass. The average loss
is computed by getting the individual loss from each of the dropout samples,
which increases the efficiency of the original dropout method. An instance
shrinking operation is applied in the AutoAssist framework in [67] in order
to speed up the training time. This operation discards instances that do
not improve the outcome and focuses on the informative ones, hence aids in
computationally expensive processes.

3.2.2 Specific Techniques for Speeding Up Training

These types of models focus on specific forms of NNs or specific tasks in the
training process. They allow for strategic optimizations to be implemented
at the bottlenecks of the unique model features. In [68], the authors replace
traditional random dropout schemes with systematically defined patterns
through the Approximate Random Dropout. This approach avoids need-
less computations and access to data. A Search Algorithm using Stochastic
Gradient Descent (SGD) is also developed to mitigate possible deficits in
accuracy by creating optimized dropout distributions. As discussed earlier,
batch normalization in [62] alleviates internal covariance shift, which in turn
speeds up DNN training. The activations are normalized, and some methods
used for optimization during training are ensured to work thereafter. The
L1 norm batch normalization technique presented in [69] is a more sophis-
ticated form of batch normalization which only involves linear operations in
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the process of forward and backward propagation. This method avoids net-
work overhead associated with nonlinear square and square root operations
that are part of L2 norm batch normalization. A deep extreme learning im-
age classifier has been proposed based on DL in [70]. The model implements
a dropout technique which randomly disables neurons during the training to
decrease the computational time.

3.2.3 Handling the Training Samples

Whereas the former techniques are concentrated towards the internal aspects
of the training algorithm and model structure, other techniques are focusing
towards the control of training samples. The approach in [71] introduces an
importance-based sampling strategy aimed at selecting the most informative
samples. With this scheme, the stochastic gradients are less variant in the
training phase. The scheme also provides an upper bound on the gradient
norms and a variance reduced estimator. In [72], a DNN is trained with
a new acquisition method that is based on weighted sampling. The new
data assets are iteratively chosen and the DNN model is trained and then
updated. A new weighting factor, derived from the sample’s probability
density, is introduced to achieve uniform selection in the sampling space.

3.2.4 Existing literature gap

Although several approaches have aimed at improving the training efficiency
of ML/DL algorithms, little is done towards the management and dynamic
adaptation of the training datasets. Most work concentrates on frameworks
that optimize internal levels of the training algorithms and model architec-
tures, such as batch normalization and dropout based methods. Current
methods do not adequately address the distributional divergence of data as-
sets throughout the training process, which can lead to sub-optimal model
performance and prolonged training times. Importance sampling and ac-
tive learning techniques that supplant less ‘informative’ examples with more
‘informative’ ones do not suffice as they do not focus on monitoring the statis-
tical properties of training samples gradually to mark low-contribution data
for exclusion. To effectively train a model in an restricted setting, systems
that offer means for continuous monitoring of training data and construction
adaptation are critical.
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3.3 Problem Statement

Following what we defined in Section 1.6, let us imagine that the aforemen-
tioned nodes are responsible for executing multiple instances of processing
tasks created by users or applications. These nodes have defined computa-
tional resources, which allow them to train and infer ML models on their
datasets. Notably, these capabilities influence both training and execution
performance, especially in the aspect of time. The range of ML models
employed is broad, from regression to NN models, and even various types
of classifiers dedicated to aid the decision-making process. The envisioned
approach is depicted in Figure 8, showing the conceptual logic behind the
approach and the general description of the runtime environment. In ad-
dition to data manipulation, nodes receive requests for task execution that
typically require training instances of the ML models. These models, as well
as the tasks that integrate them, are designed to create knowledge in an au-
tonomous fashion, allowing nodes to cooperate and share information within
the ecosystem or the cloud infrastructure.

The training of ML/DL models through a node’s dataset frequently re-
quires a lot of processing power and memory resources. Additionally, it
should be emphasized that nodes need to carry out multiple processing tasks
at the same time. These various responsibilities can only be achieved with ef-
fective management, which can also lead to improved overall performance. In
this section, tuples are used to represent the training samples. These are fed
to a processing module that attempts to create the final ML model. Nodes
exist in a setting that is constantly changing. Due to this, they are subjected
to what can only be described as infinite streams of data and tasks. While
there is an effort to mix new data from the IoT infrastructure, continuously
training is going to be extremely resource heavy and nearly impossible. For
that reason, the system simply accepts what is currently available to it. By
using a dataset frozen in time, the system effectively eliminates the over-
whelming task of gathering new resources. This allows for the introduction
of models like the proposed one, which is built upon the assumption given
above and deals with an ’isolated’ view of the training process each time. The
training process is represented with the symbol 7. Additionally, we divide
the local dataset into two parts, D7 and Dz, where the first is the subset
of the processed data and the second is the subset of the unprocessed ones.
As T progresses, data are transferred from D5 into D7 and as a result, the
statistical properties of both subsets potentially change.
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Figure 8: Overview of the integrated solution presented which is deployed on an
EC node.

Nodes have a copy of the tasks queue where tasks that arrive are kept
enabling them to manage 7 and complete the training of the ML model.
The nodes also have copies of the subsets Dy and D=. There is a maximum
threshold size on this queue that affects the workload on the node n; denoted
by l;. Once this threshold is reached, the node is forced in to an overusing
state failing to deliver real-time tasks which increases the response times.
The two basic approaches for carrying out the training process 7 are: (a)
Part of the tasks a node has to work on is paused until the defined work
cycle is completed, or (b) Tasks and T are performed concurrently, however
this has the drawback of having to manage the work load more efficiently.
Approach (a) is used in this paper, resulting in less time inactively waiting
for the ML models to be updated for tasks that are queued for processing.
The second approach, is not being investigated in this effort and would be
the subject of future research.

We elaborate on how a single node n; would accomplish the task of train-
ing the model. n; calls 7 at specific time intervals and gains knowledge
over the ML model via training that starts with a local dataset snapshot.
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While 7 is running, n; may receive new tasks which results in the increase
of the load l;. Gradually, when 7 is proceeding, the node n; takes in the
data available at hand and modifies within the ML model according to the
prerequisites of T and statistical requirements of the particular model. For
instance, the ready data for training in the NN training is represented by D
while the left over data meant for feeding into the network is represented by
D=. In the context of n;, the training loss of the model, denoted as L, serves
as a performance metric which node n; monitors when 7 is in operation and
can indicate whether 7T is truly effective. If the statistical properties of Dz
indicate that further training will yield only marginal improvements in L,
the node may opt to terminate 7 early. For instance, given that when T is
to find coefficients of linear regression, fresh data indeed would change the
slope and intercept, the node needs to carry more training. However, when
the new data is flown with similar features, 7 can be stopped and set with
an acceptable error upper bound.

Such an approach is plausible in circumstances when tolerance for small
errors exists and does not result in a chain of defects in the service provision.
In cases where accuracy is of utmost importance, all data points should be
passed through the nodes prior to the determination of 7. This balance
is determined by the extent of training time spent versus the amount of
the acceptable error. The proposed method is geared towards determining
the conditions under which it is possible to obtain the acceptable level of
error without processing the whole dataset. This method is advantageous
for the nodes with limited resources because it allows for better allocation of
resources and multitasking.

3.4 Adaptive ML Training based on Data Context

Contextual awareness is crucial in optimizing ML/DL training processes,
particularly in dynamic and distributed computing environments. This sec-
tion addresses the incorporation of contextual features like data specificities
within the ML/DL training procedure. Due to the incorporation of contex-
tual knowledge, the training process can be adaptive because models can
now react to real changes in data distribution and resource allocations. This
method achieves higher training efficiency because it concentrates computa-
tional power on the most relevant data subset. The methods presented here
reveal how context can be utilized to develop ML/DL models that are robust
and resilient even in complex and real world situations.
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3.4.1 Optimization of the Loss Function

The loss function £ serves the purpose of measuring the efficacy of the train-
ing process 7. An ML model is undergoing training and £ captures how well
the predicted outcome ¢ approaches the target value y. In this approach, it
is assumed that the ML model is trained with under a supervised learning
paradigm, meaning there exists a training dataset with the target value y
for each input sample. Minimizing the difference between the expected value
and the predicted value, £ = | —y| is the primary goal during training, with
the ideal value being zero. In some cases £ — 0 is an overfitting indication
and something that will not be addressed in this effort. In particular, £ can
be estimated as a transformed loss computed when the system is trained with
a dataset generated by z: L(z,7,y). Transformations of the loss function £
include mean square error, cross entropy, hinge and quantile among others.
These do contradict the basic principle that there is an increased value of
loss function when the prediction differs grossly from the ground truth.

During training, each input x generates an output y. Then, applying the
training process (e.g. backpropagation for NNs) the model weights or coef-
ficients will be slightly altered at every step in order to minimize L(z, 7, y).
Effective model training includes having a D7 which is wide enough to cap-
ture the heterogeneity needed to alter the weights of the model properly. If
the training subset, D, has a low variance, (op), the inputs = will come from
a narrow distribution which will limit the contributions to the steps taken
to fit the model with respect to the underlying data distribution. Models
trained on such datasets may fail to generalize, especially when the test data
distribution is sufficiently different compared to D7 and whenever the data is
coming from a combination of probability distributions. In order to prevent
this, the proposed methodology detects training samples based on whether
they stem from a different distribution when put to T and attempts to classify
them through indirect means.

By integrating the aforementioned observations, we infer that given a
model pre-trained on the dataset Dy, any input sample z will have an in-
significant impact on minimizing L(z,9,y) if © ~ fx(D7). Under this in-
terpretation, the steepness of the slope of L(z,y,y) is associated with the
input z. If x originates from a distribution identical to that of dataset Dr,
the expected variation in both € and L(z, ¥, y) remains minimal (i.e., the loss
function exhibits a non-steep slope). Consequently, the evolution of the slope
of Ly(z,y,y) across consecutive training rounds (1,2, ...,t,...) will be influ-
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enced by the distribution of D7 and the characteristics of the input sample
x. Assuming that the training process T starts at t = 1 (where we consider
discrete time instances for convenience) with the first training sample, the
objective is to monitor the statistical properties of Dy along with the loss
function L;(z, 7, y) to identify the most impactful training samples for 7" and
determine whether stopping criteria exist to save computational time. In
general, at time ¢, a sample x exits D= (i.e., D+ = D+ — x) and enters Dr,
(i.e Dy = Dy Ux), producing a new loss value L;(z,7,y). We assume that
D7 and D= follow two different distributions governed by random variables
A and B with means pa, up and standard deviations o4, 0p, respectively.
The statistical properties of both datasets can be utilized to estimate the
probability that a given training sample x belongs to either D7 or D=

The fundamental idea behind our approach can be summarized as follows:
At each time step t, retrieve the next training sample = from Dr. If x
is significantly related to D, discard it and proceed to the next available
sample. This approach effectively reduces the number of training samples
used, consequently decreasing the duration of each training epoch. In the
next subsection, we provide a detailed explanation of this implementation
and outline the methodology used to assess whether a training sample z is
relevant to Dr.

Use case: NN Training procedure. The change of weights in NNs
during training is given by the equation:

ow

where W/, is an element of the weight matrix of the i-th node after
the (t+1)-th training round, +* is the momentum, 7! is the learning rate,
and L(W}, z) is the loss for example z in the t-th round. After n rounds of
training, the weights are:

A o OLWE )\
1 3:71W§—77§(M)7 x € Dy, (16)

. ot LOLWVE 2)\Y
W = tzlfy’Wt’ — nz(%) , x € Dr. (17)

Several studies, e.g., [73] suggest that altering n between consecutive
training rounds can have a positive impact on model generalization and ac-
curacy [73]. In many cases the training procedure is initiated with a high
n and gradually its value is being decreased. This ensures that each term
does not contribute equally to the computation of W'. Given this, a critical
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question emerges regarding the treatment of terms with low numerical val-
ues that have minimal impact on W!. To address this issue, we leverage the
proposed model, which is thoroughly described in the subsequent sections.

3.4.2 Adaptive Training Samples Management in a Data-Sensitive
Environment

As previously discussed, we assume that the two subsets, Dy and D5, may
follow distinct distributions, with the respective random variables denoted as
A and B. As samples transition from the unseen dataset to the seen dataset
after being utilized in T, their distributions evolve accordingly. Following an
initial warm-up phase where all training samples are processed by 7, we can
estimate the probability of a training sample z from Dz belonging to the
underlying distribution of Dy. If this probability is sufficiently high, then
including x into 7 could be deemed unnecessary, with only a minimal impact
on the final ML model’s loss.

To balance this trade-off effectively, we introduce two thresholds: 6, and
s, where threshold 6,, represents the upper bound beyond which the expected
loss becomes unacceptable and 6, defines the lower limit below which the
probability of alignment between the next training sample  and D7 is con-
sidered negligible. In more complex scenarios where the random variable A
follows a mixture of distributions (potentially distinct ones), we must fit Dy
to this unknown mixture. To mitigate computational overhead, we propose
estimating the mixture parameters at predefined intervals. The probability
that = belongs to this mixture is given by:

pe=f(x) = wfi (z;O%) (18)

where wy, represents the weight of the k-th distribution (k total distri-
butions, such that > w, = 1), and O denotes its parameter set. Before
computing p,, our objective is to estimate O using the samples within
Dy through the well-established Maximum Likelihood Estimation (MLE)
method [74]. This method seeks to determine © that maximizes the likeli-
hood function:

N

O = argmax f({D7}; ©) (19)
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Figure 9: The algorithmic perspective of the data-driven ML training process

For computational convenience, we employ the log-likelihood function instead
of the standard likelihood formulation. Under the assumption of independent
and identically distributed (iid) variables, this simplifies to:

|D7l

© = argmax H f{D7};:0) (20)

The second component of our model focuses on determining when to halt
T if the distributions of the two subsets exhibit similarity. To incorporate
contextual awareness into the ML training process, we explore an additional
insight into the distributions of D7 and D=, their divergence. Divergence
serves as a statistical measure to quantify the difference between two dis-
tributions. In this work, we utilize the Kullback-Leibler (KL) divergence,
defined as:

Dii(Al|B) =) A(z)In

reX

A(z) (21)
B(x)

KL divergence employs the samples from distributions A and B to com-
pute their relative entropy, effectively measuring the information loss when
replacing A with B. A low Dk (A||B) value indicates a strong similarity
between A and B, whereas higher values signify greater divergence.
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3.4.3 Reducing Training Time with a Novel Method

On an algorithmic level, our approach is applicable to any ML technique that
processes a dataset and trains a model over a predefined number of epochs.
In this subsection, we outline a structured sequence of steps that utilize the
parameters examined throughout this study, specifically 6,,, 0;, p., D7, D=,
and {z}. It should be noted that 6,, and 6, are system hyper-parameters, and
hence they are set by the user. Hyper-parameter 6,, is a warm-up phase loss
function threshold and higher values of it tend to shorten warm-up periods,
which increases model loss and speeds up training. At the same time, 6,
functions as a threshold for accepted tuple rejections rates in the data-aware
ML methodology. When higher values of 8, are set, more tuples are rejected
and the training time is decreased. Thus, these hyper-parameters are either
set statically, according to the available computational resources of each node,
or dynamically, according to its workload. Their aim is mainly to tune the
training deformulation in regards to time efficiency versus model quality.

Algorithm 2 and Figure 9 provide a detailed illustration of our methodol-
ogy, where the ML model undergoes training with the entire dataset during
the warm-up phase. Once the loss value falls below the predefined threshold
0., the data-aware methodology is activated. At this stage, the sets D+ and
D= are initialized to represent the observed and unobserved training data,
respectively. During each epoch, the probability p, is evaluated against the
threshold 5. If p, exceeds 6, it is inferred that {z} is closely related to
the training set D7, and the tuple is therefore excluded from training. The
datasets D7 and D5 are subsequently updated. Conversely, if p, < 0,, the
tuple {x} is included in the training process. This procedure is repeated
for each epoch as long as there are elements in D= (i.e., D7 # () and the
KL-divergence between D7 and D7 remains above 0.05. The KL-divergence
quantifies the entropy between two distributions, with higher values indicat-
ing a lower degree of shared information. In this work, we set a threshold of
0.05, above which the distributions of D and D7 are regarded significantly
different. When Dy (D=||Dy) > 0.05, the datasets are deemed sufficiently
distinct, and training continues. However, if D7 and D become nearly iden-
tical (D (D7||D7) < 0.05), further training with D= is unlikely to improve
model quality, prompting the process to skip to the next epoch.

Use case: Reduced Data-driven training for NNs. Regarding NNs,
specialized ML training in a data-aware fashion has a missing dimension
regarding their learning rate (7). This is due to some contemporary NN
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Algorithm 2 Data-driven ML training reduction mechanism

procedure DATA-AWARE ML TRAINING(0,,,0,, {x})
while £(D+) > 6,, do
Perform training with {z}
end while
for all training epochs do
Dy =10
D= = Train set
Calculate Dy (D|| D7)
while D7 7é () and DKL(DTHDT) > 0.05 do
Calculate p,
if p, > 0, then
Perform training with {z}

Dr=DrUx
end if
D7 = D7 — {z}
end while

end for
end procedure

designs applying epoch-dependent learning rates. Therefore, learning rates
must be taken into consideration when accepting or rejecting tuples. For
instance, in the early stages of the epochs, learning rates are quite elevated
compared to later epochs which means that rejecting these tuples will have
a greater impact to the model’s performance.

Algorithm 3 describes the modified data-aware training method for NNs.
This change is also illustrated in Figure 9 located in the ‘DNN Fine Tun-
ing’ section detailing the changes needed for training Deep Neural Networks
(DNN). The methodology remains the same as in Algorithm 2 except for
one aspect: in Algorithm 3, rejected tuples are kept in the D array and rates
corresponding to them are kept in the E array for each training epoch. When
the data-aware method is complete, K-means clustering is performed on D
and F in order to assign centroids that most accurately represent the values
of these two vectors. Each centroid is assigned to a set of tuples x along
with a learning rate n. Afterwards, the NN model is tuned with these cen-
troids by subseting the rejected tuples and setting different learning rates for
epochs. The number of centroids is a critical factor influencing the model’s
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quality. Increasing centroids allows for better generalization of the model but
increases computation costs. Decreasing the number of centroids increases
loss values but decreases training time. However, how to determine the opti-
mal amount of K-means centroids to increase this methodology effectiveness
is not within the limits of this paper.

3.5 Experiments and Results
3.5.1 Experimental setup and performance metrics

This section examines how the proposed data-aware method affects different
ML models. We aim to assess the impact on training time and overall model
performance. Since this technique discards certain samples of the dataset
while training is concluded, it is anticipated to improve the execution time,
but may also degrade model performance. In order to study the above, we
prepared three different experiments in different ML models and datasets, as
described below:

e Clustering: We apply a DNN for clustering the IRIS dataset [75]. The
dataset consists of 150 images, which are labeled into three groups, each
one corresponding to a different species of the Iris plant. A supervised
clustering approach is implemented in which a labeled data set is avail-
able for the creation of clusters for which class based probability density
functions are maximized.

e Support Vector Machine (SVM): In this case, an SVM classifier is
trained with the MNIST dataset [76]. MNIST is a well-known dataset
consisting of 60,000 images containing hand-written digits in grayscale
and divided into 10 classes.

e DNN: In this setting we deploy four popular DL architectures: VGG-
19 [77], MobilenetV2 [78], ResNet101 [79], and DenseNet121 [80] in the
CIFAR-10 [81] and CIFAR-100 [82] datasets. The first one, consists
of 60,000 images divided into ten classes, and the second, consists of
60,000 images divided into 100 classes.

In each of the experimental settings, we set the parameters 6, and 6,

analyzing the outcomes against a baseline model termed Base (as it does
not utilize the data-aware method). Also, we implemented another control
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Algorithm 3 Data-driven ML training time reduction for NNs

procedure DATA-AWARE NN TRAINING(0,, 05,71, {z})
while £(D~) > 6,, do
Perform training with {z}
end while
for all training epochs do
Dy =10
D= = Train set
Calculate Dy (D|| D7)
while D+ # () and Dy (D+||D7) > 0.05 do
Calculate p,
if p, > 6, then
Perform training with {x} and n

Dr=DrUcx
else
Elepoch] = n
Dli] = Dli]U x
continue
end if
Dy = Dy — {x)
end while
end for
C =K-means{ F[], D[}
for all C do
n = C[n]
x = Clz]
Perform training with {x} and n
end for

end procedure
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model termed Random that randomly removes training samples but ensures
the number of samples removed is equal to the data-aware count. The per-
formance comparisons of the Random model are dealt with in the subsequent
sections. In order to assess the results of the data-aware approach, we outline
the parameters that need to be monitored:

e Normalized Mutual Information (NMI): This metric quantifies
how different two clusterings of a set of records is against each other.
A score of 0 indicates no similarity at all and a score of 1 indicates a
complete match. If the score is near 1, it indicates that method used
was highly efficient.

e Test Accuracy: Illustrates the trained model’s accuracy for classify-
ing a new independent test dataset. If the accuracy is high, the model’s
generalization is good. If the accuracy is low, there is potential over-
fitting occurring.

e Warm-up Execution Time: Amount of time taken for the warm-up
to complete before the data-aware method can be deployed.

e Data-Aware Execution Time: Amount of time spent training once
data-aware methodology is implemented and actively in effect.

e Image Drop-Off Rate: Represents the ratio of training samples that
were dropped for each epoch.

The relationship between the drop-off rate and 6 is displayed in Figure 10.
Overall, as 6, increases, the percentage of samples rejected during training
increases as well. Still, dataset characteristics, such as the number of classes,
impact rejection rates. For instance, at 6, = 0.05, rejection rates for CIFAR-
10, CIFAR-100, and MNIST are 63.4%, 0.5%, and 78.87%, respectively. If
fs is increased to 0.6, rejection rates escalate for all datasets: CIFAR-10
(99.99%), CIFAR-100 (70.9%), and MNIST (92% ). For the evaluations, we
select 5 values that keep the drop-off rate between [20%, 70%], ensuring a
balance between computational efficiency and model accuracy.

3.5.2 DNN Clustering Performance

The aforementioned metrics NMI, image drop-off rate and training time (in
seconds) are evaluated across multiple values of the s threshold with the

62



Image dropoff rate (%)

—»— Cifar-10 dataset | |
—— Cifar-100 dataset | |

101 .
/ Mnist dataset
o I ‘ I I

0.03 0.05 0.09 0.2 04 06 1 15 2
Theta, value

Figure 10: Image drop-off rate over 0, for various datasets.

data-aware approach and compared against the Base and Random models.
In this case, the model is trained for 200 epochs. Results are depicted in
Table 1. As 6, increases, the proportion of discarded images rises, leading to
a lower NMI, as the model is exposed to fewer training samples per epoch. As
expected, the baseline method achieves the highest NMI (86.08%), since it
utilizes the complete dataset, whereas in the data-aware and Random models,
approximately 50% of the images are discarded on average. The lowest NMI
for the data-aware method (80.79%) is observed at 65 = 0.09. Additionally,
higher 6, values result in a reduction in training time, since fewer samples
are processed per epoch. The shortest recorded training time (50.14 seconds)
is obtained with the data-aware and Random methods at 6, = 0.09, whereas
the Base model exhibits the longest execution time (54.62 seconds).

In general, the data-aware approach reduces training time around 10%,
while suffering a 1.13% loss of NMI compared to the baseline. The Random
model also improves the training time and decreases NMI because of its
sample rejection approach. However, the Random method is less effective
than the data-aware method as the Random method produces a mean value
of NMI which is 3.14% lower than the data aware method. This shows how
effective the proposed data-aware technique is compared to purely random
rejection techniques.
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Figure 11: SVM Model test accuracy for the MNIST dataset, over different 6,
and 6, thresholds.

Table 1: Performance evaluation of the DNN clustering

0s =0.05 | 0, =0.07 | 6, =0.09

Data-aware (NMI) 84.4% 82.86% | 80.79%
Data-aware (Training time) | 50.94s 49.7s 48.4s

Base (NMI) 86.08% 86.08% 86.08%

Base (Training time) 55.62s 55.62s 55.62s

Random (NMI) 81.42% | 79.66% | 77.53%
Random (Training time) 50.94s 49.7s 48.4s
Image drop-off rate 42% 48% 60%

3.5.3 SVM Performance

Figure 11 outlines the SVM model’s test accuracy for different combinations
of the 6, and 6, thresholds. The model was trained for 200 epochs on the
MNIST dataset. We use W in place of 6, and S in place of 6, to save
space. The data-aware approach achieves 99.81% test accuracy at 6,, = 0.04
and #, = 0.05. When 0, = 0.6 and 6, = 0.09, the accuracy drops to the
lowest value of 99.57%. On average, the data-aware approach is less accurate
than the baseline by 0.22%. The baseline SVM model which does not apply
0, or s, maintains accuracy of 99.88% for all configurations. The effects
that 6, and 6 have on accuracy are observable; larger 0, values reduce
the duration of the warm-up phase, which causes performance to decrease,
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Figure 12: SVM model execution time for Base and data-aware implementations.

while larger 6, values reduces the amount of training tuples per epoch which
impacts accuracy. Regarding the random model, results indicate that it
suffers a more pronounced accuracy drop relative to the data-aware baseline,
especially when the sample pruning during training is more aggressive (e.g.,
0, = 0.6, 0 = 0.09). The average accuracy loss of the random model is
0.66% relative to the data-aware approach.

Training time for the SVM model while using the MNIST dataset is dis-
played in Figure 12. The total training time of the model is classified as
warm-up training time and data-aware training time. The models are trained
over 200 epochs, and as expected, increasing 6, (denoted as W) decreases
the number of epoch warm-ups which decreases the warm-up training time.
Additionally, increasing 0, (denoted as S) leads to more rejected tuples per
epoch leading to further reduction in training time. The Base model’s train-
ing time, however, is not affected from 6, and 6,. When 6, = 0.6 and
0s = 0.09, the fastest training time of 5.82 minutes is achieved with the data-
aware method. Meanwhile, the slowest execution time in the data aware
configuration occurs at 6, = 0.04 and 6, = 0.05, which is 6.61 minutes.
The data-aware method’s average training duration is 6.19 minutes which
provides 7.41 minute speedup over the Base, accelerating the procedure by
concluding in less than half of the time, compared to the Base method.

3.5.4 DNN image classification performance

The test accuracy for the CIFAR-10 dataset across different 6,, and 0, values
is shown in Figure 13a. The DNN models undergo training for 200 epochs
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with a batch size of 128. Among the tested models, DenseNet121 demon-
strates the highest resilience, as the data-aware methodology causes only a
minimal accuracy drop of 0.08% even at 6, = 2 and 6, = 0.05. For lower
thresholds like 6,, = 1 and 6, = 0.03, the impact on ResNet101 is nearly
negligible, reducing accuracy by just 0.00087%. In contrast, MobileNetv2 is
the less resilient model in terms of performance affected by the data-aware
approach, experiencing a reduction in accuracy of 0.81% with high threshold
values and 0.051% when lower thresholds are used. The average accuracy
reduction per model is as follows: VGG-19 = 0.1%, MobileNetv2 = 0.43%,
ResNet101 = 0.04%, and DenseNet121 = 0.02%. It is safe to assume that
the data-aware method negative impact is bearable across all models with
an average decrease of 15%.

After the completion of 200 training epochs, accuracy results for CIFAR-
100 are shown in Figure 13b. CIFAR-100 is comprised of 100 classes com-
pared to the 10 in CIFAR-10, making the classification task more complex.
Therefore, accuracy is lower for all models. The general pattern is consistent
with CIFAR-10; higher values of 6, lead to a faster decrease in accuracy. The
highest accuracy recorded for the data-aware approach is 78.54%, achieved
by ResNet101 with 6,, = 1 and 6, = 0.5, while the lowest accuracy is 65.31%,
observed with MobileNetv2 at 6,, = 2 and 6, = 0.6. MobileNetv2 emerges as
the best-performing model with an average accuracy decrease of just 0.33%.
ResNet101 is the next best-performing one with an average drop of 0.74%.
Last are VGG-19 with 0.80% and DenseNet121 with 1.16%. The CIFAR-100
results suggest that even in more difficult classification tasks, the data-aware
methodology does not affect the results significantly. On average, the accu-
racy reduction across all experiments is 0.76%.

The comparisons between the Base implementation and data-aware im-
plementation regarding the time taken to train the DNN models are spot-
lighted in figures 14a, and 14b. The details of the outcome illustrate that the
data-aware strategy is far more superior than the Base approach in terms of
efficiency in training. As for the CIFAR-10 dataset, the data-aware method
achieves the speedup factors of: 1.7z for VGG-19, 1.7x for MobileNetv2,
1.68x for ResNet101, and 1.71x for DenseNet101. Likewise, for the training
on the CIFAR-100 dataset, the methodology is able to reduce the time taken
to train the model by 1.47x for VGG-19, 1.51x for MobileNetv2, 1.46z for
ResNet101 and 1.72z for DenseNet101. The data aware method, on average,
over both data sets reduces the time taken in training the models by 1.62x.
This proves that the methodology is effective at speeding the learning process

66



3
I

I

b
P
b
b
P

©
©
o

Accuracy (%)

Accuracy (%)

3.5.5 Performance

©
[l
o

—*— Aware VGG-19
Aware MobilenetV2
[|—— Aware ResnetNet121
—— Aware DenseNet101
[|—© —Base VGG-19
Base MobilenetV2
— © —Base ResnetNet121
[|— © —Base DenseNet101

©
©

©
®

W=1 W=1 W=1 W=15 W=15 W=15 W=2 W=2 W=2
$=0.08 S=0.04 S=0.05 S=0.03 S=0.04 S=0.05 S=0.03 S=0.04 S=0.05

=R -9 —9-——O__—9g-— -0 ——¢

70

—*— Aware VGG-19
Aware MobilenetV2
—»— Aware ResnetNet121
60 | —«— Aware DenseNet101
— © —Base VGG-19
Base MobilenetV2
— © - Base ResnetNet121

95 11— & - Base DenseNet101

w=1 W=1 W=1 W=15 W=15 W=15 W=2 W=2 W=2
S=0.5 S=0.55 S=0.6 S=0.5 S=0.55 S=0.6 S=0.5 S=0.55 S=0.6

(b) CIFAR-100 Dataset

Figure 13: DNN Model accuracy for the CIFAR datasets, over different 6,
and 6, thresholds.

up. For the DenseNet101 model trained on the CIFAR-10, the training time
is highly decreased by a stunning 2.99x when the parameters 6,, = 2 and 6;
= 0.05 are set. Overall, a higher value for the 6, parameter value achieves
lower training times which greatly improves the effectiveness and flexibility
of the proposed method.

Comparison

In this subsection, we analyze the performance of the proposed data-aware
methodology relative to an analogous approach which disregards an equiv-
alent portion of data samples in the course of model training.. Specifically,
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Figure 14: DNN model execution time using the CIFAR datasets, for baseline
and data-aware implementations.

we assess the aforementioned Random method which eliminates data points
uniformly at random instead of leveraging the structured selection process
of the data-aware technique. As a result, sample rejection occurs randomly
at each training epoch. Figures 15a and 15b present the comparative results
between the data-aware and random methods. For CIFAR-10, as shown in
Figure 15a, the data-aware approach consistently outperforms the random
technique, achieving an average accuracy improvement of 8.38%. In certain
cases, such as with the VGG-19 model, the proposed methodology attains
a 13.99% higher accuracy, with the performance gap widening as the image
drop-off rate increases. Notably, the data-aware technique maintains high ac-
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Figure 15: Data-aware methodology accuracy comparison over the Ran-
dom method, for different training sample drop-off rates, using the CIFAR
datasets.

curacy even when 63.45% of the data points are omitted from training. The
difference between the data-aware and random techniques becomes more ev-
ident as task complexities increase. This is clearly visible with the results
of the data-aware method on the CIFAR-100 in Figure 15b, where the data-
aware method yielded an average improvement of 6.72% in comparison to
the random method. With respect to the model and image drop-off rate,
there was an improvement of accuracy from 1.94% to 14.53%. Most signifi-
cantly, there were no instances where the random method outperformed the
data-aware method for both CIFAR-10 and CIFAR-100.
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3.5.6 Discussion and lessons learned

In this subsection, we reflect on the lessons learned from the experimentation
processes and assess what problems might emerge when implementing the
suggested methodology.

e Supported data types: The data-aware approach defined in this
document is aimed exclusively at supervised learning techniques using
image-based data.

e Application to models requiring large datasets for conver-
gence: DNNs with a high number of parameters typically demand
substantial amounts of training data. If such models are trained with
insufficient data, there is a risk that the loss function may stagnate,
preventing further improvements in accuracy. In order to solve this,
appropriate adjustments of the 6,, and 6, parameters would have to be
done. Decreasing 6, permits the model to train for a greater number of
epochs before implementing the data-aware strategy, which improves
convergence but prolongs training time. A higher value of 6, can be
used in order to counterbalance this since it reduces training time while
imposing a very small cost in accuracy.

e Risk of overfitting due to scarce training data: Overfitting is one
of the more likely problems for DNNs which have an excessive number
of parameters, especially when the training dataset is not very large. It
is indicated when the loss function is minimized, obtaining high training
accuracy with low eventual testing accuracy. Our proposed methodol-
ogy is based on selectively removing training samples, so it poses the
danger of overfitting in large models. By reducing the 6, parameter,
this challenge can be partially solved by making sure that more sam-
ples are kept for training which reduces the odds of overfitting.To offset
the increase in training time, 6,, may be increased to facilitate faster
training.

3.6 Summary and Key Findings

The enhancements in performance with respect to ML/DL training within
EC were especially visible in resource-limited situations. Our approach to-
wards data management within EC unlocked new possibilities. For example,
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spatially aware management techniques along with loss function minimiza-
tion were able to maintain model quality at a fraction of the training time.
The most notable key points are as follows:

e The achieved training time reduction was 50%: This improve-
ment stems from selective management processes for various datasets,
which removed inefficient data processing during training.

e Model accuracy was maintained: The high model performance
with low resource expenditure during shortened training times was suf-
ficient to enable resource-efficient high-quality predictions.

e Adaptability to constraints: The proposed methodologies enabled
surrogated edge nodes to execute real-time analytics on devices with
severely limited computational capabilities.
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4 Transfer Learning in Edge Computing

4.1 Context and Motivation

With TL, models developed for a specific set of tasks can be adapted for
different tasks, which results in a reduction in the time and resource expen-
diture for training. This is useful in EC because the data are usually limited
and so are the resources. However, TL on the edge has its own set of chal-
lenges, such as dealing with heterogeneous data sources and ensuring model
performance in dynamic environments. The ability to adapt models to new
tasks as rapidly as possible is crucial in EC because devices need to operate
over data in real time with computing resources limitations. The available
TL mechanisms do not cater to the specificity of the edge systems, and there-
fore, are inefficient. This research proposes an uncertainty driven model to
improve TL for edge environments, filling the gaps of handling diverse data
distributions and efficient model reuse across devices. The goal is to enable
faster, more adaptive learning for a wide range of edge applications.

4.2 Related Work

TL techniques are increasingly being researched for their potential to improve
model accuracy and reduce training times in EC environments, addressing
the challenges of dynamic data and limited computational resources identified
in the introduction. The division of TL stems from the similarity of the
feature spaces between the source and the target task domains. It is usually
divided into two types. If the feature spaces are the same, it is referred to as
homogeneous TL. On the other hand, when feature spaces differ, it is referred
to as heterogeneous TL.

4.2.1 Homogeneous Transfer Learning

In the setting of homogeneous TL, four primary categories are distinguished
based on the mode of transfer: instance-based, feature-based, parameter-
based, and relational-based [83]. In instance-based TL, weights are assigned
to instances in the source domain by their marginal distributional differences
from the target domain, making them reusable for training the target do-
main. The authors in [84] describe a multi source domain adaptation frame-
work (2SW-MDA) that uses a weighting strategy to evaluate each source’s
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relevance. 2SW-MDA accounts for marginal and conditional probability dis-
tribution gaps between source and target domains. A target model is gen-
erated using weighted source samples and the labeled target data. Methods
based on features seek to minimize the divergence in marginal distributions
between domains. A framework for dimensionality reduction that maps data
into a latent space for domain adaptation is proposed in [85]. These meth-
ods employ unsupervised and semi-supervised feature extraction techniques
to bridge domain distribution differences.

Parameter-based strategies facilitate knowledge transfer by leveraging
shared model parameters across several source domains to construct a more
effective model for the target domain. In [84], an alternative multi-source do-
main adaptation framework (CP-MDA) is introduced, which uses a weighted
approach to correct conditional probability distribution gaps between the
domains. This framework can combine models from several source domains
to label the unlabeled target data, to subsequently build a better target
model that contains the newly labeled and the pre-existing labeled target
samples. [86] comes up with the idea of a bellwether domain, which acts as
the most efficient predictive source for all other domains and enables knowl-
edge transfer through a quality predictor constructed using data from the
bellwether domain. In [87], the authors build a theoretical framework on pa-
rameter transfer for linear regression models. The results show that transfer
effectiveness for a new input vector depends on its eigenbasis representation
with respect to the model parameters. In addition, they propose a statistical
test to assess whether a tuned model has a lower quadratic prediction risk
than a base target model for a given input.

TL which relies on relations focuses on capturing structural relations be-
tween the source and target domains for knowledge transfer. In [88], the au-
thors propose a language-bias-based transfer learning algorithm (LTL) that
permits cross-domain transfer. LTL transfers logical rules by detecting pred-
icates in the source domain that have relational counterparts in the target
domain. The transferred rules are refined using theory refinement meth-
ods. In [89], an instance-based and a parameter-based transfer approach
is blended in a single model. The adaptive transfer Gaussian process (AT-
GP) model uses a transfer kernel that quantifies the resemblance of different
tasks by modeling the correlation of function outputs (labels) across tasks.
Depending on the task similarity, AT-GP shares parameters within the ker-
nel function together with relevant data from the source task to the target
task.
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4.2.2 Transfer Learning in Edge Computing

Recently, there has been a focus on applying TL in EC. Hypothesis TL at-
tempts to explain the trade-off between accuracy and network traffic in [90],
where patterns are drawn from data produced by distributed devices. A
privacy-preserving, TL-enabled, CNN framework for 5G industrial edge net-
works is proposed in [91]. The paper defines a joint energy and latency
optimization problem. The authors solve it through a decomposition ap-
proach, which breaks the problem into an uploading decision sub-problem
and a wireless bandwidth allocation sub-problem. A TL-based EC frame-
work for home health monitoring is developed in [92]. This approach uses
a pretrained CNN that is subsequently transferred to edge devices by per-
forming fine-tuning with few labeled samples. The authors in [93] present
FT-IoMT Health, a gradient reduction federated random variance algorithm
designed to improve communication in mobile EC contexts. This system al-
lows for the confidential aggregation of data across multiple domains with the
use of privacy guarantees. In addition, TL is applied to reduce the negative
impact of different detection methods on performance.

An automated classification system for date fruits utilizing DL techniques
is proposed in [94], where pretrained models are adapted to improve the clas-
sification precision. The work in [95] provides a proactive caching strategy
(LECC) for reducing transmission expenditure. Content popularity is esti-
mated using TL, and the estimate is used to formulate and solve the proac-
tive caching optimization problem. In [96], grouped TL is described as a
non-linear mixed-integer programming problem with the objective of mini-
mizing costs over an extended period. [97] describes a collaborative multi-
object tracking system that uses TL at the edge. In addition, [98] describes
Cartel, a system meant for collaborative learning in edge clouds. Cartel per-
forms adaptive model sharing among edge nodes to enable rapid responses to
changes in expected statistical value characteristics. For efficient TL, Car-
tel uses metadata-based techniques that minimize the need for large data
transfers between edge nodes.

4.2.3 Existing literature gap

Despite the increasing research on TL, particularly its applications in EC,
current literature predominantly addresses theoretical frameworks and broad
categorizations such as instance-based, feature-based, parameter-based, and
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relational-based approaches. However, these studies often overlook the prac-
tical challenges associated with dynamically changing environments, typical
of EC. There is a lack of comprehensive mechanisms to effectively handle the
uncertainty and variability in data distributions across edge devices. More-
over, existing methods largely depend on external datasets with potentially
different statistical distributions, leading to sub-optimal model performance
when applied to edge environments. The need for robust methodologies that
can detect and leverage similar statistical distributions in real-time to opti-
mize TL processes remains insufficiently explored.

4.3 Problem Statement

Building on the formulations in Section 1.6, each input data vector x (inde-
pendent variable) is associated with an output label y (dependent variable).
Each edge node n; randomly selects a sample of M data vectors and computes
their mean vector m; and variance vector v; at different epochs. If a notable
deviation is detected between the distributions of the local dataset and an
incoming data batch (which is then incorporated into the dataset), the values
of m; and v; are updated. The mean vector m; has d dimensions and consists
of the mean value for each feature: m; = (m;,, my,, ..., m;,). Similarly, the
variance vector v; has d dimensions, containing the variance values for each
feature: v; = (v;y,v4,,...,v;,). Each node transmits its mean and variance
vectors to its peers whenever there is an update in the dataset information.
Upon receiving a new data batch, the node n; computes the mean (mb ),
variance (vb ) vectors from a randomly selected subset of M data vectors
from the batch. Consequently, we obtain mean/variance vectors for both the
existing dataset and the new data batch. The vector mb contains the mean
value for each feature: mb = (mby, mby, ..., mby). Similarly, the variance
vector vb includes the variance values: vb = (vby,vbs, ..., vby). Figure 16
illustrates this process visually.

In specific instances, there may be a point in time after which new data
batches cannot be obtained or are too costly. For instance, consider a health-
care institution that wants to sort patients form different hospitals according
to how likely they are to develop a certain illness. Medical experts have
to provide data labels, however, once a reasonable sized labeled dataset is
gathered, the organization can use a trained model to predict labels for new
patient records that need attention. Another case comes into play when data
with labels is not plentiful, or is completely absent. Take the case of a dataset

75



Figure 16: Fundamental components of this setting

with traffic patterns for different cities where the label of interest is whether
there is blockage during certain times of the day. Assume that New York’s
dataset is completely labeled, and Paris’ dataset has only a few labeled sam-
ples. Training a model on Paris data would not be helpful, instead it would
be better to label the Paris dataset for use with a model trained on New
York data because traffic patterns across cities are similar.

However, a critical factor to consider is whether the incoming data batch
shares a similar probability distribution with the node’s dataset. If their dis-
tributions differ significantly, labeling the new batch using the local trained
model would likely result in poor accuracy. A more effective strategy would
be to use a model from another node that has a dataset with a similar prob-
ability distribution to the incoming data batch. After labeling, the model
can be retrained with the newly incorporated data, making it more robust to
a wider range of inputs. Conversely, if the new data batch follows a similar
probability distribution as the node’s dataset, local labeling can be performed
without retraining the model. Since data originating from the same distri-
bution has minimal impact on further improving the model, retraining may
not be necessary.

The core challenge addressed in this study is to determine when to transfer
knowledge (i.e., when to exchange models) and from which peer node to
fetch the knowledge (i.e., selecting the most suitable peer). Consequently,
it is essential to quantify the similarity (or dissimilarity) between different
datasets, as well as between a dataset and a newly received data batch.
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In this effort, domain adaptation is not considered, and its exploration is
left for future research. To support our approach, we make the following
assumptions:

e The samples drawn from both datasets and incoming data batches are
assumed to be independent.

e Every feature in the input vectors (x) is drawn from a continuous prob-
ability distribution.

e Every data batch contains a finite set of (M) input vectors.

e All datasets share the same feature space.

4.4 Uncertainty-Driven Transfer Learning Mechanism

In this section, we outline the mechanisms for TL in an EC environment. Our
objective is to establish a method for evaluating multi-dimensional distribution-
based similarity and dissimilarity between two datasets or between a dataset
and an incoming data batch. Each dimension of the input vectors within a
dataset or data batch is assumed to follow a distinct probability distribu-
tion. The true parameters of the population distribution from which dataset
samples originate are typically unknown and cannot be directly measured.
However, if a dataset contains a sufficiently large historical record, its mean
and variance can be estimated to approximate the underlying distribution.
Each sample is considered a random draw from this distribution. Given a
lower-bound sample size, the Central Limit Theorem allows for the use of ap-
proximate Z-tests [99], F-tests [100], or the Kolmogorov-Smirnov test [101]
to assess distributional similarities and differences across each dimension of
a dataset and a data batch, or between two datasets.

Z-tests and F-tests are applied due to their computational efficiency, as
they rely only on mean and variance vectors. The Kolmogorov-Smirnov test,
on the other hand, requires two data samples from the entities being com-
pared and in scenarios where datasets from peer nodes must be analyzed, a
sample must be transmitted to the local node for comparison. Despite this
necessity, the Kolmogorov-Smirnov test remains computationally lightweight
compared to full dataset comparison methods. To further optimize the pro-
cess, we first apply Z- and F-tests to detect significant distributional differ-
ences, thereby minimizing unnecessary data exchanges. The cost associated
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with manually labeling a dataset or a portion of data grows proportionately
to its size, while the workload on each edge node varies as tasks are completed
or newly allocated. To address these ambiguities, we apply fuzzy logic along
with distribution-based similarity measures in an effort to minimize labeling
costs as well as system-wide computing ones.

4.4.1 Similarity Based on Multidimensional Distributions

The Kolmogorov-Smirnov two-sample test (K-S two-sample test) is a non
parametric statistical test that evaluates whether two independent one-dimensional
probability distributions differ significantly [101]. We apply this test to de-
termine if an incoming data batch follows a distribution similar to a node’s
dataset or if two datasets exhibit comparable statistical properties. To per-
form this analysis, a random sampling process is conducted whenever two
datasets or a dataset and a data batch need to be compared. From each
entity, we extract a subset of M data vectors. Each dimension of these
sampled vectors is treated as an independent random variable, denoted as
(P, Ps, ..., Py) for the first sample P and (Qq,Qs2,...,Q4) for the second
sample ). The Cumulative Distribution Function (CDF) of a random vari-

able V; is defined as:

F(a) = P(V; < a), (22)

which represents the probability that V; takes a value less than or equal to
a. Since the true distribution is unknown, we approximate it using empirical
distributions. The empirical CDF for a sample of size M is given by:

Furfe) = 52 IV < ), (23)

where (Vi, Vs, ..., Vyy) represent the sampled data points. To quantify
distributional similarity across all dimensions, we compare the empirical
CDFs of the two samples, F}, and F%;, using the Kolmogorov-Smirnov test
statistic S; ar:

Sin = max |Far(9) — F(9)] (24)

where g belongs to the set of all observed values, i.e., g € {P;

{QiNQiW"'?QiM}’ Wlth Z = 1,...,d.

1’P7:27"'7P'L']M}U
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Definition 7. A dataset and a data batch are considered to share a simi-
lar distribution along the i-th dimension if the Kolmogorov-Smirnov statistic
satisfies the condition S; v > B, where B is a predefined threshold.

To generalize this assessment across multiple dimensions, we aggregate
the results from all dimensions into a similarity function.

Definition 8. The overall multidimensional similarity between two datasets,
P and Q, is computed as:

d
sim(P,Q) = &= 1O 2 0),

where d represents the total number of dimensions.

(25)

The proposed similarity function adheres to the following fundamental
properties:

e Reflexivity: sim(P,P) =1
e RSymmetry: sim(P,Q) = sim(Q, P)
e RBoundedness: 0 < sim(P,Q) <1

Definition 9. If the computed multidimensional similarity sim(P, Q) meets
or exceeds a predefined threshold v, then the two datasets are considered to
originate from similar distributions, i.e., sim(P,Q) > 7.

4.4.2 Dissimilarity Based on Multidimensional Distributions

In scenarios where an incoming data batch exhibits a distribution distinct
from the dataset residing at the node, or when comparing datasets from
different nodes, performing Kolmogorov-Smirnov tests between a local node
and all peers can lead to excessive latency. This is because transferring N —1
data samples to the local node incurs significant communication overhead. To
mitigate this issue, we leverage the mean and variance vectors of peer nodes,
which are already stored at the local node. Instead of transferring entire data
samples, we conduct Z-tests to compare mean values and F-tests to assess
variance differences between the local node and its peers. These statistical
tests form the basis of a dissimilarity function that aids in identifying nodes
with significantly different distributions.
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Definition 10. Given two samples P and @), characterized by mean vectors
mp and mq, variance vectors vp and vq, and a sample size M , the Z-statistic
for each dimension is computed as:

mp; — mg; 1
\/m’ t=5
M M

The null hypothesis Hy states: ”There is no significant difference in the
mean values for the i-th dimension,” while the alternative hypothesis H;
asserts: ”A difference exists in the mean values for the ¢-th dimension.”
The statistical significance level p is determined based on the application’s
tolerance for error. From this value, we derive the corresponding critical value
Zscore- 1f the computed Z-statistic exceeds zgeore, We accept the alternative
hypothesis. Otherwise, we do not reject the null hypothesis due to insufficient
evidence.

2(i) = d (26)

Definition 11. Given two samples P and ) with variance vectors vp and
vq, respectively, and sample size M, the F-statistic for each dimension is
computed as:

. vp; .
= =1,...,d 27
@)= =1 (27)

The null hypothesis Hy states: ”There is no significant difference in the
variance values for the i-th dimension,” whereas the alternative hypothesis
H, claims: 7 A significant variance difference exists for the i-th dimension.”
The significance level p is used to determine the critical value fs. . If the
computed F-statistic exceeds fs.ore, We accept the alternative hypothesis.
Otherwise, the null hypothesis remains inconclusive due to insufficient evi-
dence.

Definition 12. Considering the computed Z- and F-statistics for all dimen-
sions of two samples, along with their respective critical values at significance
level p, the multidimensional distribution-based dissimilarity is formulated as:

d . .
dissiM(P, Q) = Zi:l ]I(Z(Z) - Zsczlre v f(Z) > fscore)

This dissimilarity function satisfies the following properties:

(28)

e Reflexivity: dissim(P, P) =0
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Figure 17: Fuzzy membership functions representing the input variables: cost
(a) and similarity (b)

e Symmetry: dissim(P,Q) = dissim(Q, P)
e Boundedness: 0 < dissim(P,Q) <1

Definition 13. Given the computed dissimilarity measure dissim(P, Q) and
a predefined threshold 7y, the two datasets are considered to have significantly
different distributions if:

dissim(P,Q) > 1—~ (29)

4.4.3 Fuzzy Technique for Labeling and Training

For each incoming data batch containing unlabeled instances, incurs a la-
beling cost if human experts are required. According to above calculations,
the data batch exhibits a similarity degree, ranging from 0 to 1, with the
local node’s dataset. In cases where a dataset primarily consists of unlabeled
data, the similarity is assigned a value of zero, and the corresponding hu-
man expert labeling cost remains applicable. To mitigate this cost, we can
leverage a model trained on a similar dataset available at a peer node. To de-
termine the labeling approach, we introduce a fuzzy logic-based mechanism
that takes into account two parameters: labeling cost and similarity (input
variables). The linguistic values (fuzzy sets) for both cost and similarity are
categorized as (low, medium, high). These input values influence the final
decision-making process. The membership function for each fuzzy set value
is trapezoidal and is illustrated in Figure 17.

81



human peer local

i

<
<SS
08 SEEC

o
o

o
o

0.6

o
IS

0.4

Degree of membership
=]
N

o

0.5

degree of the labeling capability(DLC)

0 0.2 0.4 0.6 0.8 1 05

degree of the labeling capability(DLC) similarity(s) 0 o cost(c)
(a) (b)

Figure 18: Fuzzy membership functions representing the output variable
DLC (a) and the inferred DLC score (b) based on the input variables

The output variable, termed Degree of Labeling Capability (DLC), deter-
mines the optimal method for labeling the unlabeled data (human expert,
local model, or peer model). When the labeling cost is low and similarity is
low /medium, a human expert performs the labeling to ensure high accuracy
at minimal cost. If similarity is high, labeling is conducted using the local
model, achieving acceptable accuracy without incurring labeling costs. Fi-
nally, when the labeling cost is medium/high and similarity is low/medium,
the peer model is used to balance accuracy and cost efficiency, considering
that optimal accuracy cannot be attained at a low cost. For defuzzification,
we employ the centroid method, which extracts a single numerical value from
the aggregated fuzzy set, converting the fuzzy inference results into a precise
decision. Based on this value and the DLC membership function, the opti-
mal labeling strategy is determined. The membership function is depicted in
Figure 18.

The fuzzy rules used to infer DLC are outlined in Table 2.

Another critical point of attention is the integration of the labeled data
batch into the local dataset. If a data batch has a significantly different
distribution from the local dataset, the model must be retrained upon its
incorporation. Additionally, when a dataset containing predominantly unla-
beled data is labeled, a new model must be trained. However, if the local
node is already handling a high computational load, immediate training may
lead to system failures or increased response times. In such cases, postponing
training and delaying the integration of the data batch into the dataset is
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Table 2: Set of fuzzy logic rules used to determine the output variable DLC,
based on input variables cost and similarity

H Rule ¢ (cost) s (similarity) DLC (Degree of Labeling Capability) H

1 low low human
2 low medium human
3 low high local
4 medium low peer
5 medium medium peer
6 medium high local
7 high low peer
8 high medium peer
9 high high local
L[ tow medium high L[ ow medium high
%L 0.8 cf 0.8
% 0.6 % 0.6
= =
§ 0.4 ; 0.4
E’O.Z &E;O.Z
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
load(l) similarity(s)
(a) (b)

Figure 19: Fuzzy membership functions representing the input variables:
load(a) and similarity (b)

preferable. To regulate the training process, we introduce a second fuzzy
logic-based mechanism, which considers two input parameters: computa-
tional load and similarity. The linguistic values (fuzzy sets) for both input
variables are categorized as (low, medium, high). The membership functions
for these fuzzy sets are trapezoidal, as defined in Figure 19.

The output variable, termed Degree of Ability to Train (DAT), determines
whether the data batch should be integrated into the dataset and whether
the model should be retrained. When computational load is low/medium and
similarity is low/medium, the data batch is incorporated into the dataset,
and the model is retrained, as significant distribution differences exist and the
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local node can handle the additional load. When similarity is high, the data
batch is saved in the dataset, but retraining is skipped, as the distribution
differences are minimal. Conversely, if the computational load is high and
similarity is low/medium, the data batch is neither saved in the dataset nor
used for retraining, as the node cannot manage the additional processing at
that moment. The centroid method is used for defuzzification, extracting
a single numerical value from the aggregated fuzzy set and converting the
fuzzy inference results into a precise decision. Based on this value and the
DAT membership function, the optimal training strategy is determined. The
membership function is depicted in Figure 20.

The fuzzy rules used to infer DAT are outlined in Table 3.

The proposed fuzzy logic mechanisms govern both the labeling process
for incoming data batches and the subsequent training process following data
labeling.

4.4.4 Mechanism for Transfer Learning

To better explain the integration processes of the previous three subsections
into a coherent whole, a diagram has been constructed in Figure 21 that
shows their interelationships and interactions. Algorithm 4 describes the
provided mechanism for TL, which deals with the best approach for the la-
beling and training activities. In cases where datasets are entirely unlabeled,
the similarity is set to zero. For incoming data batches that lack labels,
we perform a Kolmogorov-Smirnov test to compute their similarity. Subse-
quently, the first fuzzy mechanism is triggered to determine the most suitable
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Table 3: Set of fuzzy logic rules used to determine the output variable DAT,
based on input variables load and similarity

H Rule [ (load) s (similarity) DAT (Degree of Ability to Train) H

1 low low save/train

2 low medium save/train

3 low high save/no train
4 medium low save/train

5  medium medium save/train

6  medium high save/no train
7 high low no save/no train
8 high medium no save/no train
9 high high save/no train

labeling approach based on cost and similarity. If the outcome suggests label-
ing by a peer node, we conduct Z-tests and F-tests to compute dissimilarity
between the dataset or data batch in the local node and datasets from peer
nodes. Nodes with significant distribution differences are excluded. For the
remaining nodes, Kolmogorov-Smirnov tests are conducted to assess simi-
larity. The peer node with the first acceptable similarity score is selected
(to minimize computation), and its model is used for labeling the unlabeled
dataset or data batch. Algorithm 5 is a function invoked within Algorithm 4.
In particular, using the calculated similarity and the local node’s workload,
the second fuzzy mechanism is activated to determine the optimal training
strategy for the model in the local node.

4.5 Experiments and Results
4.5.1 Setup and Performance Metrics

We simulate an EC environment consisting of ten nodes using Python. To
evaluate the performance of our TL mechanism, we conduct a series of ex-
periments using three key performance metrics in comparison with a baseline
approach that does not utilize TL. We start with tackling how well our ap-
proach is achieving labeling accuracy as a percentage, pla. It quantifies the
effectiveness in labeling datasets, or a batch of data that was previously unla-
beled. When the pla value is close to 100, the model succeeds in labeling the
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Algorithm 4 Transfer Learning Mechanism

Input: N, d, beta, gamma
Output: labeling of the unlabeled data-batches, datasets and training of
the models.
for every unlabeled data-batch/dataset do
if data-batch then
input labeling cost
sample M vectors from the data-batch(P) and local dataset(Q)
calculate mp, vp, mq, vq vectors
fori=1,...,ddo
calculate S; yr based on (1)
end for
calculate sim(P, Q) based on (2)
else if dataset then
sample M vectors from the dataset(P)

sim(P,Q) =0
input labeling cost
end if

FuzzyLogicSystem1(cost, similarity)
if DLC< DLC}yman then
label by human expert
end if
if DLCS DLOlocal then
label with local model
end if
if DLC< DLC).., then
for every peer node do
for i=1,....d do
calculate z(i), f(i) based on (3), (4)
end for
calculate dissim(P, Q) based on (5)
if dissim(P,Q) > 1—~ then
prune away the peer node
end if
end for
for the remaining nodes do
input sample of M vectors (Q)
fori=1,...,d do
calculate S; )y based on (1)
end for 86
calculate sim(P, Q) based on (2)
if sim(P, Q) >~ then
break
end if
end for
input load



Figure 21: Diagram depicting the TL Mechanism

data. On the other hand, if pla is nearing 0, that signifies failure to label the
data. Next we consider the percentage of cost saving (pcs) which indicates
how well our mechanism is able to minimize labeling costs. pcs is a ratio
of the total cost after TL is applied, to the initial cost without TL. With
TL, if the pcs is 100, costs are completely minimized, whereas, if it is 0, it
means no cost savings were achieved. We then analyze the percentage of load
saving (pls) which has similar meaning as the savings in computational load.
Like the previous case, pls is defined as a ratio of the final computational
load to the initial computational load. If pls is 100, it means that the the
computational load is fully optimized, whereas, if it is 0, there are no savings
in terms of computational load.

The experiments are carried out using three synthetic datasets generated
via Python with a fixed random seed to ensure reproducibility. Each dataset
consists of six continuous input features and a binary output feature (0 or 1).
Each input feature follows a unique Gaussian distribution, and the output
feature is derived from the input values. The mean and variance parameters
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Algorithm 5 Fuzzy-Based Training Decision Function

Input: load, similarity
Output: Decision on training of the models and incorporation of the new
data.
FuzzyLogicSystem2(load, similarity)
if DLC< DLCsqve/train then
save the new data and train the model
end if
if DLC< DLCsqve/notrain then
save the new data and don’t train the model
end if
if DLC< DLC)os0ve/notrain then
don’t save the new data and don’t train the model

end if

of these distributions are set to ensure significant statistical differences be-
tween the datasets. These synthetic datasets are then divided among edge
nodes and used to generate data batches. Each node’s dataset and all data
batches originate from a single original dataset. The ML model employed
in each node is Logistic Regression, where the hyperparameter ’solver’ was
set to liblinear. The remaining hyperparameters such as penalty, max_iter,
etc. are kept at their default values, i.e., L2 penalty with a weighting of
coefficients set to 1.0, 100 respectively . In this setting, three out of the
ten datasets within the edge system are left unlabeled, with each of these
datasets being a subset of one of the original synthetic source datasets. The
unlabeled data batches are randomly assigned throughout the system. Our
mechanism is evaluated based on its ability to correctly identify the most
appropriate source for TL when needed. Additionally, we assess the overall
impact of our mechanism in reducing both labeling costs and computational
load within the system.

We extend our evaluation by comparing our approach with Direct In-
ductive Transfer Learning (DITL) [102], a model that employs importance-
weighted TL for regression under dataset shift. DITL assigns weights to
instances from the source data to improve predictions for the target dataset,
requiring entire datasets to be exchanged for training. In contrast, our Dis-
tribution Based Transfer Learning (DBTL) mechanism only requires a small
sample exchange for TL. Another key distinction is that in DITL, the source
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and target datasets must be predefined, whereas DBTL autonomously iden-
tifies the most appropriate dataset for TL based on statistical distribution
analysis. Additionally, DITL necessitates training a new model, while DBTL
leverages an already trained model. We compare these models based on their
ability to correctly label/classify the three unlabeled datasets in the system,
excluding data batches. Performance is evaluated using standard classifica-
tion metrics, including accuracy, precision, recall, and F1-score. Finally, we
conduct a case study to compare our model with the approach presented
in [103], which leverages knowledge transfer from synthetic data to minimize
the need for real data. Since no specific denomination is given, we will denote
this model as DBO (Detecting Building Occupancy), based on the title of
the referenced paper.

Case Study: The Ministry of Civil Protection aims to predict occupancy
levels in four buildings (A, B, C, D) to facilitate timely responses in the event
of an earthquake. Buildings A and B have a capacity of 200 occupants, while
Buildings C and D can accommodate up to 600 occupants. Sensor data,
including temperature, humidity, and CO2 levels, are collected over time in
each building. Buildings A and C are equipped with occupancy sensors to
track human presence, whereas Buildings B and D lack such sensors. Each
building collects its sensor data through an edge node and can train predic-
tive models. The trained models from Buildings A and C, where occupancy
data are available, could be utilized for TL to estimate occupancy levels in
Buildings B and D, provided that their statistical distributions are similar.
The datasets representing sensor data from all four buildings are generated
using Energy+, without any preprocessing. We analyze the performance of
our method in contrast to the DBO model with regard to occupancy estima-
tion for Buildings B and D. Data batches, as in the previous experiment, are
ignored. The evaluation is performed using the Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) metrics typical for regression anal-
ysis. The predictive model employed is Support Vector Regression (SVR).
Two SVR models are trained using data from Buildings A and C (where
occupancy information is provided). Furthermore, to comply with the DBO
model, datasets are merged by combining data for one week from Building C
with Building A and the other way around. This enables the training of two
SVR models using the DBO approach which incorporates data from various
sources.

89



(a) B=0.4/y=0.4 (b) p=0.4fy=04

50 50 100
Number of data-batches Number of data-batches

100 (c) p=0.4/y=0.4

10 100

50
Number of data-batches

Figure 22: Assessment of pla, pcs, pls (8 = 0.4,y = 0.4)

4.5.2 Performance Evaluation

The following Figures present experimental results for different values of the
similarity thresholds. In Figures 22, 23, 24 we observe that the proposed
mechanism attains higher pla when g = 0.8,y = 0.8. This suggests that in-
creasing the similarity thresholds positively impacts pla. In contrast, pcs and
pls appear largely unaffected by the increase in the aforementioned thresh-
olds. Across all scenarios, our method consistently achieves pla between 71%
and 95%, pcs between 85% and 94% and pls between 50% and 57%. When
v, 3 are set to low values we observe lower values in accuracy. This is due
to the fact that the mechanism may select the first dataset with minimal
acceptable similarity to transfer knowledge from, which could lead to knowl-
edge transfer from a less suitable source. On the other hand, cost saving and
load saving remain stable regardless of the threshold values. The labeling
cost is zero whenever a dataset or a data batch are labeled by the model in
the local node or the model of a peer node, regardless of the accuracy. In
the second case every time a data-batch is being saved without re-training
the model, the additional load is zero.

Table 4 presents a comparison between the performance of the proposed
methodology on data-batches and on full datasets, considering the accuracy
(%) metric (pla).
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Table 4: Accuracy (%) comparison between the proposed approach applied
to data-batches and its performance on full datasets

Threshold 3 datasets 10 data 50 data 100 data

values batches batches batches
(B=~=04) 80 71 81 83
(B=~=0.6) 80 71 81 83
(B=~=0.23) 96.5 95 95 95

Table 5: Evaluation of DITL and DBTL across different 3, v threshold values,
focusing on their ability to accurately label/classify unlabeled datasets

Metric DITL DBTL DBTL DBTL
(B=7=04) (B=7=06) (8=7=08)
Accuracy(%) 51 65 95 95
Precision(%) 67 67 100 100
Recall(%) 35 48 90 90
F1 score(%) 46 55 95 95

Table 5 reports the outcomes of the DITL versus DBTL comparison for
different values of the similarity thresholds. Across all scenarios the proposed
approach (DBTL) consistently outperforms DITL. As previously noticed, low
values of 7, 5 lead to lower values in all metrics. Once again, this is due to the
fact that the mechanism may select the first dataset with minimal acceptable
similarity to transfer knowledge from, which could lead to knowledge transfer
from a less suitable source. DBTL proves advantageous and in real setups
where datasets with similar distribution are distributed among various nodes
of the system.

Table 6 presents the comparison between DBO and DBTL considering
building B for different values of the similarity thresholds, while Table 7
shows the corresponding results for building D. In all cases DBTL consistently
outperforms DBO. As noted and interpreted previously, low values of v, 3
lead to lower values in all metrics.
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Table 6: Evaluation of DBO and DBTL across different [3,~ threshold val-
ues, focusing on their ability to accurately label /predict unlabeled datasets
(Building B)

Metric ~ DBO DBTL DBTL
(1 week) (B=7v=0.3) (B=~v=0.6)
RMSE  204.37 182.11 162.51
MAE  200.73 178.01 157.90
Table 7: Evaluation of DBO and DBTL across different 3,~ thresh-

old values, focusing on their ability to accurately label/predict unlabeled

datasets(Building D)

Metric DBO DBTL DBTL

(1 week) (B=~v=03) (8=v=0.6)
RMSE  190.37 152.45 151.54
MAE 180.47 125.30 120.10

4.6 Summary and Key Findings

In this section, we explored an uncertainty-driven TL framework that was
considered in order to tackle the unique challenges presented by heteroge-
neous edge environments. The fuzzy mechanism for labeling and distribution-
based similarity detection improved the efficiency of model reuse across dif-
ferent edge devices. Outcomes include:

e Faster adaption to different edge devices: Pre-trained models
are adapted with less effort across different tasks and hence, extensive
multi-task retraining is not required.

e Managing diverse as well as complex data: The framework
ensured the transfer of knowledge even in the presence of complex data
sources by using multi-dimensional similarity based on distribution.

e Less computation and communication: The TL mechanism is
well suited for resource constrained edge devices.
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5 Task Management

5.1 Context and Motivation

Effective task management is a cornerstone part of distributed IoT and EC
systems. A method for allocating tasks to nodes is considered optimal if it
results in the best usage of the resources and meets the deadlines with the
lowest amount of latency. Unfortunately, the ever changing IoT, EC envi-
ronments’ data sources and network conditions, combined with the limited
resources, increases the difficulty of solving this particular problem. With the
scaling of these systems, adaptive task management becomes increasingly im-
portant. Existing efforts in task management ignore data and concept drift,
leading to sub-optimal resource usage and increased task failures. This effort
aims to address this problem by developing an adaptive drift-driven mecha-
nism that responds swiftly to changes in data and system conditions. Thus,
enhancing system performance and resilience, providing a solution to the
growing complexity task management problem in distributed systems.

5.2 Related Work

Out of the many challenges IoT and EC systems face, task management is
arguably one of the most challenging ones. There has been some work related
to task management in the context of Cloud systems [104-107]. However,
there seems to be a recent focus [108-116] on moving away from central-
ized task management and towards a more decentralized approach where the
management is handled at the edge infrastructure level. Doing this would
enable data to be processed at a closer distance, thus lowering the response
time. Given the limited computing power of edge devices, resource allocation
strategies have to be very effective in order to maintain a reasonable level
of service. [117] presents a full analysis of task management algorithms for
Cloud and IoT infrastructures.

5.2.1 Static versus Dynamic Management

The methods of task management, in general, can be divided into two cat-
egories: static and dynamic strategies. Static task management [106], [118—
120] works exclusively with prior knowledge of the state of the system, ig-
noring the real-time status of the nodes within the network. Over time, as
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data keeps accumulating, the statistical characteristics of each node change
and, thus, the state of the system changes. Conversely, dynamic manage-
ment [104], [111], [113], [114], [121-123] follows the current state of the sys-
tem and, therefore, makes changes to task scheduling in real time. Dynamic
management can be further subdivided into online mode, where tasks are
processed upon arrival, and batch mode, in which tasks have to be accumu-
lated within some predefined time period before they are acted upon [124].

5.2.2 Scheduling Algorithms and Optimization Models

In IoT and EC context, nodes work in extremely flexible conditions with
unbalanced availabilities of resources and require constant status updates.
To provide a near real-time response to an incoming task, the available re-
sources of the target node need to be evaluated with high precision prior to
the scheduling decision [116]. In order to achieve a balance between a range
of different metrics which include task completion time, energy consump-
tion, and load balancing, multi-objective optimization models are utilized to
improve the overall scheduling efficiency.

5.2.3 Heuristic and Proactive Task Allocation

A three-stage heuristic approach for task allocation combined with an Inte-
ger Linear Programming (ILP) model is proposed in [125]. A task allocation
management approach based on a genetic algorithm is introduced in [126],
which attempts to optimize accuracy, energy consumption, and overall effi-
ciency. The use of micro-data centers and intelligent gateways has been inves-
tigated to improve the efficiency of task allocation further in [127]. [128] uses
a swarm based optimization approach for efficient task scheduling. In [129],
a proactive task allocation framework is presented with a decision-making
model to determine the optimal node assigned to each task. This framework
employs unsupervised ML methods for local decision-making. Also, [130] pro-
vides a demand-driven task management model where a Long Short-Term
Memory (LSTM) network is used to study task demand distribution and
forecast workload trends.

5.2.4 Smart Gateways and Micro-Data Centers

Smart gateways and micro-data centers greatly improve the efficiency of task
management [127]. In [128], an optimization strategy based on swarm intel-
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ligence is deployed to increase management efficiency. As explained in [131],
user-defined tasks are subject to pre-processing at the gateway node, before
tasks are divided into spatial and temporal sub-tasks. Those sub-tasks are ei-
ther allocated to appropriate nodes or collectively processed by several nodes
to improve system performance. A task allocation strategy, ETSI [131], has
been introduced to assign tasks to the most relevant nodes in order to opti-
mize execution workflows.

5.2.5 Existing literature gap

Even with new improvements in task management as well as scheduling al-
gorithms, the available literature neglects to focus on the consequences of
data and concept drift for automation execution in both static and dynamic
management models. And, while models focus on optimization resources
alongside execution time, energy usage, and load balancing, they fail to con-
sider the ever changing set of data and the structural changes to its statistical
properties over time that lead to sub-optimal task allocation and increased
failure rates. Furthermore, insufficient amount of attention is dedicated to
the correlation between tasks, which is vital for proper resource allocation and
efficient scheduling. Considerable attention should be given to the design of
adaptive mechanisms capable of responding to data and concept drift, while
incorporating tasks correlation so that task scheduling is done efficiently and
effectively in highly dynamic resource constrained environments like EC.

5.3 Problem Statement

Expanding on the previous formulations in Section 1.6, each node continu-
ously acquires data from its connected IoT devices. The node n; acts as a
data aggregator, collecting and processing incoming information for further
analysis. The reporting interval (¢d) is determined by the application’s re-
quirements. For time-sensitive applications, frequent updates may be neces-
sary, although excessive reporting can significantly deplete the energy of IoT
devices. At every reporting instance, n; computes statistical aggregates such
as the mean and variance for each feature within the incoming data. Conse-
quently, each node maintains statistical records as two lists, m; and v;, where
each entry corresponds to a specific reporting period. These lists continuously
expand as new data arrive. The statistical aggregates for reporting period
j are represented as Mm;; = (mijl, Mijoy - - - ,mijd), Vij = (Uij17vij27 e 7Uijd) s
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where m;; is a d-dimensional vector storing mean values and v;; contains vari-
ance values for each feature. For simplicity, the subscript i, which indicates
the dataset index, is omitted in the subsequent description.

Each node is responsible for handling a queue ¢; of computational tasks,
where the queue length is denoted as [g;. These tasks may involve opera-
tions such as data filtering, time-series analysis, and training or inference
of ML models. Given that edge devices have limited processing capabilities
compared to the Cloud infrastructure, it is crucial to manage workloads ef-
fectively to avoid system overload. Additionally, minimizing response time is
critical to ensure efficient task execution. Each node is assigned a processing
capacity P, while each task has a computational size sz (521,522, ..., S2;)-
The cumulative size of all tasks currently allocated to a node, referred to
as the node task size (nts;), quantifies the computational workload. Typical
tasks include:

e Analyzing time-series data to identify patterns and trends in wind
speed fluctuations.

e ML model inference using pre-trained DL models on newly received
data.

Definition 14. For a node n;, its computational load is defined as:

nts;
ld; = L
i=p (30)

Definition 15. A task t, with size szs can be assigned to a node n; if:

nts; + sz

P = ¢, (31)

, where ( represents a predefined threshold for load balancing.

In an IoT-EC setting, data distributions constantly evolve due to envi-
ronmental factors and changes in user behavior. This causes fluctuations in
the data collected by edge devices. Some examples include:

e Data drift: A humidity sensor registering variations in measurements
throughout the day due to temperature changes.

e Concept drift: An ML model in a surveillance system showing re-
duced accuracy as a result of changing lighting conditions.
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Such drifts affect data reliability, necessitating adaptive task scheduling
strategies to maintain performance. To address these issues, the system may:

e Transfer tasks to a peer node with a dataset exhibiting similar distri-
bution characteristics when compared to the local node.

e Retrain ML models to adjust to evolving data patterns.

e Postpone ML inference tasks until retraining is completed, particularly
in cases of concept drift.

The proposed approach operates under the following assumptions:

e FEach node n; independently handles task execution and workload dis-
tribution.

e Tasks are scheduled without preemptive prioritization.
e Tasks operate independently without dependencies.

e Execution times vary based on the application and processing require-
ments.

5.4 Adaptive Task Management Approach

This section details our methodology on how to detect data related drifts in
the EC environment as well as how to find peer nodes with similar dataset
distributions. Also, we propose a task management mechanism that decides
to suspend, offload, or update/retrain ML models based on detected drifts,
dataset resemblance, and resource availability.

5.4.1 Data Drift

Data drift [132] is the process of data gradually altering in terms of statistical
attributes, or distribution over a time. This is very common with sensor
data and datasets used to train ML models. Drifting data can be extremely
harmful to tasks’ execution as well as the performance of applications on
the edge. If not addressed, this will lead to lower accuracy of ML models
and higher latencies in executing data processing tasks. For this reason, it is
important to detect data drift as soon as possible and act accordingly.
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To detect deviations in data behavior, statistical methods examine dis-
tribution properties and evolving patterns. Such methods are particularly
effective for the observation of modifications in historical and live streaming
data. The sliding window method [133] is a commonly used approach for
drift detection, which is based on the changes in the mean and variance of
a dataset. This method continuously tracks the statistical aggregates (mean
and variance) of either an entire dataset or individual features within a fixed-
size moving window of recent data. When the mean or variance within this
window deviates beyond a predefined threshold, it signals a data drift.

For a window of size W, capturing the last W reporting periods, we define
threshold values A, and A,z to represent the tolerated deviation levels for
mean and variance, respectively. These thresholds determine the acceptable
range of change before drift is flagged and can vary based on the specific
application. At the start of a monitoring phase, baseline values for mean
and variance, denoted as fipgse and Vpgse, are established using the initial W
reporting periods. As new data arrive, the oldest data points are discarded to
maintain a constant window size. At each reporting interval, updated mean
and variance values (fipew, Unew) are computed and compared against the
established baselines. The d-dimensional vectors fipese and vpqse are computed
as follows:

W w
I - Zj:l Mij, v - Zj:l Yij, =1 d (32)
base;, — T 1xr base; — T trr Ly
%4 %4
Similarly, for the reporting period k, the updated values fi,e, and vyeq

are computed as:

k k
- D j—k-w1 Mijy - 2 j—k—w1 Vi _
Hnew, = W s Unew;, = T, [ = 1,...,d (33)

Whenever a data drift is detected, the baselines jipqse and vpese are updated
with the newly computed values fipe, and vyeq-

Definition 16. A data drift for the [-th dimension is identified if the devia-
tion between fipew and ppese, 0T between Ve, and vVpgse, exceeds the respective
predefined thresholds A, and Ay2:

|Nnewl - ,ubasell Z Au Vv |Unewl - Ubasel| 2 AO'Q (34>
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Definition 17. A Boolean function I(c) is defined to evaluate a given con-
dition c:

(35)

0, if ¢ 1s False
I(c) = L
1, if ¢ is True

Definition 18. A node is considered to be experiencing data drift when
the fraction of features that exhibit deviations beyond the defined thresholds
(A, Ay2) surpasses a predefined parameter a:

Z;l:l ]I(‘,unewl - ﬂbasel’ 2 Au Vv ‘vnewl - Ubasel‘ Z AO'2>
d

Algorithm 6 outlines our data drift detection process. Specifically, for
each reporting interval, it calculates the updated statistical aggregates finew
and vy, for all features and compares them against their respective baselines
Mpase and Vpgse. If the deviation for any feature exceeds its defined threshold
(A, or A,2), data drift is flagged for that feature. If the proportion of affected
features surpasses «, then data drift is considered to have occurred for node
¢ during reporting period k. Algorithm 6 serves as a helper function within
Algorithm 7.

>a  (36)

Algorithm 6 Data drift detection
Input: fpase, Vbase: Dy Doz, My, vy, 0k, d, W
Output: indicator for detection of data drift
sum = 0
for(=1,...,d do
calculate finew,, Unew, based on (4)
if |ftnew, — Hbaser| = Ap V [Vnew, — Vbase,| > Aoz then
sum-++, data drift for the [-th dimension
end if
if =7 > o then
Algorithm 6 «1
else
Algorithm 6 <0
end if
end for
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5.4.2 Concept Drift

Concept drift [134] depicts the phenomenon where the performance of the
model declines over time with no observable change in the distribution of
input data. This occurs when the relationships between input features and
the target feature shift, while the features’ statistical properties are stable
in time. One reason for this is the temporal evolution in the target variable,
which gradually changes over time. For example, when predicting stock
prices, the economic factors affecting stock movements may change dynam-
ically, impacting the models’ predictive accuracy. Likewise, in the case of
seasonal concept drift, some models may not generalize well to another sea-
son, even if the feature distribution remains the same. Applications driven
by user behavior, like recommendation systems, e-commerce platforms, and
even social media analytics, tend to undergo evolution in user preferences
over a period of time which changes the underlying relationships on which
the model was trained initially. Also, is it possible that the statistical distri-
bution of input features remains the same, while each feature’s significance
in predicting the output changes. In such case, the predictive performance
of the model will decrease. This problem is particularly important in EC
environments where real time processing is expected.

In order to prevent performance degradation, concept drift detection and
mitigation must be done in a timely manner. In an edge node, monitor-
ing concept drift consists of keeping track of an ML model’s accuracy over
time and determining if there are any changes in the relationship between
features and the target variable. The performance metric needed for assess-
ment is model-specific: classification models are focused on accuracy and
precision, regression models depend on RMSE and R-squared (R?), while
clustering models center their attention to Normalized Mutual Information
(NMI). Monitoring drift can be accomplished through the use of mathemati-
cal or statistical techniques, among the most effective ones are control charts,
specifically the Exponentially Weighted Moving Average (EWMA) [135].
This approach focuses on recent observations and so is capable of detect-
ing shifting performance levels at an early stage. For node ¢ in reporting
period 7, EWMA is calculated recursively as follows:

EWMA(,j) =X -pmy+ (1 — \) - EWMA(i, j — 1) (37)

where pm;; represents the performance metric value for node 7 at report-
ing period j, and A is the smoothing factor, typically set within the unity
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interval. A higher \ assigns greater weight to recent observations. The initial
condition is EW M A(i, 1) = pm;;. To detect performance drift, control lim-
its must be established. These thresholds define significant deviations from
expected performance and can be adjusted based on application sensitivity.
One or two control limits can be defined, depending on the desired level of
sensitivity. The first step in setting these limits is computing the variance of
the EWMA values, which is also defined recursively:

Var(i,j) = X+ (pmy; — EWMA(®i,5))* + (1 = A\) - Var(i,j —1)  (38)

where A follows the same smoothing principle as in EWMA, and Var(i, 1)
is initialized at zero. The upper and lower control limits (ucl, lel) for the
EWMA chart, defining acceptable performance deviations for node i at re-
porting period j, are given by:

ucl(i,j) = EWMA(i,1) + 6 - /Var(i, j) (39)
lel(i,5) = EWMA(i, 1) — - /Var(i, j) (40)

where ¢ is a multiplier that determines the sensitivity of drift detection.

Definition 19. Given a node i and reporting period j, concept drift is iden-

tified if:
EWMAC(, §) > ucl(i, j) V EW MA@, j) < lcl(i, §) (41)

When drift is detected, the reference value EW M A(i, 1) is updated with
the newly computed EW M A(i, j) to ensure continuous adaptation.

5.4.3 Drift-Based Task management Mechanism

The execution of tasks within a certain node may be drastically affected by
data and concept drift. A typical strategy used to cope with drift in ML
models is to refresh or modify the models whenever a significant shift in
the dataset occurs. Yet, constant re-training places a great burden on the
system’s processing capacity. This creates a trade-off between model effec-
tiveness and resources, The balance between system resources and model
execution accuracy needs to be adequately resolved. In circumstances where
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drift is noticed, and a node’s computational load is considerably high, the
ML model inference may be postponed. Nevertheless, for some crucial appli-
cations such as health monitoring [136], any significant change to the data
calls for action which allows little time to postpone processing. To alleviate
computational strain on an overloaded node, tasks related to data mining
and analysis can either be postponed or offloaded to a suitable peer node.
The decision on whether to delay or offload tasks depends on each task’s
execution tolerance and urgency. Tasks that do not require immediate ex-
ecution may be deferred until the model is retrained, while others can be
migrated to an alternative edge node. The selection of a peer node is based
on two criteria, the similarity of its dataset to the pre-drift dataset of the
initial node, and its available computational resources. This highlights the
necessity of a mechanism capable of identifying nodes with comparable data
distributions within the system.

In this Section, we discuss the practical application of the distribution-
based similarity concepts introduced in Section 4.4.1 to the task manage-
ment process, particularly in environments experiencing data and concept
drift. Effective task management in EC environments requires not only the
identification of nodes with available resources but also the selection of nodes
where the data distribution is most similar to the current task’s requirements.
The multidimensional distribution-based similarity measures, as discussed in
Section 4.4.1, are utilized here to identify the most suitable nodes for task
offloading. By comparing the empirical CDFs of the current data batch with
those of potential target nodes, we ensure that tasks are allocated to nodes
where the data distribution is similar. This approach minimizes the impact
of data and concept drift by continuously adapting the task management
strategy to the evolving data landscape.

To efficiently manage tasks, the Kolmogorov-Smirnov test is employed
to detect significant differences in distributions between the data associ-
ated with incoming tasks and the data stored on potential nodes. Nodes
with the most similar data distributions are prioritized for task offloading,
thereby optimizing task execution and maintaining model accuracy. The
task management mechanism operates in real-time, continuously monitoring
data distributions across nodes. When a new task arrives, the system quickly
computes the similarity between the task’s data and the data distributions
on available nodes. If a significant drift is detected, the system dynamically
reallocates tasks to nodes with more suitable data distributions. This ensures
that tasks are processed by nodes that are most likely to yield accurate and
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efficient outcomes. For instance, consider a scenario where an edge node is
responsible for processing tasks related to real-time analytics in a smart city
environment. If a node detects a shift in traffic patterns (indicating concept
drift), it can offload some tasks to another node with a data distribution
more reflective of the new conditions. This proactive management reduces
the likelihood of processing delays or inaccuracies, improving the overall per-
formance of the system.

Algorithm 7 outlines our task management mechanism. Specifically, for
each reporting period and every node, we first identify potential data drifts
(dd) using Algorithm 6 and detect concept drifts (pd) through the proce-
dure detailed in 5.4.2. If either data drift or concept drift is observed, we
evaluate whether the node can accommodate the additional computational
load introduced by model retraining. When a node does not have enough
resources, we search for peer nodes with matching data distributions as out-
lined in 5.4.3. We also make sure that no node within the system surpasses
¢ ( computational load threshold) by distributing the workload to one or
several of the determined peer nodes. Model retraining is then conducted to
ensure optimal accuracy levels are continually maintained.

5.5 Experiments and Results
5.5.1 Configuration and Performance Metrics

We simulate the described EC scenario, consisting of ten (10) nodes, using
Python. Our simulation framework consists of a collection of objects rep-
resenting the available nodes. These objects implement functionalities that
align with the execution of the previously described algorithms, governing
the nodes’ operations. All nodes are assumed to have identical computa-
tional resources, including processing capacity, memory, and network capa-
bilities. To evaluate the performance of our DBTM mechanism, we conduct
two experimental scenarios using the following performance metrics. For
benchmarking, we compare our mechanism against the commonly used First
Come First Served (FCFS) [137] and Longest Job First (LJF) [138] task
management approaches within an EC context.

The first metric under examination is the load (Id) of each node through-
out the execution process. More precisely, we focus on the maximum load
experienced by a node during task execution. As noted earlier, a predefined
threshold determines the acceptable load level based on the application re-
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Algorithm 7 Drift-Based Task management

Input: N, Ay, Age,d, W, td, sz, 0, 3,7,6,C
Output: management of tasks
for every nodez=1,..., N do
Initialize the lists m;, v;, pm;
Var(i,1) =0
Calculate fipase, Vbase based on (3)
end for
for every period k do
for every node i =1,..., N do
update my, vj, pm;;
calculate finew, Unew based on (4)

dd < Algorlthml( Hbases UbaseaA;u A027 mg, Ui, &, k7 d, W)
calculate EW M A(i,7),Var(i, j) based on (8), (9)
calculate ucl(i, 7),lcl(i, ) based on (10), (11)

pd < 0

if EWMAC(,j) > ucl(i,j) vV EWMA(, j) < lcl(i,j) then

pd + 1
end if
if dd or pd then
if —”tsigsz” > ( then

identify similar nodes based on (13), (14)

offload tasks until % <
end if 1
retrain the model(s)
end if
end for
end for
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quirements. When the load remains within this threshold, our mechanism
effectively manages tasks without risking system failures. However, exceed-
ing the threshold indicates inefficient task management, potentially leading
to system failures where nodes cannot execute their assigned workloads. The
second metric we analyze is the accuracy of ML models deployed in the nodes
over time. Specifically, we monitor the minimum accuracy achieved by the
models during execution. If accuracy remains stable, our mechanism suc-
cessfully detects data drifts and retrains models accordingly. Conversely, if
accuracy deteriorates, this suggests that our mechanism fails to adapt to data
drifts by retraining models as needed.

Table 8 presents the parameters used in both experimental scenarios.
Each node employs Support Vector Regression (SVR) models. SVM-based
models have been widely adopted in concept drift detection research [139-
142]. Regarding SVR hyperparameters, we set 'lib-linear’ as the solver while
leaving all other parameters at their default values. Additionally, the sliding
window size W is set to 3, corresponding to three reporting periods/epochs.

Table &: Parameter definitions used in the evaluation of
DBTM

Symbol Meaning

Mean value threshold

A2 Variance value threshold

Q Data drift threshold

A Smoothing parameter

) Multiplier

g Similarity threshold (dimensions)
y Similarity threshold

¢ Load threshold

For the first experiment, we compare DBTM against FCFS and LJF using
load and accuracy metrics. We generate synthetic datasets to simulate an
EC system comprising ten (10) nodes. The dataset consists of three input
features and a binary output (0/1). The model retraining size (sz,¢) is set
to 0.5. We perform experiments under different parameter configurations
(Cases 1-4), as listed in Table 9. The dataset dimensions are set to d = 3,
and the load threshold is defined as ( = 0.9.
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Table 9: DBTM configuration cases used in synthetic evaluation

A, Ay a X6 B v (

Casel 3 05 09 07 2 05 05 09
Case2 3 05 09 06 15 0.8 0.8 09
Case3 25 02 09 07 2 08 0.8 09
Case4 25 02 09 06 1.5 05 05 0.9

For the second experiment, we compare DBTM with FCFS and LJF
using load and accuracy metrics. This time, we utilize a real-world dataset?
to assess model performance in a practical setting. The EC environment
consists of nine (9) nodes, and the dataset is evenly split into nine portions
to represent data distributed across the nodes. The dataset comprises nine
(9) input features (id, date, day, period, nswprice, nswdemand, vicprice,
vicdemand, transfer) and one output feature (class). The id, date, day, and
period attributes are omitted. The model retraining size (sz.) is set to 0.6.
Similar to the first experiment, we test different parameter configurations
(Cases 5-8), as shown in Table 10. The dataset dimensions are set to d = 5,
with a load threshold of ( = 0.9.

Table 10: DBTM configuration cases used in real-world evaluation

AN AUQ o A ) ﬂ Y <

Case5 0.2 01 09 08 2 0.5 05 09
Case6 0.2 0.1 09 06 15 0.8 08 0.9
Case7 04 02 09 08 2 0.5 05 09
Case8 04 02 09 06 15 0.8 0.8 09

The datasets used in both experiments are described below:

e Synthetic Dataset (Experiment 1): Designed to simulate an EC
environment with ten nodes. Each dataset contains three input fea-
tures and one binary output. The dataset is intentionally generated
to exhibit data and concept drifts to evaluate the DBTM mechanism’s
effectiveness.

Zhttps://www.kaggle.com/datasets/gauravduttakiit /electricity-prices-in-new-south-
wales
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e Electricity Pricing Dataset (Experiment 2): A real-world dataset
consisting of nine input features and one output feature (class). It is
divided into nine equal portions, simulating an EC environment with

real data that may experience concept drift.

5.5.2 First Experimental Scenario

11
s5a

The following Figures illustrate the findings from the first experiment.

Figures 25, 26, 27, and 28 illustrate that DBTM successfully maintains
node load at or below the threshold (, while simultaneously ensuring high
accuracy levels for the ML models (ranging from 0.908 to 0.998). Conversely,
FCFS and LJF fail to keep the load of multiple nodes (e.g., nodes 1, 4, 5, and
8) within the defined threshold ¢. Additionally, FCFS is unable to preserve
accuracy levels, as nodes 1, 4, 5, 6, and 8 exhibit accuracy scores as low as
0.48. Meanwhile, LJF achieves the same accuracy results as DBTM, which
is expected given that LJF prioritizes large tasks, with model retraining
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being the most computationally intensive task. As a result, LJF ensures
that model updates occur first, preventing accuracy degradation. However,
in most cases, LJF exhibits higher load levels compared to DBTM. Overall,
in this experimental setting, DBTM significantly outperforms both FCFS
and LJF, effectively balancing both load management and model accuracy.

5.5.3 Second Experimental Scenario

Figures 29, 30, 31, and 32 demonstrate that DBTM successfully regulates
node load within the threshold ¢ while maintaining model accuracy at lev-
els comparable to or exceeding the other two methods. In contrast, both
FCFS and LJF fail to control node load within the predefined threshold
across all nodes. Additionally, FCFS is unable to sustain accuracy levels, as
all nodes experience accuracy values lower than or equal to those achieved
by the other methods. As observed in the first experimental scenario, LJF
attains the same accuracy performance as DBTM. These findings highlight
that DBTM effectively balances task-related computational load while en-
suring high accuracy in knowledge production, offering a robust and efficient
alternative to traditional task management approaches in EC environments.

5.6 Summary and Key Findings

Accurate and reliable performance is enhanced without being impacted by
performance degradation through the use of a drift detection mechanism that
ensures the model adapts to changes dynamically. Our mechanism is capable
of detecting shifts in data distribution by monitoring changes in the mean
and variance of the data with the sliding window approach. This means that
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the models can be retrained in a timely manner to ensure that they remain
accurate over time, even when the data being fed to the model continuously
changes. The system keeps track of the model’s performance using EWMA|
and when certain minimum thresholds are breached, the model is retrained.
These drifts indicate that feature-relationship with the target variable has
changed. The drift detection mechanism is robust, and helps in ensuring op-
timal model performance and reliability under different conditions. This kind
of reliability would not be possible by switching to a different ML algorithm
lacking adaptiveness.

Our strategy utilizes the Kolmogorov-Smirnov test for identifying distribution-
based similarity and EWMA monitoring for performance assessment. This
combination enables effective offloading of tasks and retraining of models
while sustaining system performance. In the previous Section we demon-
strated our approach’s efficacy in mitigating model performance deterioration
alongside resource wastage through drift detection analysis across different
contexts. The following items illustrate the effects on the predictive system:

e Enhanced Model Versatility: The system is able to achieve and
sustain high predictive accuracy by monitoring and adapting to data
and concept drifts. This type of flexibility is essential to dynamic sys-
tems where the most relevant data and their interrelations may shift
unexpectedly.

e Optimal Use of Resources: Informed by drift detection, the task
management mechanism is able to intelligently offload the tasks to the
nodes with higher similarity in data distribution. This balances the
computational workload and warrants that the tasks are processed by
models relevant to the data, thereby optimizing system performance.

e Less Severe Model Degradation: Proactively retraining models in
response to detected drifts reduces the performance degradation that
comes from exposure to changing data. This approach ensures the
model’s accuracy and reliability.

e Validation through Experiments: The performed experiments in-
dicate that the inclusion of these drift solutions within DBTM exe-
cution mechanism results in better performance than traditional task
management systems (FCFS and LJF). In particular, DBTM demon-
strated lower computational loads and higher accuracy across nodes in
both synthetic and real-world datasets.
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By integrating these advanced drift detection and management strate-
gies, the predictive system sustains optimal performance and reliability, even
in dynamically changing data environments. This evaluation highlights the
significance and influence of effectively handling both data and concept drifts
in contemporary predictive frameworks.
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6 Task Scheduling

6.1 Context and Motivation

In EC systems, tasks must be scheduled across multiple devices to ensure
effi- cient use of resources and timely execution. Scheduling tasks becomes
increasingly complicated when taking into account different task require-
ments such as network limitations, data availability, or computation de-
mands. Complexity also continues to grow alongside an increase in the
number of tasks and edge devices. The success of real-time, distributed
applications within edge environments heavily relies on effective scheduling
of tasks. Many current methods of scheduling focus on the node capabilities
and available tasks, but fail to consider their interrelationship which leads to
reduced resource efficiency and increased latency. This research attempts to
tackle the absence of intelligent scheduling mechanisms that consider node
resources alongside task and data correlation for effective execution of tasks
in distributed systems. Thus enhancing the performance and scalability of
EC frameworks.

6.2 Related Work

Task offloading is becoming an increasingly researched topic, especially for
tasks that require considerable computation and need to be sent to more
powerful remote nodes for processing [143]. The process of deciding how
and when to offload tasks is profoundly complex and affected by multiple
factors [144]. This is particularly important in situations where a node has
inadequate data or processing power in comparison to what the task’s exe-
cution requires [145-147].

6.2.1 Optimization Models and Algorithms

ALTO is an adaptive learning-based algorithm that seeks to optimize task
offloading by minimizing the average associated delay [148]. The Mobile
Edge Computing (MEC) paradigm has recently emerged with distributed
cloud computing resources accessible at the edge of the network, allowing
for timely services and applications with minimal latency for users [149].
Offloading tasks to MEC has been shown to be an effective method in al-
leviating the computational load on mobile devices and reducing service la-
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tency, especially for high computation tasks [150]. In [150], an offloading
algorithm is proposed which incorporates task dependencies, both tempo-
rally and across multiple tasks to minimize the amount of transmitted tasks
within the network. Likewise, in [151], a multi-user offloading framework is
developed which incorporates two different types of resource allocation prob-
lems as part of a cost minimization model. The authors present a heuristic
solution that jointly optimizes the allocation of radio and computational re-
source distribution.

6.2.2 Multi-Agent Systems and Caching Strategies

The management of task offloading using multi-agent systems is examined
in [152], where decision making is integrated across three interrelated ta-
bles to make the allocation process more efficent. The main considerations
are task importance, network congestion, and resource availability. Offload-
ing techniques may be aided with caching mechanisms as indicated in [153].
Through the storage and sharing of task information and resource require-
ments, nodes are able to fetch previously computed results, thus avoiding
unnecessary computations and conserving energy.

6.2.3 Sum-Cost Delay Model

In [94], the task offloading issue is framed in the context of EC within a
sum cost delay model. In this work, an optimal binary offloading decision is
firstly formulated, and Reinforcement Learning (RL) is subsequently applied
to obtain the final allocation policy.

6.2.4 Game Theory Models

In [154], task offloading is analyzed using game theory as a double auction
game. The authors study the Bayes—Nash Equilibrium (BNE) in order to
derive a suitable pricing policy. Moreover, a Stackelberg game is used to
model the relationships between nodes involved in task trading with the
aim of improving resource allocation related decision making. The proposed
framework is particularly suited for blockchain-related applications.

115



6.2.5 Existing literature gap

Although task offloading and advanced management processes have been
researched extensively, most available solutions still center around resource
allocation optimization as well as minimizing execution delays without fully
considering real time decision making complexities in EC systems. Most task
offloading frameworks are frequently based on a set of policies or heuristics
that do not respond to constantly changing system parameters like vari-
able workload volumes, network traffic, and diverse available resources. Fur-
thermore, while some studies consider multi-agent collaboration and caching
strategies, they frequently treat tasks independently, overlooking inter-task
dependencies that could influence the overall efficiency of task execution.
This can lead to suboptimal task scheduling, where decisions are made based
on individual tasks rather than holistic system performance. The relation-
ships between tasks (where one task’s execution impacts the execution ef-
ficiency of other tasks) is frequently overlooked, but could potentially be
significant for resource optimization. Furthermore, most strategies based on
game theory and optimization assume ideal conditions, or use a model that
is too costly in terms of resources and time to be useful for EC. Though some
approaches based on RL and auction theory have been developed for task
offloading, their applicability in highly mobile and resource-limited situations
is still a question.

This gap highlights the need for more adaptive task offloading frameworks
that integrate real-time system monitoring, lightweight decision-making mech-
anisms, and task dependency awareness to enhance offloading efficiency in
EC. Our work addresses this by proposing a dynamic, context-aware offload-
ing strategy that optimally distributes tasks across nodes while considering
real-time system constraints and task interdependencies

6.3 Problem Statement

Building upon the formulations presented in Section 1.6, each node n; calcu-
lates statistical features such as mean, variance and range of values for each
feature of the particular local dataset. These features are summarized by
d-dimensional vectors: (Node Feature Variance - NFV, Node Feature Mean
- NFM, Node Range of Values - NROV), where:

NFV, = [NFV][1], NFV;2],..., NFVi[d]]

116



NFM; = [NFM;[1], NFM;[2], ..., NFM;d]]
NROV; = [NROV{[1], NROV[2], ..., NROVi[d]]

for node i. Here, each NFV;[j], NFM;[j], NROV;[j] corresponds to the vari-
ance, mean, and range of values for the j-th feature within n;’s dataset.
This cluster is employed for performing user defined activities like executing
SQL queries, undertaking ML, model training and carrying out other data
processing activities. Every task has accompanying data requirements to its
execution and may have other limitations like dependence on other tasks, ex-
ecution order or preference, and so forth. Nevertheless, these dependencies
and preferences pose a challenge to manage, which is beyond the coverage
of the present work and is reserved for the subsequent research endeavors.
Each node n; has a processing capability denoted by P; and a queue ¢; where
incoming tasks are placed for execution, represented as:

qi = [tlat27"'>ts]

where s is the maximum queue size.
Examples of such tasks include:

e An SQL query retrieving data records where, for instance, humidity
values fall within the range of 20% to 50%.

e An ML task training a regression model on local data where the pres-

sure variance ranges from 1 to 3 and the mean wind speed lies between
20 km/h and 50 km /h.

Fundamentally, any computational task involving data processing can be
treated as a resource-consuming operation on the node. The requirements of
each task are represented by d-dimensional vectors: (task feature variance -
tfv, task feature mean - tfm, task range of values - trov), where:

tfv; = [tfv;[1], tfv;[2], ..., tfv;[d]

tfm; = [tfm;[1],tfm;[2],. .. tfmy[d]]
trov; = [trov;[1],trov;[2], ... trov;[d]]

for task 5. Each element in these vectors represents an interval of desired
values for a particular feature. If no specific requirement exists for a given
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feature, the corresponding value in the vector is set to zero. Additionally,
each task has a size sz:

Sz = [$21,822, ..., 52

which quantifies its computational demand on the system.

Tasks are scheduled for execution at predefined scheduling periods, the
duration of which varies depending on the application requirements. Real-
time applications, for instance, may necessitate shorter scheduling periods to
ensure responsiveness. If a task arrives during a scheduling period, it must
wait until the next scheduling round before being considered for execution.
At the start of each scheduling period, nodes update their statistical data
and accumulated task size: node task size (nts), which is computed as the
sum of all pending and executing task sizes within the node. This updated
information is then sent to the scheduler.

In instances where a node is fully engaged with execution, it may pause
other activities temporarily in order to calculate relevant statistical infor-
mation. The scheduler receives the information along with the requirements
of the tasks and then determines which nodes can perform each task. The
next step is the clustering of similar tasks which is then followed by the final
scheduling. The following assumptions are considered in our approach:

The following assumptions are considered in our approach:

e Each node n; independently executes tasks and manages its workload.

e Execution of tasks is based on a non-preemptive scheduling policy, i.e.
tasks do not have any predefined order of priorities.

e Tasks are self sufficient and do not rely on any other tasks for comple-
tion.

6.4 Task scheduling Approach

In this section, we outline the methodology for identifying suitable nodes
for task execution and establishing task correlations. By leveraging these
insights, we construct an optimized scheduling mechanism that takes into
account the computational capacity of each node.
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6.4.1 Detecting the Suitability of Nodes

For each task, the scheduler determines the appropriate nodes for execution
by analyzing their statistical data and represents their availability using an
N-dimensional vector:

suj = [su;[1], su;[2], ..., su;|[N]]

where su;[i] is set to 1 if node n; qualifies for executing task j, otherwise,
it is set to 0.

Definition 20. A node n; is deemed suitable for evecuting task t; if the
statistical attributes N FV;, NF M;, N ROV; align with the task’s requirements
tfvj, tfm;,trov;, ensuring that the intersection of all non-zero values in the
pairs (tfv; — NFV;), (tfm; — NFM,;), (trov; — NROV;) is not an empty set.

This definition serves as a criterion for determining whether a node’s
dataset meets the requirements of a specific task at the feature level. The
suitability evaluation function, applied to each feature dimension, is defined
as follows:

L, if (tfo; [N NEVI] # 0V tfu[l] =0)
At fm,[l] N NFM;[l] # 0V tfm;[l] = 0)
A(trov;[l] N NROV;[I] # 0V trov;[l] = 0)

0, otherwise

s(g,i,1) = (42)

The overall suitability vector su; is then computed by aggregating the
feature-wise suitability indicators:

Definition 21. Given a task t; with specified requirements tfv;,tfm;,trov;
and a node n; characterized by NFV;, NFM;, NROV;, the suitability vector
15 determined as:

1 S s(4,i,0) =d
S%M:{’ Frimsbil)=d .y oy

0, otherwise

This function assesses whether a node’s dataset meets the task’s require-
ments across all feature dimensions.

We assume that task requirements for each feature are random variables
following a Bernoulli distribution, where an existing requirement is assigned
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probability p and the absence of a requirement is assigned probability 1 — p.
In scenarios where dataset access is restricted, as in federated learning, we
model statistical attributes as independent normal distributions:

NFVi[l] ~ N (paill], 01i[l]?),  NFM;[l] ~ N (p2ill], o2i[l]?)

NROVi[l][1] ~ N (usill], o5i[l]*),  NROV;[1][2] ~ N (paill], o4i[l]?)

Similarly, task requirements are defined as intervals ¢ fv;[l] = [c, d], t fm;]l]
le, f1, trov; [} = [g, h].

The expected value computations for feature-wise suitability and the over-
all suitability vector are outlined in Lemmas 1 and 2. To ensure clarity and
completeness, supplementary calculations and detailed proofs are provided
in the Appendix Section 8.

Lemma 1. The expected suitability indicator for a feature is given by:

E(s(j,4,1)) = Pltfv;[I] "N NFV;[l] # 0V tfv;[l] = 0]
- Pltfm; [N NEM;[l] # 0V tfm;[l] = 0] (43)
- Pltrov;[l] N NROV;[l] # OV trov;[l] = 0]

Lemma 2. The expected value of the overall suitability vector is given by:

d

E(su;[i]) = [ [ E(s(5.4,0)) (44)

=1

Definition 22. A node n; is deemed suitable for executing task t; if:

E(su;i]) = v (45)
where 7y is a predefined threshold that determines suitability.

This formulation allows different applications to define varying toler-
ance levels for task execution based on their accuracy and performance re-
quirements. The procedure for determining suitable nodes for all tasks is
summarized in Algorithm 8. The input consists of d-dimensional vectors
tfu;,tfm;, trov; for all tasks (j = 1,...,k) and the statistical information
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NFV;, NFM;, NROV; for all nodes (i =1, ..., N). Each statistical parame-
ter must include the respective mean and variance for accurate computations.
For each dimension of the task requirements, we compute the expected suit-
ability indicator using Lemma 1 and the overall suitability using Lemma 2.
The suitability of nodes is determined based on these calculations and com-
pared against a predefined threshold ~. The final output is a £ x N matrix,
where each element represents the suitability vector for a given task and
node.

Algorithm 8 Suitability
Input:  t=(t1,t2,...,tx), trovj,tfvj,tfm;, NROV;, NFV;, NFM;r,~,
mean and variance for every random variable
Output: su
for j=1, j< k, j++ do
for i=1, i< N, i++ do
P=1
for 1=1, 1< d, 1++ do
calculate E(s(j,1,1)) based on lemma 1
P =P xE(s(j,i,1))
end for
if P >~ then sufj|fi] =1
else sulfj[i] = 0
end if
end for
end for

6.4.2 Task Requirement Overlap and Correlation

We examine the scenario in which multiple tasks require access to similar
datasets. Consider, for example, an SQL query that extracts temperature
values within the range of 0 to 30 degrees Celsius, and a separate regression
model that is tested using temperature values spanning from 10 to 20 degrees
Celsius. Furthermore, some tasks may require identical datasets, such as
training and testing an ML algorithm with temperature data that falls within
the range of [20,30] degrees Celsius.

Tasks that exhibit a significant degree of similarity in data-related re-
quirements can be grouped together based on this similarity. Scheduling
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correlated tasks on the same node enhances efficiency by minimizing redun-
dant disk accesses. When two tasks require identical datasets, the results
computed for the first task may be leveraged for the second, effectively re-
ducing the overall system’s computational burden. In cases where tasks share
overlapping data related demands, the intermediate results from one task can
be utilized to reduce the computation needed for the second. Consequently,
the execution time for the second task will be shorter than if task corre-
lation was not considered. Additionally, executing correlated tasks on the
same node can improve TL capabilities, enabling knowledge transfer from
one task to another. This facilitates a more efficient learning process by
leveraging knowledge obtained from a previously completed task to enhance
the performance of a different but related task.

Definition 23. Given two intervals int; = [a,b] and inty = [c,d] with a < b
and ¢ < d, the overlap between them is defined as:

max(0, min(b, d) — max(a, c))
b—a
The function ov(inty,inty) yields a value in the range [0, 1], representing

the percentage of overlap between the two intervals, normalized by the length
of the first interval.

ov(inty,inty) = (46)

Definition 24. Given two tasks t, and t,,, each with d feature dimensions
and respective requirement vectors v, = (Vq1, Vg, . . ., vqq) and v, = (Vwy, Vws,
the correlation between the two tasks is calculated as:

Zd ov(vgy,vw;)+ov(vwy,vq;)
corr(vg, vy) = FE 7 : (47)

This measures the degree of similarity between the requirement vectors
across all feature dimensions.

Definition 25. T'wo requirement vectors v, and v, are classified as correlated

if:
corr(vg, vy) > 0 (48)

where 0 s a predefined threshold. Otherwise, they are considered non-
correlated.
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Algorithm 9 details the procedure for computing task correlation, which
serves as the algorithm’s output. The input consists of two requirement
vectors. The correlation computation proceeds as follows: first, the overlap
is determined for each feature dimension. If neither task has a specified value
for a particular feature, the overlap is set to zero. In cases where both tasks
specify values for the feature, the overlap is computed using Equation (46).
Finally, the correlations are aggregated across all feature dimensions, and the
overall correlation score is determined using Equation (47).

Algorithm 9 Detection of Correlation

Input: vg, vy, d
Output: corr(vg, vy)
for 1=1, 1< d, i++ do
if v,[l] #0 & wvy,][l] # 0 then
calculate ov(v,[l],v,[1]), ov(vy[l],04(]) based on (1)
else
00 vyl 00 )0, 0v(oa [l 25[1])=0
end if
end for
calculate corr(v,,v,,) based on (2)

Finally, two tasks ¢, and ¢, are classified as correlated if their respective 7-
dimensional requirement vectors ¢ fv,, t fm,, trov, for t, and ¢ fv,, t fm,,, trov,
for t,, satisfy the following condition:

corr(tfug, tfuy) > 0 A corr(tfmg, tfmy) > 6 A corr(trovy, trovy,) > 0

where 6 is a predefined correlation threshold.

Algorithm 10 is employed to identify and group correlated tasks, pro-
ducing an output vector cg = (cgi,cgo, ..., cgr). This k-dimensional vector
represents the assigned correlation group for each task, where cg; takes values
in the range (1,7), with [ denoting the total number of identified correlated
groups. The procedure begins by initializing the first group with the first task
and then identifying all tasks correlated with it using Algorithm 9. These
tasks are then assigned to the same group. The process continues by select-
ing the next ungrouped task, assigning it to a new group, and repeating the
correlation detection until every task is categorized into a group.
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Algorithm 10 Correlated groups

Input: t=(ty,t,...,tx), trov, tfv, tfm, 6
Output: cg, [
for h=1, h< k, h++ do
cglh] =0
end for
current=1
while 0 in cg do
for h=1, h< k, h++ do
if cg[h]=0 then
cglh] = current
break
end if
end for
for d=1, d< k, d++ do
if cg[d]=0 then a = corr(trov[h],trov[d]), b = corr(tfv[h]tfv[d]), c
= corr(tfm[h],tfm[d])
if (>0 & b>0 & c¢>0) then
cgld] = current
end if
end if
end for
current—++
end while
[ = current -1
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6.4.3 Task Scheduling Mechanism

During each scheduling period, a queue of k tasks (t1,%s,...,t) is main-
tained, with each task characterized by its requirements (tfuvq,...,tfvg),
(tfma,..., tfmyg), (trovy,... trovy) and the respective computational size
(sz1,822,...,82). Let [ denote the number of correlated task groups. For
each correlated group, the intersection of the su; vectors determines the set
of ‘suitable’ nodes capable of executing the entire group. The intersected
vector for each correlated group is given as:

cgint; = (cgint;[1], cgint;[2], ... cgint;[N]), j=1,2,...,1

where cgint;[i] = 1 if node n; is suitable for executing the j-th correlated
group. The complete set of intersected vectors is represented by the [ x N
matrix cgint = (cginty, cgints, . .., cginty).

From this matrix, we extract:

e The vector op = (op1, 0ps, . .., 0p;), where op; represents the number of
suitable nodes (options) for the j-th correlated group.

e The vector ncg = (ncgy,ncgs, ..., ncgy), where each ncg; represents
the number of correlated groups associated with node n;.

Given that each node possesses a processing capacity P; and has accumu-
lated a task load nts; from prior scheduling periods, the current load of each
node can be computed accordingly. Refer to Definitions 14 and 15 for formal
descriptions of computational load and task execution criteria, as these prin-
ciples apply consistently throughout the document. The final task scheduling
is executed by assigning correlated tasks to suitable nodes while ensuring that
each node’s load remains within allowable limits. The scheduling methodol-
ogy comprises the following steps: 1) Determine the node which has the least
number of correlated groups (ignoring zero values); 2) From those groups,
determine which one has the smallest available count of node options (once
more, ignoring zero values); 3) Begin by assigning the highest possible task
size in attempts to maximize the number of tasks assigned to a node while
ensuring the node load remains constantly under the defined threshold; 4)
Update the correlation groups, options, intersected vectors, and number of
correlated groups (cg, op, cgint, ncg); 5) Repeat these steps until one of
the following outcomes is reached: The op vector is all zeros, indicating no
further scheduling based on correlation is possible. The ncg vector is all
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zeros indicating nodes have no further correlated tasks they are able to exe-
cute. This procedure is detailed in Algorithm 11. Once correlated tasks have
been scheduled, the remaining tasks (those not assigned within correlated
groups) are scheduled separately based on their original suitability vectors
(su), prior to intersection. This process is outlined in Algorithm 12, where
tasks are allocated to available nodes without consideration for correlation.
In the case of allocation for unscheduled tasks, the process focuses on
assigning the largest and the smallest computing sizes to the node that first
available node that is suitable. This max-min strategy mitigates the phe-
nomenon of executing large tasks only, or executing small tasks only, which
can cause starvation of the tasks and can increase the response times. It
is important to note that our scheduling mechanism does not maintain a
detailed record of all computations performed by individual tasks. This ap-
proach would require a significant amount of communication overhead and
possible data relocation costs. Instead, tasks are grouped based on corre-
lation and allocated to nodes capable of executing them so that reuse of
computational work is feasible. Also, our approach does not impose strong
limitations on the evaluation time for the correlated groups. Instead, a node
keeps the results of all the computations related to a certain task until all
the tasks belonging to the corresponding correlated group are completed.

6.5 Experiments and Results

We evaluate the performance of our Correlation Adaptive Task Scheduling
(CATS) mechanism through two experimental scenarios, using three key
performance metrics. Our approach is compared against widely used task
scheduling algorithms in EC, including First Come First Served (FCFS) [137],
MAX-MIN [155], Longest Job First (LJF) [138], and Shortest Job First
(SJF) [156]. Initially, we assess the percentage of task failures (ptf), which
indicates how often tasks are assigned to nodes that cannot execute them. A
task is considered a failure when it must be rescheduled due to an unsuitable
allocation. The pt f metric is defined as:

Number of task failures
plf =

When ptf — 0, tasks are successfully assigned to suitable nodes, while
ptf — 100 indicates frequent task failures.

Total number of tasks
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Algorithm 11 Task scheduling

Input: t=(t1,ts,...,t), sz=(s21, 822, ..., 82k), cg=(cg1,CGa, - .., Cqx), P =
(P, Py, ..., Py), nts=(ntsy, ntsy, ..., ntsy),su=(suy, sug, . .., Sug) ,3
Output: Scheduling of tasks to the suitable nodes based on correlation
for j=1,/<I[,j++ do

cgint[j| = intersection of all su; vectors with cg[i| == j
end for
for j=1,7<1,7++ do

opfij=sum(cgintj])

end for
fora=1,a < N,a+ + do
ncgla]= 0

for j=1,7<1l,7++ do
if cgint[j][a] == 1 then
ncgla]++
end if
end for
end for
count; = sum(op)
county = sum(ncg)
while count; # 0 & counts # 0 do
find the index j of min (non-zero) value in ncg
for (j=1,i<l,j++) do
if cgint;[i]| == 1 then
from all related correlated groups to the node i find the index g
of
the one that has minimum (non-zero) options
end if
end for
for (h=1,h <k, h++)do
if cglh| == g then
from all tasks in the g correlated group find the index f of the
one
with maximum size
if (nts[i] + sz[f])/P[i] < B then
assign task f to node j, cglh| ==
nts[i] = ntsli] + sz[f]
end if
from all tasks in the g correlated group find the index z of the
one 127
with minimum size
if (ntsli] + sz[z])/Pli] < B then
assign task f to node j, cglh| ==
ntsli| = ntsi] + sz[2]
end if
end if



Algorithm 12 Remaining tasks scheduling

Input: t=(t1,ts,...,t), sz=(s21, 822, ..., 52k), cg=(cg1,CGa, - .., Cqx), P =
(P, Py, ..., Py), nts=(ntsy, ntsy, ..., ntsy),su=(suy, sug, . .., Sug) ,5
Output: Scheduling of the remaining tasks to the suitable nodes

count; = sum(cgq)
county =0
while counts # count; & county # 0 do
for (e=1,e<k,e++)do
if cgle]# 0 then
from all unscheduled tasks find the index d of the one with
maximum size
fori=1,1 < N,i+ + do
if suld][i] ==1 & (nts[i] + sz[d])/P[i] < 8 then
assign task d to node i

count;-=1
cgle] ==0
ntsli] = ntsli] + sz[d]
break
end if
end for

from all unscheduled tasks find the index ¢ of the one with
minimum size
fori=1,1 < N,i+ + do
if sulc][i] ==1 & (nts[i] + sz[c])/PJi] < 8 then
assign task d to node i

count;-=1
cgle] ==
ntsli]| = ntsli] + sz|c]
break
end if
end for
end if
end for
counts+ =1
end while
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We also evaluate the percentage of tasks scheduled based on correlation
(pbc), which measures our mechanism’s efficiency in grouping correlated
tasks. The pbc metric is defined as:

Number of tasks scheduled based on correlation

be =
poc Total number of tasks

A value of pbc — 100 implies that most correlated tasks are allocated to
the same node, reducing redundant processing. Conversely, when pbc — 0,
task correlation is not leveraged for scheduling.

The third metric we examine is the load of the system (load), which is
defined as:

Total scheduled task size
Total computational capacity of the system

load =

By setting a threshold /3 for each node and the overall system, we ensure
that task allocation does not exceed processing limits. Higher load values,
while remaining below the threshold, indicate that more tasks are efficiently
scheduled. Our simulation is implemented in Python and models an EC envi-
ronment where each node periodically updates the scheduler with its current
load and dataset statistics (mean, variance, range of values). These updates
are minimal in terms of communication overhead. Additionally, execution
time for each task is not explicitly considered in the evaluation. The primary
goal is to group correlated tasks onto the same node to maximize compu-
tational reuse, striking a balance between increased energy consumption for
some nodes and reduced overall energy demand across the system.

6.5.1 First Experimental Scenario (Setting)

In the first experiment, we compare CATS against FCFS and MAX-MIN
using the ptf and pbc metrics. The environment consists of ten (10) edge
nodes processing synthetic data. We vary the number of tasks across differ-
ent trials: k& € {10,50,100}. Task sizes (sz) range from 1 to 5, and node
computational capacity (P;) varies between 50 and 100. The dataset dimen-
sions are set to r = 3, and the load threshold is § = 0.9. Task requirements
exist with probability p € {0.5,0.8}, while suitability () and correlation (6)
thresholds are configured as follows:

~ € 405,08}, 6€{0.5,08}
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The FCFS and MAX-MIN scheduling algorithms do not use these param-
eters, as they are specific to CATS.

6.5.2 Second Experimental Scenario (Setting)

In the second experiment, we compare CATS against LJF and SJF using
the load and ptf metrics. Here, we use a real dataset® to assess our model’s
effectiveness in a practical setting. The dataset includes six input features:
transaction date, house age, distance to the nearest MRT station, number of
convenience stores in the living circle on foot, latitude, and longitude. The
transaction date, latitude, and longitude are excluded from our experiments.
The objective is to predict property values using a Linear Regression model
trained on data grouped by age categories (e.g., [0-5], [6-15]).

The experimental setup consists of ten (10) edge nodes, each managing
a portion of the dataset. We vary the number of tasks: k& € {10,50,100}.
Task sizes (sz) range from 1 to 5, and node computational capacity (F;)
varies between 50 and 100. The dataset dimensions are set to » = 4, and the
load threshold remains 8 = 0.9. Since all tasks in this scenario require data
from a specific age group, the requirement probability is set to p = 1. The
suitability and correlation thresholds are:

v €40.7,0.9}, 6¢€{0.7,0.9}
These parameters are not utilized in the LJF and SJF scheduling models.

6.5.3 Experimental Setup Summary

Table 11 provides a summary of the parameter values used in both experi-
mental scenarios.

6.5.4 First Experimental Scenario (Performance Assessment)

The outcomes of our initial experimental setup are provided in the figures
below along with the results for the chosen parameter values and task quan-
tity. Our model achieves a task failure rate of zero, as shown in Figures 33,
34, which illustrates the scheduling of all tasks based on their correlation.
Conversely, FCFS and MAX-MIN methodologies’ failure rates hover around

3https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
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Table 11: Unified parameter configuration across all evaluation scenarios for
CATS

Parameter Description Value(s)
T Number of dataset dimensions 3 (Experiment 1), 4 (Experiment 2)
p Probability of task requirements  0.5/0.8 (Experiment 1), 1 (Experiment 2)
vy Suitability threshold 0.5/0.8 (Experiment 1), 0.7/0.9 (Experiment 2)
0 Correlation threshold 0.5/0.8 (Experiment 1), 0.7/0.9 (Experiment 2)
15} Load threshold 0.9
N Number of edge nodes 10
P, Computational capacity per node 50-100
k Total number of tasks {10, 50, 100}
sz Task size range 1-5
p=0.5/y=0.5/8=0.5 p=0.5/=0.5/6=0.5
. CATS
80 8O
5 B0 é B0
40 40
20 20

10 50 100 10 50 100
Number of tasks Number of tasks

Figure 33: Comparison of pt f and evaluation of pbe (p = 0.5,y = 0.5,6 = 0.5)

60%, which indicates a lack of competent task allocation. The observed per-
formance gap showcases the effectiveness of our method, which intelligently
clusters correlated tasks and assigns them to appropriate nodes, yielding the
best results for this scenario.

Figures 35 and 36 demonstrate that our model maintains a task failure
rate between 17% and 30%, while scheduling tasks based on correlation in
the range of 60% to 80%. Conversely, FCFS and MAX-MIN show a failure
rate close to 80%, reinforcing their inefficiency in handling tasks. Notably,
increasing v leads to higher failure rates in our approach, as stricter suitability
requirements limit the number of eligible nodes.

Figures 37 and 38 present results for an increased p value (p = 0.8). Once
again, our model achieves zero task failures and schedules all tasks based on
correlation. In contrast, FCFS and MAX-MIN continue to exhibit a failure
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Figure 34: Comparison of pt f and evaluation of pbc (p = 0.5,y = 0.5,6 = 0.8)

p=0.5/y=0.8/6=05 p=0.5/y=08/8=05
BN FCFS
100 — MAXMIN 10
. CATS
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Figure 35: Comparison of pt f and evaluation of pbe (p = 0.5,y = 0.8,6 = 0.5)

p=0.5/y=0.8/6=0.8 p=0.5/y=0.8/8=0.8
. FCFS
100 S MAK-MIN 100
. CATS
80 a0
60 L 60
B 2
40 40
20 20
10 50 100 10 50 100
MNumber of tasks Number of tasks

Figure 36: Comparison of pt f and evaluation of pbec (p = 0.5,7 = 0.8,0 = 0.8)
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Figure 37: Comparison of pt f and evaluation of pbc (p = 0.8,y = 0.5,0 = 0.5)

p=0.8/y=0.5/6=0.8 p=0.8/y=0.5/6=0.8
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Figure 38: Comparison of pt f and evaluation of pbc (p = 0.8,y = 0.5,0 = 0.8)
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Figure 39: Comparison of pt f and evaluation of pbc (p = 0.8,y = 0.8,0 = 0.5)
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Figure 40: Comparison of pt f and evaluation of pbc (p = 0.8,y = 0.8,0 = 0.8)

rate of approximately 60%, highlighting their persistent inefficiencies.

Figures 39 and 40 show that when both p and v are increased to 0.8,
our model maintains a task failure rate in the range of 17% to 30%, while
still ensuring a scheduling percentage based on correlation between 60% and
80%. Meanwhile, FCFS and MAX-MIN continue to demonstrate approxi-
mately 80% task failures. These results indicate that while p and 6 do not
significantly impact performance, v plays a crucial role. Increasing v results
in more task failures due to fewer suitable nodes for execution. Moreover,
our model shows improved performance as the number of tasks increases,
unlike the other two methods, which sometimes exhibit an increasing failure
rate as task volume rises.
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Figure 41: Comparison of load and ptf (v =0.7,0 = 0.7)
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Figure 42: Comparison of load and ptf (v =0.7,0 = 0.9)

6.5.5 Second Experimental Scenario(Performance Assessment)

The results of the second experiment, evaluating our model under a differ-
ent dataset and task allocation scenario, are depicted in the figures below.
Figures 41 and 42 show that our model achieves consistently higher load
distribution while maintaining lower task failure rates. In contrast, LJF and
SJF fail to keep the failure rate low across different task volumes. Addition-
ally, for cases with only ten tasks, a low system load is observed, as expected.
Figures 43 and 44 confirm that our model consistently outperforms LJF
and SJF by maintaining higher load efficiency and minimizing task failures.
Even with stricter suitability thresholds, at least 95% of tasks are successfully
scheduled to appropriate nodes. Meanwhile, LJF and SJF experience higher
failure rates. Observing the trends across all cases, the effect of 6 is negligible
when the remaining parameters are fixed. The main influencing factor is ~,
which, when increased, leads to a drop in system load and a rise in task
failures due to a reduction in suitable nodes for task execution. Overall, the
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Figure 43: Comparison of load and ptf (v =0.9,0 = 0.7)
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Figure 44: Comparison of load and ptf (v =0.9,0 = 0.9)
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results across both experimental scenarios clearly demonstrate the superiority
of our model over traditional scheduling approaches, ensuring balanced load
distribution and minimal task failures.

6.6 Summary and Key Findings

The mechanism we implemented was an innovative effort in the assignment
of tasks through node suitability and the correlation between tasks. The
model employed multi-agent systems and a sum-cost delay evaluation model,
which improved load balancing and reduced task failures significantly. The
important outcomes are as follows:

e Task failure minimization: The scheduling model achieved optimal
output from all nodes resulting in over 95% of tasks being executed
even in cases of heavy load.

e Improved load balancing: With an appropriate load threshold, per-
formance improvements on task completion time were recorded, ensur-
ing balanced load distribution across all nodes.

e Robustness: The model was robust and effective in both small and
large scale task management settings.
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7 Conclusion-Prospects

7.1 Conclusion

This Thesis has provided a significant contribution to the fields of IoT, EC,
CC and PC, particularly in addressing critical challenges related to efficient
data processing, adaptive ML, and task management in resource-constrained
environments. By focusing on the development of novel frameworks and algo-
rithms, this work has enhanced the efficiency, scalability, and adaptability of
distributed systems operating under dynamic conditions. One of the central
contributions is the cluster-based similarity extraction method, which opti-
mizes data grouping and knowledge sharing in distributed datasets. This
method enables edge nodes to identify similar datasets using a synopsis-
based approach, facilitating more effective data processing and federated
learning across clusters. By focusing on statistical similarity over time, the
approach not only minimizes transmission costs but also improves resource
allocation and predictive analytics. Another key contribution is the devel-
opment of a data and resource-aware incremental learning framework, which
effectively balances the trade-off between resource constraints and the need
for continuous ML model updates. This approach minimizes training time
by dynamically rejecting data that does not significantly contribute to the
model’s performance. As demonstrated in the experimental evaluation, this
technique reduced training times by up to 50% while maintaining acceptable
accuracy, making it particularly useful for EC nodes with limited computa-
tional resources.

Additionally, the research includes advancements in TL within the edge
ecosystem, proposing a fuzzy-logic-based method for distribution-based sim-
ilarity detection. This method addresses the challenge of applying TL in en-
vironments where data distributions vary across nodes. By leveraging multi-
dimensional distribution-based similarity, the proposed framework enhances
decision-making processes related to task offloading and knowledge transfer.
The thesis also introduces a drift-based task management mechanism, which
addresses the problem of data and concept drift in EC environments. This
mechanism adapts task execution strategies based on shifts in data distribu-
tion, improving task offloading decisions and optimizing resource utilization
across edge nodes. This dynamic approach allows for greater accuracy in
task execution while ensuring that computational resources are used effi-
ciently, particularly in environments where data patterns evolve over time.
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Finally, the correlation-adaptive task scheduling algorithm provides a novel
way to manage tasks in EC settings by considering the correlation between
task requirements. This approach reduces task failures and optimizes re-
source utilization by grouping related tasks at the same node, thereby im-
proving overall system performance. The algorithm is particularly effective
in minimizing the need for redundant computation and enhancing the reuse
of resources.

Overall, this thesis makes substantial strides in developing more robust,
scalable, and efficient distributed systems capable of handling the increasing
demands of IoT and pervasive applications.

7.2 Prospects for Future Research

Despite the significant progress made in this thesis, there are still numerous
avenues for future exploration. As the complexity of IoT and EC environ-
ments continues to grow, further research is needed to refine and extend the
contributions made in this work.

7.2.1 Edge-Focused Federated Learning Enhancements

The current similarity extraction framework offers a solid foundation for fed-
erated learning in edge clusters, but future research could extend this work
by incorporating more advanced privacy-preserving techniques, such as dif-
ferential privacy. Further research into enhancing communication efficiency
and reducing the computational overhead of federated learning in edge envi-
ronments would be highly valuable, particularly as the number of IoT devices
continues to grow.

7.2.2 Energy-Efficient Resource Management Strategies

Energy efficiency remains a critical area of research in EC environments.
Future work could explore more sophisticated energy-aware task scheduling
algorithms that balance the need for real-time processing with energy con-
servation. This research could focus on optimizing energy consumption at
the edge while maintaining low latency and high accuracy, particularly in
environments with constrained energy resources.
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7.2.3 Adaptive Real-Time Systems for Edge Environments

Future research could explore the development of more advanced adaptive
real-time systems capable of dynamically adjusting their operations in re-
sponse to changing environmental conditions. Incorporating real-time data
processing and anomaly detection capabilities into adaptive systems could
improve the resilience and reliability of EC systems, particularly in mission-
critical applications such as autonomous vehicles and healthcare.

7.2.4 Advanced Data-Aware Incremental Learning Frameworks

Although the current data-aware incremental learning framework has been
shown to significantly reduce training times while maintaining accuracy, there
is potential for refinement. Future work could explore the integration of more
advanced adaptive learning techniques, such as meta-learning, to optimize
model updates in response to abrupt changes in data distributions. More-
over, research into balancing the trade-off between accuracy and resource
efficiency in highly volatile environments could yield more efficient learning
frameworks.

7.2.5 Enhanced Transfer Learning for Dynamic Environments

Future research should focus on further enhancing TL mechanisms to handle
even more diverse and dynamic environments. While this thesis introduced
a fuzzy-logic-based TL mechanism for handling distribution-based similarity,
more sophisticated methods could be developed to adapt to environments
where data distributions are highly volatile or noisy. Incorporating hybrid
approaches that combine RL with TL may further improve the adaptability
of ML models in EC environments.

7.2.6 Cross-Domain and Heterogeneous Transfer Learning

While this thesis focused primarily on homogeneous TL, future research
should investigate cross-domain and heterogeneous TL methods that allow
knowledge to be transferred across domains with different feature spaces.
This research could explore more complex scenarios where edge nodes need
to transfer knowledge between tasks that operate in entirely different do-
mains, such as from image classification to time-series prediction.

140



7.2.7 Scalable Task Offloading with Predictive Capabilities

Future work could build upon the drift-based task management mechanism
by incorporating predictive analytics to anticipate resource bottlenecks be-
fore they occur. Predictive offloading strategies that proactively distribute
tasks based on anticipated changes in data distribution or node availability
could enhance the performance and reliability of EC systems. Additionally,
deeper integration of predictive modeling techniques may help optimize en-
ergy consumption and reduce latency in time-sensitive applications.

7.3 Closing Remarks

The contributions of this Thesis provide a foundation for further advance-
ments in distributed systems, particularly in IoT and EC environments. By
addressing critical challenges in data processing, ML, task management, and
resource utilization, this work moves the field closer to achieving more ef-
ficient and scalable systems capable of handling complex workloads in dy-
namic environments. The prospects outlined here offer a roadmap for future
research that will continue to push the boundaries of what is possible in dis-
tributed computing, ensuring that these systems can meet the demands of
the ever-expanding IoT ecosystem.
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8 Appendix

8.1 Proof of Lemma 1

We provide the proof for Lemma 1.

As mentioned before ¢ fv;[l], t fm[l], trov;[l], NFV;[l], NFM;[l], NROV;[l] are
independent between them, so we can calculate the initial probability sep-
arately for each pair of statistical measure (variance, mean and range of
values).

E(f(4,4,0) = 1« [P(f(i,4,1) = ]+ 0% [P(f(i,4,1) =
Pltfu[ll]NNFV;[l] 20V tfv[l] = 0]« Pltfm;[l]N NF
0] * Pltrov;[l] N NROV;[l] # 0V trov;[l] = 0]

0] = [P(f(i,5,1) = 1]

FAL{I 4 0 t ]

To avoid confusion, we perform further calculations separately. Fach task
requirement has a probability p of existing. This leads to the following:

Pltfu[lINNEV,[l] # 0Vitfv[l] = 0] = px Plt fo;,[[|NNFV,[l] # 0]+ (1—p)
p# PINEVI] € [ed] +(1—p) = px Ple < NEV[I]'< d] + (1~ p)
p* (PINFVj[l] <d] — P[NFVj[l] <c])+ (1 —p)

Pltfmill] " NFM[l] # 0V tfmi[l] = 0] = p* Pltfm[l] N NFM;[l] #
0]+ (1 —p) =p*x PINFM;[]) € [e, f]] + (1 —p) = p * P[e<NFM[l]§
fl+ (A =p)=px (PINFM;[l] < f] = PINFM;[l] <e]) + (1 —p)

Pltrovi[l] N NROV,[l] # OV trov;[l] = 0] = p = Pltroy;[l] N NROV;[l] #
0]+ (1-p)

where
P(trov;[l] N NROV;[l] # 0)
1—P(lg,h]N [NROV [1[1],

= H , h] N [NROV;[I][1], NROV;[I][2]] #

NR [][]])—@)—1— P((NROV;[I][2] < g)
— (P(NROV[][ | <g9)+ P(NROV,[[][1] >
P((NROV;[I][1] < h)) = 1—P(NROV;[I][2]
= P((NROV;[I][1] < h))=P(NROV;[I][2] < g)

(INROV;[I[1] > h)) =1
1= (P(NROV;[I][2] < g)+1—
9)—1+P((NROV;[I][1] < h))
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8.2 Proof of Lemma 2

We provide the proof for Lemma 2.
E(Suz[.]]) = 1*P(Z;:1 f(lvja l) = T>+0*P(Z;:1 f(lajv l) 7& T) = P(Z;:l f(laja l) =
T) = P(f(Z,],l) = 1mf(7'7.]72) = 1ﬂ...ﬂf(7:,j,’l“) = 1) = H;:l P(f(l,j,l) =
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