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«Me arouikn pou euBuvn kai yvwpilovrac 1ic KUupwaeis B, mou mpofAémovrar amé g
oiaraéeig tne map. 6 tou apbpou 22 tou N. 1599/1986, dnAwvw o6r11:

1. Aev mapabérw kouudartia BiBAiwv r apbpwyv 1 epyaciwv GAAwv autoAeéei xwpic va
Ta MEPIKAEIW O€ EI0AYWYIKA Kal XWPIS va avapépw 10 ouyypagéa, 1n xpovoloyia,
oeAida. H autoAeéei mapdBean xwpic cioaywyikd xwpic avagopd arnv mnyn, ivai
AoyokAomn. TMNépav ¢ autoAeéei mapdBeang, AoyokAomn Bewpeitar kai n mapdppacn
gdagiwv amo épya dAAwv, auutrepiAauBavouévwy Kai Epywv OULQOITNTWY LIoU, KABWS
Kal n mapabson aroixeiwv mou dAAor ouvéAeéav n emeéepydabnkav, xwpic avapopd
arnv mnyn. Ava@épw Tavrote ue mANPOTNTA TV TTHYH KATw a1ro Tov mivaka 1 oxédio,
omwg¢ oTa mapabéuara.

2. Aéxouar 01 n autoAeéel mapd@eon xwpic elIoaywyikd, akoua Ki av ouvodeUeTal
ammo avapopd otnv mnyn o€ KAmoio dAAo onueio Tou Keluévou f aTo TEAOS Tou, Eival
avriypan. H avagopd otnv mnyn oTo TEA0S TT.X. piag mapaypdeou 1 piag oglidag, dev
OIkaloAoyei auppagn edagiwv Epyou GAAOU auyypapéa, E0TwW Kal TTAPAPPACUEVWY, KAl
mapouadiact) Tous wg SIKN [Iou gpyacia.

3. Aéxouar 6T umrdpxel £TTIONS TTELIOPIOUOS OTO UEYEOOS Kai OTn aUXVOTNTA TWV
mapabeudTwy ToU UTTopW va evidéw OTnVv gpyacia Hou eviog gioaywylikwy. Kdabe
ueyaAo mapdabeua (1.x. o< mivaka 1 mAaiolo, KATT.), TPoUTTOBETEl €I0IKES PUBLIOEIS, Kal
orav dnuoaisveTal TPOUTTOBETEI TNV AdEIa TOU OUyypaéa 1 Tou €k60Tn. To idio kai ol
Tivakes Kai 1a ox€oIa

4. Aéxouai OAES TIS OUVETTEIES O€ TTEPITITWON AOYOKAOTTAS 1 avTiypa@ng.

Hpepopnvia:  ..../..../[2022

O AnAwv.

(1) «Ormroiog ev yvwaoer Tou dnAwvel weudn yeyovora 1 apveitar fj amokpuTmTel 1a aAnBiva ue
Eyypaepn utretbuvn dnAwon

ToU dpBpou 8 map. 4 N. 1599/1986 riuwpeitar ue QUAGkIon ToUuAdxioTOV TPIWV uUnvwv. Edv o
UTTaiTIOS QUTWY TwV TTPAEEWV

OKOTTEUE va TTPOCTTOPIOEl OTOV €QUTOV TOU N 0 GAAov tTepIouaiakd opeAog BAarrrovrag Tpitov 1
oKOTTEVUE Va BAdwel GAAov, Tiuwpeitar pe kGBeipén uéxpr 10 eTwv.»










I[TEPIAHWH

H avutopatomoinon tng extipnong {Nuiev o KTipla PImopet va eivat GUOKoAn. Xe
autn v epyaoia Ba Golpe meog 1 e@APUOYI ApPX®V UNXAVIKNG pabnong xau
povtedwv Babudag pabnong OSieukoAuUver Katd IOAU TNV €mlAUCH  TETOL®V
rpoBAnuatev. Oa Sramotoooupe 0Tl 1] pnxXaveg vmootnpiéng Stavuopatewv (Support
Vector Machines — SVMs) pmopouv va €X0UV OnUavTIKO AVTIKTUIIO 0TO 0TAO10
tagivopnong {nUiav Katl va pag dwoouv mo akplBn amotedéopata. To poviedo pag
xpnoiporotel 6U0 OLa@OPETIKA VEUPOVIKA OlKTUad, eva O1KTUO Yid Ttadlvopnon
KTIplev Kal eva 0eutepo pe SVM Aoylkr g TeAlKn] avayveplon mou Xpnoipormnolel
ta BApn TOU MPETOU Yld VA aVIXVEUOEL KTipLd KAl VA eKIIAL0eUTEL OTNV €KTIPUNon
v pe Baon eva ouvolo Sedopevev S0pU@POPLKIE £LKOVAE TTOU AIIelKoVi{oUV TO
pLv Kat to petd. Kavoupe pua ouykpion petady tou SVM kat tou povtédou mou dev
Baoiletar oe SVM yua va Soupe av to eminmedo SVM €xelr KAmIoLo avtikKTumo otnv
AVOYV®PL0I KATAOTPOPROV.







ABSTRACT

Automating damage assessment in buildings can be a challenging
research topic. In this thesis, we are going to see how the application of
machine learning algorithms and deep learning models can facilitate
towards finding the solution of this problem. We elaborate on if Support
Vector Machines (SVM) can have any major impact in the damage
classification phase and provide us with more accurate results. Our model
adopts two different neural networks, one for building the classification
model and a second one with involving the SVM as the last layer that uses
the weights of the first network to detect buildings and perform training
on damage assessment based on a pre/post satellite image dataset. We do a
comparison between the SVM and non SVM based model to see if the SVM

layer has any impact to the damage classification.
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Introduction

It would benefit our society, if we could know the damage assessment of buildings and
therefore trapped humans in them after a natural disaster in a certain area (e.g., the
capital city of Ukraine) in a few hours. In a natural disaster scenario (e.g., earthquake,
tsunami) where affected areas are inaccessible (e.g., flooded) by land we need to know how
many buildings have been damaged. Something like this can be achieved by grading the
buildings through human visual inspection. An approach like this provides the most
reliable classification method but needs proper staff training prior to the occurrence of the
disaster and plenty of labor hours which translates into money and since we are dealing
with a disaster the most critical of all, time. So, by automating the whole classification
process rescuers could save time to focus on rescuing trapped people (Xu, Lu, Li, Khaitan,
& Zaytseva, 2019) [1].

Over the last decade there have been huge advancements in the field of Machine
Learning and consequently in deep neural networks (DNNs).

We are going to use SpaceNet to train our model and detect what is a building in every
satellite image. Then, using ResNet50 with some extra conv layers with the last of them
being an SVM classifier we will train our model to identify level of damages in buildings
and compare that to the baseline approach that xview2 provides to see if SVM as final
layer can be effective.

The main contribution of this paper is the study of machine learning along with SVMs
in situations like humanitarian crisis and damage estimation after a major natural
disaster.

To properly train a model like the proposed, someone can train the model to recognize
what a building is and then using satellite images of pre/post disaster images train it to
the level of damage of any given image.







Machine Learning (Classifiers, SVMs, DMT's)

We take advantage of machine learning in our everyday lives, sometimes without even
noticing. From chatbots, language translation, text editors and even Amazon similar
product recommendations. Most of the companies nowadays use the term Artificial
Intelligence and machine learning as homonyms. Actually, the second one is a
subcategory that gives computers the ability to learn things without having to be
programmed to do a specific task. Even the companies that have not adopted Machine
Learning yet are planning to use it in the coming years.” It is important to engage and
begin to understand these tools, and then think about how you are going to use them well.
We must use these [tools] for the good of everybody” said Dr. Joan LaRovere!. Considering
that we are going to analyze the different machine learning approaches along with various
classifiers (e.g., Support Vector Machines - SVMs, Decision Making Trees) and see how
the study of SVM and damage assessment can help the society address natural disasters
more efficiently.

Therefore, supervised machine learning models needs to be trained using labelled data
sets which allow the model to learn and grown over time by itself. For example, providing
the model with images of buildings labelled by humans, the model can learn what a
building is and classify images containing buildings without prior access to them.

On the other side, unsupervised machine learning can look for patterns in un-labelled
data to find patterns or the trends. A model like that can look through a company’s sales
data and identify several types of clients and therefore the company can provide more
targeted ads to each of them.

Finally, we have reinforcement machine learning which trains the model through trial
and error and reward the model when it makes the best decision. Models like this can and
have been used numerous times to train Stockfish [15] or Othello 8 x 8 and even
autonomous vehicles so they will know that they made the right decisions and by doing
that they will learn over time what actions they should make [16].

! https://www.childrenshospital.org/directory/physicians/I/joan-larovere
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Machine Learning with SVM

According to the OpenCV documentation the definition of a SVM is “a discriminative
classifier formally defined by a separating hyperplane. In other words, given labeled
training data (supervised learning), the algorithm outputs an optimal hyperplane
which categorizes new examples” [4].

The SVM algorithm, in its original form, 1is an algorithm for
two-class classification, meaning that the algorithm, in its infancy, could only classify data
into two distinct classes. It maps the input vectors into a high dimensional feature space.
In this feature space, a hyperplane is created with properties that ensure a high
generalization ability of the network (Cortes & Vapnik, 1995). The optimal separating
hyperplane discriminates the data set fifteen into discrete number of classes that
minimizes misclassification attained during the training phase (Kavzoglu & Colkesen,
2009) (Maulik & Chakraborty, 2017).The implementation of a linear SVM assumes that
the feature data are linearly separable. However, in practice, data points of different
classes often overlap with each other making the basic linear decision boundaries
insufficient. Kernel functions have thus been developed (Mountrakis, Im, & Ogole,
2011).Non-linear kernels, like the radial-basis function, map the input to a higher spatial
dimensional feature space where a linear decision boundary, via hyperplane, separates
the classes. SVMs can manage small training data sets while often producing higher
classification accuracy than traditional methods (Mantero, Moser, & Serpico, 2005). In
addition, the SVM learning process follows a structural risk minimization scheme that
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minimizes classification error on unseen data without any previous assumptions made on
the probability distribution of the data. Another benefit of the SVM model is its ability to
strike a balance between accuracy on a limited amount of training data and the ability to
generalize unseen data (Mountrakis, Im, & Ogole, 2011).This means the SVM can strike
a reasonable balance between bias and variance. If the classifier has too many adjustable
parameters (bias), it will learn the training data without difficulty, but it is unlikely that
it will generalize properly for the unseen data patterns (Boser, Guyon, & Vapnik,
1992).0ne challenge of the SVM model is the choice of an optimal kernel. Although there
are many kernel functions, some are not optimal for certain remote sensing applications
(Mountrakis, Im, & Ogole, 2011). Research has shown that kernels such as the radial
basis function and polynomial kernels produce different results when applied to satellite
imagery (Zhu & Blumberg, 2002).

Linear SVM

It 1s the simplest form of Support Vector Machine that does not take advantage of
kernels and sometimes also called Large Margin Classifier so it can only classify data into
two distinct classes. In a random plot that has two classes (binary classification) we
separate them in many ways (vertical lines that split data in half). SVM classify samples
to split the data with the largest margin possible. So, a Support vector is either close to
the boundary or falsely classified. So basically, SVM tries to find the optimal hyperplane
that split the data into with the highest maximized margin. When we train a SVM model
support vectors have a major impact in the classification process, that by removing

nonsupport vector (far away from the boundary samples) has no impact to the model at
all.

1
hg(x) =
1+e 070
The cost function that is used to train the SVM is remarkably like Logistic Regression
function but with a piecewise linear approach. Achieving lower theta values, we can be
more confident that our result is more accurate.

Non-Linear SVM

Nonlinear SVM is used to classify non-linear separated data and therefore someone
cannot classify it using a straight line to separate into two categories. The classifier is
called Non-Linear SVM Classifier. When we are dealing with non-linear data, we need
to separate our data in a way that using a straight line cannot help us. For example, in
three dimensions using a circle to encapsulate one area provides us with a binary
classification in the three dimensions by assuming everything outside of this circle
belongs to one class and vice versa.










Deep Learning

Imagine what is like being an infant and keep asking if every individual item that you
stumble across is a dog. After many iterations of the same question the infant will learn
to recognize the characteristics that every dog has and therefore recognize them easier.
Similarly Deep Learning use neural networks with many layers to extract if the given
image is a dog or not. To achieve this behavior the network, learn what a dog is using a
labelled dataset and extract features that every dog has (e.g., tail, fur, four legs etc.) so
when you give the model a new dog image it can use some layers to detect individual
features of a dog (e.g., paws, tail, mammary glands etc.) while another layer will conclude
if all this assemble a dog or not. Sometimes those models are so smart that they can even
do breed classification along with whether if the image contains a dog or not.

ResNet

Deep convolution neural networks are widely used for image classification. Deep
Networks contain level features and classifiers that can be benefit by stacking more layers
to extend the depth of the network. Using more than usual layers in deep learning models
1s a quite common approach in visual recognition tasks (e.g., against ImageNet dataset)
alongside with some non-visual problems but how are we sure that stacking more layers
1s going to give as a better model performance? The first part of the equation to this
problem was the problem of vanishing/exploding gradients (Bengio, Simard, & Frasconi,
1994)[10] but using normalized initialization and intermediate normalization layers gave
the networks with tens of layers the ability to start converging for stochastic gradient
descent with back propagation. However, after applying the new layers the networks
training gets saturated and starts to degrade leading to a degradation problem that
cannot be fixed by providing more layers because that will only give the network higher
training errors. So, to fix the degradation problem the authors of (He, Zhang, Ren, & Sun,
2015)[3] proposed a deep residual learning framework.

A residual neural network (ResNet) [3] is a special type of artificial neural network
(ANN) that has been proposed by (He, Zhang, Ren, & Sun, 2015) [3] and won the first
place in the ILSVRC 2015 with a top5-error of 3.57%. They were inspired by VGG and
created a plain network with same time complexity across the layers by keeping or
doubling the filters based on the output of the feature map and down sampling to
convolutional layers with a stride of two. The last layer used global average pooling layer
and a 1000-way fully connected layer with SoftMax providing thirty-four weighted layers
way less that VGG nets. Based on the plain network they created shortcut connections to
achieve the residual network.

ResNet tend to get higher accuracy for increased depths compared to other
approaches.
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ResNet50

ResNet50 is a variant of ResNet model which has 48 Convolution layers along with 1
MaxPool and 1 Average Pool layer.

The architecture of ResNet in general and therefore ResNet50 is:

layer name | output size 18-layer | 34-layer ‘ 50-layer | 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
3x3 max pool, stride 2
1x1, 64 1x1,64 | 1x1,64 |
2. 56x56 [ ’ ] [ ’ [ ’
convex x [ g’;g’gj }xz gig’gj ]x3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
’ ’ [ 1x1,256 { 1x1,256 | { 1x1,256 |
- - - ; 1><1,128-| [ 1x1,128 ] [ 1x1,128 ]
convd.x | 28x28 ;i; gg x2 gig gz x4 [ 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
- ’ . L ’ J [ 1><1,512J L 1x1,512 | L 1x1,512 |
- ; - . 1x1,256 1x1,256 ] 1x1,256 ]
convd x | 14x14 ;igggg %2 gigggg x6 3x3,256 |x6 3x3,256 | x23 3x3,256 | x36
. ’ : . ’ J 1x1, 1024 1x1,1024 | 1x1, 1024 |
- ; - 1 1x1,512 1x1,512 1x1,512
convs.x | 7x7 ;iggg x2 gi;gg x3 || 3x3,512 |x3 3%3,512 | x3 3x3,512 | x3
L ’ : L ’ J 1x1,2048 1x1,2048 1x1, 2048
Ix1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° | 36x10° | 3.8x10° | 7.6x10° 11.3x10°
Inceptionv3

Inception-v3 is a convolutional neural network architecture from the Inception

family that makes several improvements including using Label Smoothing, Factorized 7
x 7 convolutions, and the use of an auxiliary classifier to propagate label information lower

down the network (along with the use of batch normalization for layers in the sidehead).
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Detection of Damages in Building

As the problem of detecting damages in buildings is quite extensive and the
approaches to solve it vary from mathematical prediction models based on previous
natural disasters data. Specifically for an earthquake disaster the observation of seismic
activity before an earthquake occurs helps the calculation of the impact of damage in
buildings .Therefore this will help rescuers to decide which building are more crucial for
human evacuation (Morales-Valdez, Alvarez-Icaza, & Escobar, 2020).In the other hand
we have properly trained deep learning models (e.g., ResNet) with the help of pre/post
disaster satellite images for real-time classification damage assessment. More specifically
on earthquake impacted buildings that human inspection is difficult, we can benefit from
the use of an Unmanned Aerial Vehicle (UAV) that can go to the affected area relatively
easier and provide the rescuers with a damage assessment report for every single
impacted building.

Building Damage Assessment Using Deep Learning and
Ground-Level Image Data

With the help of computer vision, Karoon Rashedi and Nia Greg Mori [5] tried to solve
a different variation of the problem that was mentioned in the introduction. Their main
difference is that this approach performs damage classification on buildings when the
remote sensor is on ground-level instead of aerial image input. By using only post-disaster
images from a small dataset that they created on their own as of the time of publishing
the paper there was no prior properly labeled dataset with round-level images of areas
affected to fit with their approach. So only by using post image data of damaged or not-
damaged building they implemented three different convolutional neural networks each
of them designed to perform an extremely specific task. The first one simply analyzes the
image. Both, second and third, require some image preprocessing because images
sometimes contain irrelevant information in comparison to buildings, such as roads, cars
and basically anything that is not a building so to fix that they used a semantic
segmentation algorithm to extract buildings and anything else in the image that indicates
that buildings have any damage in them (e.g., broken walls on the ground close to the
house). The Convolution Networks later take the raw and preprocessed data in order to
extract features and as final step a regressor is used to output a percentage value
corresponding to the damage that the image has. They only use post images, and the
output is a continuous value as a factor measurement rather than predefined damage
categories. (Nia & Mori, 2017) [5]

Earthquake Damage Assessment Based on Deep Learning
Method Using VHR Images

Another approach of the damage assessment problem and human security after a
natural disaster was addressed with the help of Deep Learning Neural Networks along
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with VHR (Very High Resolution) satellite images by Masoud Moradi and Reza Shah-
Hosseini and presented at the 3rd International Electronic Conference on Geosciences.
They used Haiti earthquake that happed on the capital city Port-au-Prince on 12 January
2010 as their base rural area to build their training dataset. Pre disaster images of the
area acquired after four days of the earthquake and post disaster are based on images
from 1 October 2009. Both pre/post images had four multi spectral bands along with one
high resolution band. To proper label the above-mentioned approach of dataset the
International Institute UNITAR / UNOSAT data and Earthquake Geo-spatial Data
“Dataverse” (CGA, Harvard University) was used. After the collection of pre/post images
they compiled every pre/post VHR image into a large image with every pixel have a binary
value that represent the state of the destruction of the building structure. The newly
created 1images were projected into UTM/WGS84 geo-referenced coordinate system, and
they used random patches of the dataset that have higher that fifty percent of pixel
labeled as damaged or undamaged. Their base network architecture and training is based
on the proposed of UNet (Ronneberger, Fischer, & Brox, 2015)[6] along with Deep
Residual UNet (Zhang, Liu, & Wang, 2018) [7]. To accelerate the network convergence,
they took advantage of Batch Normalization and normalized the input layer by
performing adjusting and scaling across the activation layers of the network. Convolution
layer was used to replace the max pooling layer that all UNet have by nature because it
performs better. In addition, they used a batch size of twenty-five along with image patch
size 256x256 used to train the UNet model for about fifty epochs with a learning rate of
0.01 along them. Root Mean Square Probability was used as the parameter optimization
as we speak for a large dataset and cross-entropy as the loss/cost function. The model they
proposed is used for mapping earthquake building condition assessment but with the
proper dataset for any other type of natural disaster (e.g., fire, tsunami, etc.) and the
corresponding labeling it can be trained again as it is a supervised model and well
developed so it can meet the criteria of any other natural disaster easily (Moradi & Shah-
Hosseini, 2020)[8].
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Our Model

Firstly, before starting to explain our deep learning model, we must first collect data
for the problem we are willing to solve because the more data someone has for a problem
the better the model is going to be trained. This can be done quite easily with the help of
DIU (Defense Innovation Unit) that offers through the xView2 challenge site the xBD
(Gupta, et al., 2019) [2], a large-scale dataset containing pre/post satellite imagery with
ground sample distance lower than 0.8 for various natural disasters (e.g., earthquakes,
wildfires, etc.) covering plenty of geographical locations along with over 800,000 building
annotations. Also due to that wide building coverage across many regions the dataset
creates a perfect diversity for different building (e.g., sizes, techniques, etc.) along with
negative satellite images that contains areas with undamaged buildings or no buildings
at all making the perfect for checking if building classification was trained properly. After
consulting disaster response experts they created a joint damage scale that properly
representes real building damage conditions as shown in Figure 1.

e Label Visual Description of the St

Undisturbed. No sign of water, structural damage,
O No damage shingle damage, or burn marks.

Building partially burnt, water surrounding the
structure, volcanic flow nearby, roof elements
1 Minor damage  missing, or visible cracks.

Partial wall or roof collapse, encroaching volcanic
flow, or the structure is surrounded by water or
2 Major damage mud.

Structure is scorched, completely collapsed,
partially or completely covered with water or mud,
3 Destroyed or no longer present.

Figure 1 Joint Damage Scale from xView?2 site
Model

“The localization model was based on a SpaceNet submission by Motoki Kimura,
which featured an altered U-Net architecture [18]. We lightly modified this model to fit
our dataset. The model was trained on an eight GPU cluster for seven days. The model
achieved an Intersection over Union of 0.97 and 0.66 for “background” and “building,”
respectively.

The classification model is shown in Figure 2. The ResNet50 is pre-trained on
ImageNet [4] whereas the smaller side network is initialized with random weights. All
convolutional layers use a ReLU activation except the last one that uses soft-max
activation. The output is a one-hot encoded vector where each element represents the
probability of an ordinal class. The model uses an ordinal cross-entropy loss function.
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Unlike traditional cross-entropy, ordinal cross-entropy penalizes relative to the distance
between true and predicted ordinal class. Since the difference between any two classes is
not interchangeable, this loss function allows the model to better distinguish between the
various levels of damage.”

(128x128x32) (64x64x32)  (B4x64x64)  (I2x32x64)  (32x32x64) (16x16x64)
1 i | B
1 ‘ | ‘ ] ‘ . [

Convolution > Max Paoling > Convoluuon;, Max Poaling J’Conn.rmuuang’ Max Pooling __y, Flanen

(16384x1)

(5x5) (2x2) (3x3) (2x2) (3x3) (2x2)

— L
g1ze;:?;:3x3) ResNet 50 > Flaiten J—’

(32768x1)

Dense Dense Dense Output
(2024x1) " (524x1) " (124x1) (4x1)

Figure 2 Architecture of the baseline classification model. The input is fed into a pre-trained ResNet 50 as well as a
shallow CNN. The outputs of each stream are concatenated and passed into dense layers for classification

Uses the Space Net [9] model for the building classification that is based in UNet a
Convolutional Network for Biomedical Image Segmentation [6] and a damage training
classification based on ResNet50 with some additional “fuzz” layers and for the last layer
we simulate an SVM using categoral_hinge as the loss function to determine in which of
four classes of the damage scale each individual building belongs to.
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Use cases and performance results.

Taking into account the earthquakes that happened in October 2021 in Heraklion,
Crete with magnitudes varying from small ones to 6,3 in the scale of Richter as seen in
Figure 3 and in general Greece having a high seismic activity though out its land we
believe that a deep learning model like this can be a very powerful “weapon” in the hands

Total number of quakes vs time

Crete [Greece) - past 30 davs (updated:28 Oct 2021, 11:33 GMT) Combined seismic energy
140 100 GWh
ME.3 - Greece: 23 Km E From Zakros 4 SO0GWh
12 2021

120 +

—— =+ 5GWh
4+ 2GWh
100 =+ | + 1GWh
73 = 100 MWh
-E M
-
i] B0 + g — | 1o
B - —
s — — —
5 — |—]
% g0 lmmaaa — ] R —
E — o]
S
= — | — | gr—
M7
40 — — 7]
—— — = | M5
I - | — [
20 4 — — e f— ] M3
= Mz
| M1
0
29 Sep 15 Oct 29 Oct 2021
MNotes: Total energy released: approx. 50 GWh
Data near-complete from magnitudes of 4.0 ar higher.
Averagze number of quakes above maznitude 1 per day: 62 [total: 1857) Vmo
Quake data: wawew volcanodiscovery.comfearthquakes today. html AD'SCDVERY

Figure 3 Total Number of Earthquakes in Crete

of civil protection rescuers to properly have an estimate of damages in the affected area
and more efficiently organize the teams to go to buildings more targeted rather that
visually inspecting each one and deciding on premise. Also sometimes given the high
number of Richter some places become obscured and inaccessible by foot so having the
damage assessment for each building can help provide aerial support to these buildings
and therefore rescue trapped people in them.

Another scenario is when a wildfire occurs for example the fires that happened the
summer of 2021 in Attica and destroyed 16% of the forests [12]. Along with the forest a
lot of buildings suffered various damages to their structural integrity. Something similar
happened to Evia Island due to the summer heatwave and other factors that are not my
study field but left us with over 500.000 acres of burnt forest and of course a lot of damaged
and even totally collapsed buildings. So, people living in these areas need compensation
from the current government. Therefore, all the damaged buildings need to pass a visual
inspection from government assigned civil engineers to create reports for each individual
building. But when we are dealing with thousands of buildings across a wide area of an
island like Evia something like this is very time consuming. To put it in a simpler way
people, need to re-build/fix their homes in expectation of having a place to live and
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government must classify the damages quickly. Being able to use satellite images of the
affected acres to generate a report with the help of deep learning model or even use
multiple UAVs to scan the whole affected area by divide and conquer method or a
combination of both it will save a lot of time and money.

Performance

Using the SpaceNet algorithm to train our model so it can easily detect building so it
can identify buildings in new locations that a new disaster might occur. We used santa-
rosa-wildfire as a subset of our dataset to train our model to detect what is classified as a
building. (Figure 4-5)

—— main/accuracy

0.98 7 validation/main/accuracy

0.97 7

0.96

0.95 1

0.94

0.93 ~

0.92 4

T
0 20 40 60 80 100
epoch

Figure 4 Accuracy of SpaceNet (Santa-Rosa-Wildfire)

0.250 —— main/loss
T validation/main/loss

02251 1
. W
0.100 Iwﬂu%‘%,wﬁ

W

0.075 1

0.050 7

T
0 20 40 60 80 100
epoch

Figure 5 Loss of SpaceNet (Santa-Rosa-Wildfire)
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Epoch | main/loss | validation/main/loss | main/accuracy | validation/main/accuracy | elapsed time
01 0.248371 0.228309 0.918139 0.959325 72.3883
10 0.149629 0.0970564 0.939556 0.956784 600.198
20 0.117099 0.088584 0.953469 0.965297 1184.31
30 0.116498 0.0813691 0.954175 0.96966 1770.02
40 0.0957175 0.0730834 0.962931 0.97179 2359.9
50 0.0785189 0.0811975 0.969644 0.970451 2949.08
60 0.0831312 0.0682702 0.967713 0.974896 3552.44
70 0.0730851 0.0632934 0.971921 0.975701 4149.39
80 | 0.0747385 0.0515737 0.971226 0.979858 4740.75
90 | 0.0683723 0.0558712 0.974289 0.979437 5338.04
100 | 0.072806 0.0477328 0.972347 0.981581 5930.5

LinearSVM

building will be destroyed or will have a minor damage.

21

For demonstration purposes if someone uses as a last layer a linear SVM he will get
an accuracy of 25% of the classification based on the joint damage scale. This happens
because the linear SVM will classify all buildings as one category. For example, if all

Figure 6 Damage Classification with Linear SVM (Santa-Rosa-Wildfire)
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Figure 8 Damage Classification using baseline approach (Santa-Rosa-Wildfire)




Nonlinear-SVM

Running nonlinear SVM as the last layer of our damage classification model gives us
reliable results but with some false positives but they are mostly misidentified buildings
1.e. (top-right corner show two green “houses”) but that is caused from the building
classification model that was only trained one hundred epoch and with a very small subset
(Santa-rosa-wildfire) of the whole xView2 dataset.

Figure 9 Damage Classification using Non-Linear SVM as last layer (Santa-Rosa-Wildfire)
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Conclusion and Future Work

Taking everything into account, building detection can be a very challenging due to
the fact that when you create or extend your dataset with images you have to deal with
photos that have some noise (i.e., clouds covering part or the whole building, foggy/muddy
area) but xview2 seem to merged a lot of useful data into one properly label dataset to
help with a good baseline that can be extended relatively easier. In addition, damage
assessment can be a very interesting research field as it can help in a lot of difficult
situationsi.e. (earthquake, tsunami or even a war).So to contribute in this area we wanted
to see if an SVM as it a very common last layer along with the soft-max approach in order
to solve classification problems [19] and find out if it will benefit our damage classification
model.

Future Work

To further improve the proposed model someone can use ArcGIS Pro to fetch building
feature map of the affected area so the model will only perform damage classification
because it will already know where the buildings are based on the extracted feature map.
Another approach is to use Google Maps API to fetch satellite images of affected area days
prior to the natural disaster tailored to his needs (e.g., same weather conditions as the
disaster ones) and use SpaceNet or Building Footprint Extraction [13] to extract building
feature map. The second one works well with both satellite images and aerial ones, so the
use of a UAV becomes a lot easier. The only downside of this is that after the address of
the natural disaster the model needs to be trained again with the new provided data.

Considering the above, the use of an SBC (e.g., Raspberry Pi) equipped with a camera
on top of a drone with the help of a 5G capable model can easily send those images in real
time (1ms) to a cloud infrastructure to perform the whole classification process and
provide the drone of better the human that controls the drone a separate feed of video
containing colored buildings corresponding to their damage.

Another approach of the propose of a drone is the use of the Jetson Nano to perform
the Al workload on the device as Jetson is capable of such GPU heavy tasks without the
need of cloud and save time for transmission to the cloud infrastructure and vice versa.

To further complete the entire process the whole dataset can be used to train the
building classification algorithm and later train the damage classification per disaster.
So, in any future disaster the specific model can be used to address that extremely specific
disaster-problem and therefore have one model for every disaster that might occur in the
future.
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Section A

GPU: 0
# Minibatch-size: 16
# Crop-size: 400
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# Epoch: 100

31

epoch main/loss validation/main/loss main/accuracy
validation/main/accuracy elapsed time
1 0.248371 0.228309 0.918139 0.959325 72.3883
2 0.171758 0.184291 0.941087 0.959417 130.107
3 0.174309 0.165682 0.937529 0.957574 187.6
4 0.156248 0.130873 0.942095 0.958216 244,938
5 0.150401 0.155715 0.945608 0.941414 307.313
6 0.160608 0.110339 0.942958 0.956322 364.715
7 0.162063 0.105588 0.939092 0.959988 422.048
8 0.148145 0.108511 0.94729 0.954119 479.314
9 0.150408 0.100966 0.94088 0.958286 542.456
total [ ..o ] 9.76%
this epoch | 1 75.61%
100 iter, 9 epoch / 100 epochs
inf iters/sec. Estimated time to finish: 0:00:00.
10 0.149629 0.0970564 0.939556 0.956784 600.198
11 0.137875 0.0994239 0.945984 0.958634 657.487
12 0.143337 0.100507 0.94334 0.95379 714.853
13 0.142189 0.212782 0.94318 0.95973 777.116
14 0.137869 0.0964185 0.944517 0.959419 834.402
15 0.134803 0.0881785 0.945146 0.963328 891.748
16 0.13055 0.110902 0.948457 0.963406 949.162
17 0.141082 0.0873135 0.945165 0.964491 1011.66
18 0.142233 0.0955827 0.944351 0.966174 1069.22
19 0.119621 0.0849503 0.953885 0.967461 1127.02
total [HHHHHHH ..o 119.51%
HHHHHHHHHHHHHHHH ] 51.22%
200 iter, 19 epoch / 100 epochs
0.17415 iters/sec. Estimated time to finish: 1:18:57.398682.
20 0.117099 0.088584 0.953469 0.965297 1184.31
21 0.121465 0.0816433 0.952036 0.965443 1246.43
22 0.126179 0.0872653 0.951859 0.966938 1303.42
23 0.107696 0.0772394 0.957968 0.968948 1360.53
24 0.112647 0.077409 0.956857 0.968368 1417.5
25 0.111414 0.0841082 0.957264 0.967176 1479.61
26 0.115445 0.092549 0.955892 0.968219 1536.62
27 0.127015 0.0863309 0.951334 0.964179 1593.64
28 0.111527 0.0822129 0.958583 0.967748 1650.82
29 0.10085 0.0808828 0.96147 0.965174 1712.68
total | BRI 129.27%
this epoch [HHHHHHHHHH ..o, 1 26.83%

300 iter, 29 epoch / 100 epochs
0.17466 iters/sec. Estimated time to finish: 1:09:10.910317.




30 0.116498 0.0813691 0.954175 0.96966 1770.02
31 0.104715 0.0898064 0.959501 0.962393 1832.73
32 0.111302 0.0715475 0.955923 0.972555 1890.05
33 0.124029 0.0994614 0.950924 0.96448 1952.59
34 0.115141 0.0824721 0.95641 0.966538 2010.29
35 0.127418 0.102276 0.95061 0.965954 2068.23
36 0.11104 0.0688331 0.956823 0.974216 2125.61
37 0.0997533 0.0797492 0.960572 0.969716 2187.98
38 0.108509 0.0764989 0.957282 0.96903 2245.14
39 0.101501 0.0716731 0.961042 0.972733 2302.46
total [HHHHHHHHHHHHHHHHHARE. ] 39.02%
19N TSI=Y oo e] o N = ] 2.44%
400 iter, 39 epoch / 100 epochs
0.17357 iters/sec. Estimated time to finish: 1:00:00.922183.

40 0.0957175 0.0730834 0.962931 0.97179 2359.95
41 0.0889849 0.0697198 0.965659 0.9725 2422.83
42 0.109669 0.121636 0.955574 0.962107 2480.33
43 0.103904 0.0728264 0.959595 0.97026 2537.58
44 0.0952033 0.0896886 0.962459 0.963557 2594.95
45 0.0961043 0.0647265 0.962201 0.975304 2657.06
46 0.0898943 0.0804596 0.964735 0.97182 2714.16
47 0.091459 0.0717713 0.963961 0.970845 2771.52
48 0.103929 0.0699394 0.95989 0.971433 2829.12

500 iter, 48 epoch / 100 epochs
0.17456 iters/sec. Estimated time to finish: 0:50:07.620641.

49 0.0828965 0.0705439 0.968148 0.971807 2891.61
50 0.0785189 0.0811975 0.969644 0.970451 2949.08
51 0.0914359 0.0633786 0.964509 0.97742 3021
52 0.0841678 0.0630484 0.967562 0.97641 3079.17
53 0.0947962 0.0857803 0.963663 0.967 3142.42
54 0.0814097 0.11928 0.968978 0.965359 3200.08
55 0.0940421 0.0779933 0.962563 0.972216 3257.88
56 0.0886972 0.0655407 0.964402 0.974286 3316.03
57 0.0859889 0.0648892 0.967084 0.973419 3379.1
58 0.0869022 0.068124 0.965733 0.975923 3436.88
total [
this epoch |
600 iter, 58 epoch / 100 epochs
0.17334 iters/sec. Estimated time to finish: 0:40:51.759806.
59 0.0822741 0.0625559 0.968018 0.976533 3494.69
60 0.0831312 0.0682702 0.967713 0.974896 3552.44
61 0.0837534 0.0605224 0.966955 0.975377 3615.23
62 0.080858 0.0950384 0.969182 0.970821 3673.19




33

63 0.0858145 0.0697039 0.967085 0.974962 3730.97
64 0.0804658 0.0634525 0.968379 0.973715 3789.33
65 0.0820634 0.0679786 0.96692 0.976543 3853.05
66 0.0747686 0.0624412 0.970501 0.976478 3911.42
67 0.0778439 0.0587748 0.969718 0.977483 3969.79
68 0.0750105 0.0651996 0.971134 0.976345 4027.87
total [ ] 68.29%
this epoch [FHHARHHHRHHARRE..c...cooeeeeeeeeiiieeeeeee 129.27%
700 iter, 68 epoch / 100 epochs
0.17314 iters/sec. Estimated time to finish: 0:31:17.112641.
69 0.0731202 0.0554982 0.97163 0.979046 4091.22
70 0.0730851 0.0632934 0.971921 0.975701 4149.39
71 0.0725655 0.0691743 0.971785 0.974449 4207.55
72 0.0759979 0.0567736 0.970344 0.979041 4265.78
73 0.0716494 0.0862464 0.97156 0.972297 4328.97
74 0.0765689 0.0569171 0.97015 0.97768 4387.21
75 0.0651007 0.0570131 0.97516 0.978539 4445.25
76 0.0677926 0.0536317 0.973084 0.979542 4503.42
77 0.0757188 0.0595677 0.970207 0.976759 4566.5
78 0.0674326 0.0638738 0.97378 0.977465 4624.64
total [: ] 78.05%
this epoch [HH. ..o ] 4.88%
800 iter, 78 epoch / 100 epochs
0.17282 iters/sec. Estimated time to finish: 0:21:41.967752.
79 0.0689469 0.0622197 0.973102 0.977563 4682.76
80 0.0747385 0.0515737 0.971226 0.979858 4740.75
81 0.0727194 0.0550089 0.971974 0.980278 4804.09
82 0.0643093 0.0571189 0.975393 0.977822 4862.13
83 0.0767177 0.0588132 0.969083 0.977863 4920.19
84 0.0722139 0.0571848 0.971718 0.977924 4978.26
85 0.0679254 0.0552411 0.973352 0.979098 5041.69
86 0.0706984 0.0503689 0.972849 0.981077 5099.83
87 0.0628854 0.0488895 0.975805 0.980857 5158.02

88
89
90
91
92
93
94
95

0.0696999
0.0657108
0.0683723
0.0675669
0.0740278
0.064117

0.0628196
0.0604761

900 iter, 87 epoch / 100 epochs
0.17313 iters/sec. Estimated time to finish: 0:12:02.013041.

0.0541805
0.0556194
0.0558712
0.0502057
0.0538187
0.0519578
0.0479857
0.0703855

0.973247
0.974176
0.974289
0.974191
0.97133
0.975001
0.976026
0.976585

0.97934
0.978367
0.979437
0.980271
0.979509
0.980471
0.981419
0.973775

5216.16
5279.57
5338.04
5396.36

5454.57

5517.75
5576.17
5634.91
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96 0.0700984 0.0497585 0.9724 0.981013 5693.68

97 0.0777764 0.0600608 0.970134 0.978627 5756.87
...] 97.56%
1000 iter, 97 epoch / 100 epochs
0.17293 iters/sec. Estimated time to finish: 0:02:24.567267.
98 0.0752757 0.0687284 0.971306 0.975276 5814.82
99 0.071402 0.0537116 0.971968 0.979474 5872.67
100 0.072806 0.0477328 0.972347 0.981581 5930.5




