

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Ευφυής Αναγνώριση Καταστροφών σε Κτίρια

Γρηγορόπουλος Νικόλαος

 ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΥΠΕΥΘΥΝΟΣ

Κολομβάτσος Κωνσταντίνος

 Επίκουρος Καθηγητής

Λαμία ………………………… 2022

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Ευφυής Αναγνώριση Καταστροφών σε Κτίρια

Γρηγορόπουλος Νικόλαος

 ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΥΠΕΥΘΥΝΟΣ

Κολομβάτσος Κωνσταντίνος

 Επίκουρος Καθηγητής

Λαμία ………………………… 2022

SCHOOL OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE & TELECOMMUNICATIONS

Damage assessment in Buildings with the help of

Deep Learning

NIKOLAOS GRIGOROPOULOS

FINAL THESIS

ADVISOR

Dr Konstantinos (Kostas) Kolomvatsos, BSc MSc PhD

Assistant Professor in Intelligent Systems for Pervasive Computing

Lamia …………………………2022

Ημερομηνία: ……/..…/2022

Ο Δηλών.

(1) «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με

έγγραφη υπεύθυνη δήλωση

του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο

υπαίτιος αυτών των πράξεων

σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή

σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.»

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της

διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι:

1. Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να

τα περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη

σελίδα. Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι

λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση

εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς

και η παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά

στην πηγή. Αναφέρω πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο,

όπως στα παραθέματα.

2. Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται

από αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι

αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν

δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και

παρουσίασή τους ως δική μου εργασία.

3. Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των

παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε

μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ.), προϋποθέτει ειδικές ρυθμίσεις, και

όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι

πίνακες και τα σχέδια

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής.

ΠΕΡΙΛΗΨΗ

Η αυτοματοποίηση της εκτίμησης ζημιών σε κτίρια μπορεί να είναι δύσκολη. Σε

αυτή την εργασία θα δούμε πώς η εφαρμογή αρχών μηχανικής μάθησης και

μοντέλων βαθιάς μάθησης διευκολύνει κατά πολύ την επίλυση τέτοιων

προβλημάτων. Θα διαπιστώσουμε ότι η μηχανές υποστήριξης διανυσμάτων (Support

Vector Machines – SVMs) μπορούν να έχουν σημαντικό αντίκτυπο στο στάδιο

ταξινόμησης ζημιών και να μας δώσουν πιο ακριβή αποτελέσματα. Το μοντέλο μας

χρησιμοποιεί δύο διαφορετικά νευρωνικά δίκτυα, ένα δίκτυο για ταξινόμηση

κτιρίων και ένα δεύτερο με SVM λογική ως τελική αναγνώριση που χρησιμοποιεί

τα βάρη του πρώτου για να ανιχνεύσει κτίρια και να εκπαιδευτεί στην εκτίμηση

ζημιών με βάση ένα σύνολο δεδομένων δορυφορικής εικόνας που απεικονίζουν το

πριν και το μετά. Κάνουμε μια σύγκριση μεταξύ του SVM και του μοντέλου που δεν

βασίζεται σε SVM για να δούμε αν το επίπεδο SVM έχει κάποιο αντίκτυπο στην

αναγνώριση καταστροφών.

ABSTRACT

Automating damage assessment in buildings can be a challenging

research topic. In this thesis, we are going to see how the application of

machine learning algorithms and deep learning models can facilitate

towards finding the solution of this problem. We elaborate on if Support

Vector Machines (SVM) can have any major impact in the damage

classification phase and provide us with more accurate results. Our model

adopts two different neural networks, one for building the classification

model and a second one with involving the SVM as the last layer that uses

the weights of the first network to detect buildings and perform training

on damage assessment based on a pre/post satellite image dataset. We do a

comparison between the SVM and non SVM based model to see if the SVM

layer has any impact to the damage classification.

Table of Contents

ΠΕΡΙΛΗΨΗ .. I

ABSTRACT .. III

TABLE OF CONTENTS ... 0

INTRODUCTION ... 3

MACHINE LEARNING (CLASSIFIERS, SVMS, DMTS) .. 5

MACHINE LEARNING WITH SVM .. 6

LINEAR SVM .. 7

NON-LINEAR SVM .. 7

DEEP LEARNING ... 10

RESNET ... 10

RESNET50 ... 11

INCEPTIONV3 .. 11

DETECTION OF DAMAGES IN BUILDING ... 13

BUILDING DAMAGE ASSESSMENT USING DEEP LEARNING AND GROUND-LEVEL

IMAGE DATA ... 13

EARTHQUAKE DAMAGE ASSESSMENT BASED ON DEEP LEARNING METHOD USING

VHR IMAGES .. 13

OUR MODEL .. 16

MODEL ... 16

USE CASES AND PERFORMANCE RESULTS. .. 19

PERFORMANCE ... 20

1

LINEARSVM ... 21

NONLINEAR-SVM .. 23

CONCLUSION AND FUTURE WORK .. 25

FUTURE WORK ... 25

BIBLIOGRAPHY ... 27

SECTION A ... 30

2

3

Introduction

 It would benefit our society, if we could know the damage assessment of buildings and

therefore trapped humans in them after a natural disaster in a certain area (e.g., the

capital city of Ukraine) in a few hours. In a natural disaster scenario (e.g., earthquake,

tsunami) where affected areas are inaccessible (e.g., flooded) by land we need to know how

many buildings have been damaged. Something like this can be achieved by grading the

buildings through human visual inspection. An approach like this provides the most

reliable classification method but needs proper staff training prior to the occurrence of the

disaster and plenty of labor hours which translates into money and since we are dealing

with a disaster the most critical of all, time. So, by automating the whole classification

process rescuers could save time to focus on rescuing trapped people (Xu, Lu, Li, Khaitan,

& Zaytseva, 2019) [1].

Over the last decade there have been huge advancements in the field of Machine

Learning and consequently in deep neural networks (DNNs).

We are going to use SpaceNet to train our model and detect what is a building in every

satellite image. Then, using ResNet50 with some extra conv layers with the last of them

being an SVM classifier we will train our model to identify level of damages in buildings

and compare that to the baseline approach that xview2 provides to see if SVM as final

layer can be effective.

The main contribution of this paper is the study of machine learning along with SVMs

in situations like humanitarian crisis and damage estimation after a major natural

disaster.

To properly train a model like the proposed, someone can train the model to recognize

what a building is and then using satellite images of pre/post disaster images train it to

the level of damage of any given image.

4

5

Machine Learning (Classifiers, SVMs, DMTs)

We take advantage of machine learning in our everyday lives, sometimes without even

noticing. From chatbots, language translation, text editors and even Amazon similar

product recommendations. Most of the companies nowadays use the term Artificial

Intelligence and machine learning as homonyms. Actually, the second one is a

subcategory that gives computers the ability to learn things without having to be

programmed to do a specific task. Even the companies that have not adopted Machine

Learning yet are planning to use it in the coming years.” It is important to engage and

begin to understand these tools, and then think about how you are going to use them well.

We must use these [tools] for the good of everybody” said Dr. Joan LaRovere1. Considering

that we are going to analyze the different machine learning approaches along with various

classifiers (e.g., Support Vector Machines - SVMs, Decision Making Trees) and see how

the study of SVM and damage assessment can help the society address natural disasters

more efficiently.

Therefore, supervised machine learning models needs to be trained using labelled data

sets which allow the model to learn and grown over time by itself. For example, providing

the model with images of buildings labelled by humans, the model can learn what a

building is and classify images containing buildings without prior access to them.

On the other side, unsupervised machine learning can look for patterns in un-labelled

data to find patterns or the trends. A model like that can look through a company’s sales

data and identify several types of clients and therefore the company can provide more

targeted ads to each of them.

Finally, we have reinforcement machine learning which trains the model through trial

and error and reward the model when it makes the best decision. Models like this can and

have been used numerous times to train Stockfish [15] or Othello 8 x 8 and even

autonomous vehicles so they will know that they made the right decisions and by doing

that they will learn over time what actions they should make [16].

1 https://www.childrenshospital.org/directory/physicians/l/joan-larovere

6

Machine Learning with SVM

According to the OpenCV documentation the definition of a SVM is “a discriminative

classifier formally defined by a separating hyperplane. In other words, given labeled

training data (supervised learning), the algorithm outputs an optimal hyperplane

which categorizes new examples” [4].

The SVM algorithm, in its original form, is an algorithm for

two-class classification, meaning that the algorithm, in its infancy, could only classify data

into two distinct classes. It maps the input vectors into a high dimensional feature space.

In this feature space, a hyperplane is created with properties that ensure a high

generalization ability of the network (Cortes & Vapnik, 1995). The optimal separating

hyperplane discriminates the data set fifteen into discrete number of classes that

minimizes misclassification attained during the training phase (Kavzoglu & Colkesen,

2009) (Maulik & Chakraborty, 2017).The implementation of a linear SVM assumes that

the feature data are linearly separable. However, in practice, data points of different

classes often overlap with each other making the basic linear decision boundaries

insufficient. Kernel functions have thus been developed (Mountrakis, Im, & Ogole,

2011).Non-linear kernels, like the radial-basis function, map the input to a higher spatial

dimensional feature space where a linear decision boundary, via hyperplane, separates

the classes. SVMs can manage small training data sets while often producing higher

classification accuracy than traditional methods (Mantero, Moser, & Serpico, 2005). In

addition, the SVM learning process follows a structural risk minimization scheme that

Figure

 0 Thomas Malone, MIT Sloan See: https://bit.ly/3gvRho2

7

minimizes classification error on unseen data without any previous assumptions made on

the probability distribution of the data. Another benefit of the SVM model is its ability to

strike a balance between accuracy on a limited amount of training data and the ability to

generalize unseen data (Mountrakis, Im, & Ogole, 2011).This means the SVM can strike

a reasonable balance between bias and variance. If the classifier has too many adjustable

parameters (bias), it will learn the training data without difficulty, but it is unlikely that

it will generalize properly for the unseen data patterns (Boser, Guyon, & Vapnik,

1992).One challenge of the SVM model is the choice of an optimal kernel. Although there

are many kernel functions, some are not optimal for certain remote sensing applications

(Mountrakis, Im, & Ogole, 2011). Research has shown that kernels such as the radial

basis function and polynomial kernels produce different results when applied to satellite

imagery (Zhu & Blumberg, 2002).

Linear SVM

It is the simplest form of Support Vector Machine that does not take advantage of

kernels and sometimes also called Large Margin Classifier so it can only classify data into

two distinct classes. In a random plot that has two classes (binary classification) we

separate them in many ways (vertical lines that split data in half). SVM classify samples

to split the data with the largest margin possible. So, a Support vector is either close to

the boundary or falsely classified. So basically, SVM tries to find the optimal hyperplane

that split the data into with the highest maximized margin. When we train a SVM model

support vectors have a major impact in the classification process, that by removing

nonsupport vector (far away from the boundary samples) has no impact to the model at

all.

ℎ𝜃(𝑥) =
1

1 + ⅇ−𝜃
𝑇𝑥1

The cost function that is used to train the SVM is remarkably like Logistic Regression

function but with a piecewise linear approach. Achieving lower theta values, we can be

more confident that our result is more accurate.

Non-Linear SVM

Nonlinear SVM is used to classify non-linear separated data and therefore someone

cannot classify it using a straight line to separate into two categories. The classifier is

called Non-Linear SVM Classifier. When we are dealing with non-linear data, we need

to separate our data in a way that using a straight line cannot help us. For example, in

three dimensions using a circle to encapsulate one area provides us with a binary

classification in the three dimensions by assuming everything outside of this circle

belongs to one class and vice versa.

8

9

10

Deep Learning

Imagine what is like being an infant and keep asking if every individual item that you

stumble across is a dog. After many iterations of the same question the infant will learn

to recognize the characteristics that every dog has and therefore recognize them easier.

Similarly Deep Learning use neural networks with many layers to extract if the given

image is a dog or not. To achieve this behavior the network, learn what a dog is using a

labelled dataset and extract features that every dog has (e.g., tail, fur, four legs etc.) so

when you give the model a new dog image it can use some layers to detect individual

features of a dog (e.g., paws, tail, mammary glands etc.) while another layer will conclude

if all this assemble a dog or not. Sometimes those models are so smart that they can even

do breed classification along with whether if the image contains a dog or not.

ResNet

Deep convolution neural networks are widely used for image classification. Deep

Networks contain level features and classifiers that can be benefit by stacking more layers

to extend the depth of the network. Using more than usual layers in deep learning models

is a quite common approach in visual recognition tasks (e.g., against ImageNet dataset)

alongside with some non-visual problems but how are we sure that stacking more layers

is going to give as a better model performance? The first part of the equation to this

problem was the problem of vanishing/exploding gradients (Bengio, Simard, & Frasconi,

1994)[10] but using normalized initialization and intermediate normalization layers gave

the networks with tens of layers the ability to start converging for stochastic gradient

descent with back propagation. However, after applying the new layers the networks

training gets saturated and starts to degrade leading to a degradation problem that

cannot be fixed by providing more layers because that will only give the network higher

training errors. So, to fix the degradation problem the authors of (He, Zhang, Ren, & Sun,

2015)[3] proposed a deep residual learning framework.

A residual neural network (ResNet) [3] is a special type of artificial neural network

(ANN) that has been proposed by (He, Zhang, Ren, & Sun, 2015) [3] and won the first

place in the ILSVRC 2015 with a top5-error of 3.57%. They were inspired by VGG and

created a plain network with same time complexity across the layers by keeping or

doubling the filters based on the output of the feature map and down sampling to

convolutional layers with a stride of two. The last layer used global average pooling layer

and a 1000-way fully connected layer with SoftMax providing thirty-four weighted layers

way less that VGG nets. Based on the plain network they created shortcut connections to

achieve the residual network.

ResNet tend to get higher accuracy for increased depths compared to other

approaches.

11

ResNet50

ResNet50 is a variant of ResNet model which has 48 Convolution layers along with 1

MaxPool and 1 Average Pool layer.

The architecture of ResNet in general and therefore ResNet50 is:

Inceptionv3

Inception-v3 is a convolutional neural network architecture from the Inception

family that makes several improvements including using Label Smoothing, Factorized 7

x 7 convolutions, and the use of an auxiliary classifier to propagate label information lower

down the network (along with the use of batch normalization for layers in the sidehead).

12

13

Detection of Damages in Building

 As the problem of detecting damages in buildings is quite extensive and the

approaches to solve it vary from mathematical prediction models based on previous

natural disasters data. Specifically for an earthquake disaster the observation of seismic

activity before an earthquake occurs helps the calculation of the impact of damage in

buildings .Therefore this will help rescuers to decide which building are more crucial for

human evacuation (Morales-Valdez, Alvarez-Icaza, & Escobar, 2020).In the other hand

we have properly trained deep learning models (e.g., ResNet) with the help of pre/post

disaster satellite images for real-time classification damage assessment. More specifically

on earthquake impacted buildings that human inspection is difficult, we can benefit from

the use of an Unmanned Aerial Vehicle (UAV) that can go to the affected area relatively

easier and provide the rescuers with a damage assessment report for every single

impacted building.

Building Damage Assessment Using Deep Learning and

Ground-Level Image Data

With the help of computer vision, Karoon Rashedi and Nia Greg Mori [5] tried to solve

a different variation of the problem that was mentioned in the introduction. Their main

difference is that this approach performs damage classification on buildings when the

remote sensor is on ground-level instead of aerial image input. By using only post-disaster

images from a small dataset that they created on their own as of the time of publishing

the paper there was no prior properly labeled dataset with round-level images of areas

affected to fit with their approach. So only by using post image data of damaged or not-

damaged building they implemented three different convolutional neural networks each

of them designed to perform an extremely specific task. The first one simply analyzes the

image. Both, second and third, require some image preprocessing because images

sometimes contain irrelevant information in comparison to buildings, such as roads, cars

and basically anything that is not a building so to fix that they used a semantic

segmentation algorithm to extract buildings and anything else in the image that indicates

that buildings have any damage in them (e.g., broken walls on the ground close to the

house). The Convolution Networks later take the raw and preprocessed data in order to

extract features and as final step a regressor is used to output a percentage value

corresponding to the damage that the image has. They only use post images, and the

output is a continuous value as a factor measurement rather than predefined damage

categories. (Nia & Mori, 2017) [5]

Earthquake Damage Assessment Based on Deep Learning

Method Using VHR Images

Another approach of the damage assessment problem and human security after a

natural disaster was addressed with the help of Deep Learning Neural Networks along

14

with VHR (Very High Resolution) satellite images by Masoud Moradi and Reza Shah-

Hosseini and presented at the 3rd International Electronic Conference on Geosciences.

They used Haiti earthquake that happed on the capital city Port-au-Prince on 12 January

2010 as their base rural area to build their training dataset. Pre disaster images of the

area acquired after four days of the earthquake and post disaster are based on images

from 1 October 2009. Both pre/post images had four multi spectral bands along with one

high resolution band. To proper label the above-mentioned approach of dataset the

International Institute UNITAR / UNOSAT data and Earthquake Geo-spatial Data

“Dataverse” (CGA, Harvard University) was used. After the collection of pre/post images

they compiled every pre/post VHR image into a large image with every pixel have a binary

value that represent the state of the destruction of the building structure. The newly

created images were projected into UTM/WGS84 geo-referenced coordinate system, and

they used random patches of the dataset that have higher that fifty percent of pixel

labeled as damaged or undamaged. Their base network architecture and training is based

on the proposed of UNet (Ronneberger, Fischer, & Brox, 2015)[6] along with Deep

Residual UNet (Zhang, Liu, & Wang, 2018) [7]. To accelerate the network convergence,

they took advantage of Batch Normalization and normalized the input layer by

performing adjusting and scaling across the activation layers of the network. Convolution

layer was used to replace the max pooling layer that all UNet have by nature because it

performs better. In addition, they used a batch size of twenty-five along with image patch

size 256x256 used to train the UNet model for about fifty epochs with a learning rate of

0.01 along them. Root Mean Square Probability was used as the parameter optimization

as we speak for a large dataset and cross-entropy as the loss/cost function. The model they

proposed is used for mapping earthquake building condition assessment but with the

proper dataset for any other type of natural disaster (e.g., fire, tsunami, etc.) and the

corresponding labeling it can be trained again as it is a supervised model and well

developed so it can meet the criteria of any other natural disaster easily (Moradi & Shah-

Hosseini, 2020)[8].

15

16

Our Model

Firstly, before starting to explain our deep learning model, we must first collect data

for the problem we are willing to solve because the more data someone has for a problem

the better the model is going to be trained. This can be done quite easily with the help of

DIU (Defense Innovation Unit) that offers through the xView2 challenge site the xBD

(Gupta, et al., 2019) [2], a large-scale dataset containing pre/post satellite imagery with

ground sample distance lower than 0.8 for various natural disasters (e.g., earthquakes,

wildfires, etc.) covering plenty of geographical locations along with over 800,000 building

annotations. Also due to that wide building coverage across many regions the dataset

creates a perfect diversity for different building (e.g., sizes, techniques, etc.) along with

negative satellite images that contains areas with undamaged buildings or no buildings

at all making the perfect for checking if building classification was trained properly. After

consulting disaster response experts they created a joint damage scale that properly

representes real building damage conditions as shown in Figure 1.

Model

“The localization model was based on a SpaceNet submission by Motoki Kimura,

which featured an altered U-Net architecture [18]. We lightly modified this model to fit

our dataset. The model was trained on an eight GPU cluster for seven days. The model

achieved an Intersection over Union of 0.97 and 0.66 for “background” and “building,”

respectively.

The classification model is shown in Figure 2. The ResNet50 is pre-trained on

ImageNet [4] whereas the smaller side network is initialized with random weights. All

convolutional layers use a ReLU activation except the last one that uses soft-max

activation. The output is a one-hot encoded vector where each element represents the

probability of an ordinal class. The model uses an ordinal cross-entropy loss function.

Figure 1 Joint Damage Scale from xView2 site

17

Unlike traditional cross-entropy, ordinal cross-entropy penalizes relative to the distance

between true and predicted ordinal class. Since the difference between any two classes is

not interchangeable, this loss function allows the model to better distinguish between the

various levels of damage.”

Uses the Space Net [9] model for the building classification that is based in UNet a

Convolutional Network for Biomedical Image Segmentation [6] and a damage training

classification based on ResNet50 with some additional “fuzz” layers and for the last layer

we simulate an SVM using categoral_hinge as the loss function to determine in which of

four classes of the damage scale each individual building belongs to.

Figure 2 Architecture of the baseline classification model. The input is fed into a pre-trained ResNet 50 as well as a

shallow CNN. The outputs of each stream are concatenated and passed into dense layers for classification

18

19

Use cases and performance results.

Taking into account the earthquakes that happened in October 2021 in Heraklion,

Crete with magnitudes varying from small ones to 6,3 in the scale of Richter as seen in

Figure 3 and in general Greece having a high seismic activity though out its land we

believe that a deep learning model like this can be a very powerful “weapon” in the hands

of civil protection rescuers to properly have an estimate of damages in the affected area

and more efficiently organize the teams to go to buildings more targeted rather that

visually inspecting each one and deciding on premise. Also sometimes given the high

number of Richter some places become obscured and inaccessible by foot so having the

damage assessment for each building can help provide aerial support to these buildings

and therefore rescue trapped people in them.

Another scenario is when a wildfire occurs for example the fires that happened the

summer of 2021 in Attica and destroyed 16% of the forests [12]. Along with the forest a

lot of buildings suffered various damages to their structural integrity. Something similar

happened to Evia Island due to the summer heatwave and other factors that are not my

study field but left us with over 500.000 acres of burnt forest and of course a lot of damaged

and even totally collapsed buildings. So, people living in these areas need compensation

from the current government. Therefore, all the damaged buildings need to pass a visual

inspection from government assigned civil engineers to create reports for each individual

building. But when we are dealing with thousands of buildings across a wide area of an

island like Evia something like this is very time consuming. To put it in a simpler way

people, need to re-build/fix their homes in expectation of having a place to live and

Figure 3 Total Number of Earthquakes in Crete

20

government must classify the damages quickly. Being able to use satellite images of the

affected acres to generate a report with the help of deep learning model or even use

multiple UAVs to scan the whole affected area by divide and conquer method or a

combination of both it will save a lot of time and money.

Performance

Using the SpaceNet algorithm to train our model so it can easily detect building so it

can identify buildings in new locations that a new disaster might occur. We used santa-

rosa-wildfire as a subset of our dataset to train our model to detect what is classified as a

building. (Figure 4-5)

Figure 4 Accuracy of SpaceNet (Santa-Rosa-Wildfire)

Figure 5 Loss of SpaceNet (Santa-Rosa-Wildfire)

21

LinearSVM

For demonstration purposes if someone uses as a last layer a linear SVM he will get

an accuracy of 25% of the classification based on the joint damage scale. This happens

because the linear SVM will classify all buildings as one category. For example, if all

building will be destroyed or will have a minor damage.

Epoch main/loss validation/main/loss main/accuracy validation/main/accuracy elapsed time

01 0.248371 0.228309 0.918139 0.959325 72.3883

10 0.149629 0.0970564 0.939556 0.956784 600.198

20 0.117099 0.088584 0.953469 0.965297 1184.31

30 0.116498 0.0813691 0.954175 0.96966 1770.02

40 0.0957175 0.0730834 0.962931 0.97179 2359.9

50 0.0785189 0.0811975 0.969644 0.970451 2949.08

60 0.0831312 0.0682702 0.967713 0.974896 3552.44

70 0.0730851 0.0632934 0.971921 0.975701 4149.39

80 0.0747385 0.0515737 0.971226 0.979858 4740.75

90 0.0683723 0.0558712 0.974289 0.979437 5338.04

100 0.072806 0.0477328 0.972347 0.981581 5930.5

Figure 6 Damage Classification with Linear SVM (Santa-Rosa-Wildfire)

22

Figure 7 Damage Classification with Linear SVM (Santa-Rosa-Wildfire)

Figure 8 Damage Classification using baseline approach (Santa-Rosa-Wildfire)

23

 Nonlinear-SVM

Running nonlinear SVM as the last layer of our damage classification model gives us

reliable results but with some false positives but they are mostly misidentified buildings

i.e. (top-right corner show two green “houses”) but that is caused from the building

classification model that was only trained one hundred epoch and with a very small subset

(Santa-rosa-wildfire) of the whole xView2 dataset.

Figure 9 Damage Classification using Non-Linear SVM as last layer (Santa-Rosa-Wildfire)

24

25

Conclusion and Future Work

Taking everything into account, building detection can be a very challenging due to

the fact that when you create or extend your dataset with images you have to deal with

photos that have some noise (i.e., clouds covering part or the whole building, foggy/muddy

area) but xview2 seem to merged a lot of useful data into one properly label dataset to

help with a good baseline that can be extended relatively easier. In addition, damage

assessment can be a very interesting research field as it can help in a lot of difficult

situations i.e. (earthquake, tsunami or even a war).So to contribute in this area we wanted

to see if an SVM as it a very common last layer along with the soft-max approach in order

to solve classification problems [19] and find out if it will benefit our damage classification

model.

Future Work

To further improve the proposed model someone can use ArcGIS Pro to fetch building

feature map of the affected area so the model will only perform damage classification

because it will already know where the buildings are based on the extracted feature map.

Another approach is to use Google Maps API to fetch satellite images of affected area days

prior to the natural disaster tailored to his needs (e.g., same weather conditions as the

disaster ones) and use SpaceNet or Building Footprint Extraction [13] to extract building

feature map. The second one works well with both satellite images and aerial ones, so the

use of a UAV becomes a lot easier. The only downside of this is that after the address of

the natural disaster the model needs to be trained again with the new provided data.

Considering the above, the use of an SBC (e.g., Raspberry Pi) equipped with a camera

on top of a drone with the help of a 5G capable model can easily send those images in real

time (1ms) to a cloud infrastructure to perform the whole classification process and

provide the drone of better the human that controls the drone a separate feed of video

containing colored buildings corresponding to their damage.

Another approach of the propose of a drone is the use of the Jetson Nano to perform

the AI workload on the device as Jetson is capable of such GPU heavy tasks without the

need of cloud and save time for transmission to the cloud infrastructure and vice versa.

To further complete the entire process the whole dataset can be used to train the

building classification algorithm and later train the damage classification per disaster.

So, in any future disaster the specific model can be used to address that extremely specific

disaster-problem and therefore have one model for every disaster that might occur in the

future.

26

27

Bibliography

1. Xu, J. Z., Lu, W., Li, Z., Khaitan, P., & Zaytseva, V. (2019, October). Building

Damage Detection in Satellite Imagery Using Convolutional Neural Networks.

arXiv:1910.06444 [cs, eess, stat]. Retrieved October 27, 2021, from

http://arxiv.org/abs/1910.06444

2. Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., . . . Gaston, M.

(2019, November). xBD: A Dataset for Assessing Building Damage from Satellite

Imagery. arXiv:1911.09296 [cs]. Retrieved October 27, 2021, from

http://arxiv.org/abs/1911.09296

3. He, K., Zhang, X., Ren, S., & Sun, J. (2015, December). Deep Residual Learning

for Image Recognition. arXiv:1512.03385 [cs]. Retrieved October 27, 2021, from

http://arxiv.org/abs/1512.03385

4. Definition of SVM according to OpenCV Documentation

https://docs.opencv.org/4.5.3/d1/d73/tutorial_introduction_to_svm.html

5. Nia, K. R., & Mori, G. (2017, May). Building Damage Assessment Using Deep

Learning and Ground-Level Image Data. 2017 14th Conference on Computer and

Robot Vision (CRV) (pp. 95–102). Edmonton: IEEE. doi:10.1109/CRV.2017.54

6. Ronneberger, O., Fischer, P., & Brox, T. (2015, May). U-Net: Convolutional

Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs]. Retrieved

October 27, 2021, from http://arxiv.org/abs/1505.04597

7. Zhang, Z., Liu, Q., & Wang, Y. (2018, May). Road Extraction by Deep Residual U-

Net. IEEE Geoscience and Remote Sensing Letters, 15, 749–753.

doi:10.1109/LGRS.2018.2802944

8. Moradi, M., & Shah-Hosseini, R. (2020). Earthquake Damage Assessment Based

on Deep Learning Method Using VHR Images. Environmental Sciences

Proceedings, 5, 16. doi:10.3390/IECG2020-08545

http://arxiv.org/abs/1910.06444
http://arxiv.org/abs/1911.09296
http://arxiv.org/abs/1512.03385
https://docs.opencv.org/4.5.3/d1/d73/tutorial_introduction_to_svm.html
http://arxiv.org/abs/1505.04597

28

9. SpaceNet (https://github.com/motokimura/spacenet_building_detection/)

10. Bengio, Y., Simard, P., & Frasconi, P. (1994, March). Learning long-term

dependencies with gradient descent is difficult. IEEE Transactions on Neural

Networks, 5, 157–166. doi:10.1109/72.279181

11. Morales-Valdez, J., Alvarez-Icaza, L., & Escobar, J. A. (2020, July). Damage

Localization in a Building Structure during Seismic Excitation. Shock and

Vibration, 2020, 1–17. doi:10.1155/2020/8859527

12. Meteo.gr https://www.meteo.gr/article_view.cfm?entryID=1910

13. Building Footprint Extraction

https://www.arcgis.com/home/item.html?id=a6857359a1cd44839781a4f113cd5934

14. NVIDIA Jetson: The AI platform for edge computing https://www.nvidia.com/en-

us/autonomous-machines/embedded-systems/

15. Strong open-source chess engine https://stockfishchess.org/

16. Machine learning, explained https://mitsloan.mit.edu/ideas-made-to-

matter/machine-learning-explained

17. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., . . . Chen, T. (2017, October).

Recent Advances in Convolutional Neural Networks. arXiv:1512.07108 [cs]. Retrieved March

13, 2022, from http://arxiv.org/abs/1512.07108

18. Cortes, C., & Vapnik, V. (1995, September). Support-vector networks. Machine Learning, 20,

273–297. doi:10.1007/BF00994018

19. Kavzoglu, T., & Colkesen, I. (2009, October). A kernel functions analysis for support vector

machines for land cover classification. International Journal of Applied Earth Observation

and Geoinformation, 11, 352–359. doi:10.1016/j.jag.2009.06.002

20. Maulik, U., & Chakraborty, D. (2017, March). Remote Sensing Image Classification: A survey

of support-vector-machine-based advanced techniques. IEEE Geoscience and Remote

Sensing Magazine, 5, 33–52. doi:10.1109/MGRS.2016.2641240

https://github.com/motokimura/spacenet_building_detection/
https://www.meteo.gr/article_view.cfm?entryID=1910
https://www.arcgis.com/home/item.html?id=a6857359a1cd44839781a4f113cd5934
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://stockfishchess.org/
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
http://arxiv.org/abs/1512.07108

29

21. Mountrakis, G., Im, J., & Ogole, C. (2011, May). Support vector machines in remote sensing:

A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259.

doi:10.1016/j.isprsjprs.2010.11.001

22. Mantero, P., Moser, G., & Serpico, S. B. (2005, March). Partially Supervised classification of

remote sensing images through SVM-based probability density estimation. IEEE Transactions

on Geoscience and Remote Sensing, 43, 559–570. doi:10.1109/TGRS.2004.842022

23. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin

classifiers. Proceedings of the fifth annual workshop on Computational learning theory -

COLT '92 (pp. 144–152). Pittsburgh, Pennsylvania, United States: ACM Press.

doi:10.1145/130385.130401

24. Zhu, G., & Blumberg, D. G. (2002, May). Classification using ASTER data and SVM algorithms;.

Remote Sensing of Environment, 80, 233–240. doi:10.1016/S0034-4257(01)00305-4

30

Section A

GPU: 0

Minibatch-size: 16

Crop-size: 400

31

Epoch: 100

epoch main/loss validation/main/loss main/accuracy

validation/main/accuracy elapsed time

1 0.248371 0.228309 0.918139 0.959325 72.3883

2 0.171758 0.184291 0.941087 0.959417 130.107

3 0.174309 0.165682 0.937529 0.957574 187.6

4 0.156248 0.130873 0.942095 0.958216 244.938

5 0.150401 0.155715 0.945608 0.941414 307.313

6 0.160608 0.110339 0.942958 0.956322 364.715

7 0.162063 0.105588 0.939092 0.959988 422.048

8 0.148145 0.108511 0.94729 0.954119 479.314

9 0.150408 0.100966 0.94088 0.958286 542.456

 total [####..] 9.76%

this epoch [#####################################.............] 75.61%

 100 iter, 9 epoch / 100 epochs

 inf iters/sec. Estimated time to finish: 0:00:00.

10 0.149629 0.0970564 0.939556 0.956784 600.198

11 0.137875 0.0994239 0.945984 0.958634 657.487

12 0.143337 0.100507 0.94334 0.95379 714.853

13 0.142189 0.212782 0.94318 0.95973 777.116

14 0.137869 0.0964185 0.944517 0.959419 834.402

15 0.134803 0.0881785 0.945146 0.963328 891.748

16 0.13055 0.110902 0.948457 0.963406 949.162

17 0.141082 0.0873135 0.945165 0.964491 1011.66

18 0.142233 0.0955827 0.944351 0.966174 1069.22

19 0.119621 0.0849503 0.953885 0.967461 1127.02

 total [#########...] 19.51%

this epoch [#########################.........................] 51.22%

 200 iter, 19 epoch / 100 epochs

 0.17415 iters/sec. Estimated time to finish: 1:18:57.398682.

20 0.117099 0.088584 0.953469 0.965297 1184.31

21 0.121465 0.0816433 0.952036 0.965443 1246.43

22 0.126179 0.0872653 0.951859 0.966938 1303.42

23 0.107696 0.0772394 0.957968 0.968948 1360.53

24 0.112647 0.077409 0.956857 0.968368 1417.5

25 0.111414 0.0841082 0.957264 0.967176 1479.61

26 0.115445 0.092549 0.955892 0.968219 1536.62

27 0.127015 0.0863309 0.951334 0.964179 1593.64

28 0.111527 0.0822129 0.958583 0.967748 1650.82

29 0.10085 0.0808828 0.96147 0.965174 1712.68

 total [##############....................................] 29.27%

this epoch [#############.....................................] 26.83%

 300 iter, 29 epoch / 100 epochs

 0.17466 iters/sec. Estimated time to finish: 1:09:10.910317.

32

30 0.116498 0.0813691 0.954175 0.96966 1770.02

31 0.104715 0.0898064 0.959501 0.962393 1832.73

32 0.111302 0.0715475 0.955923 0.972555 1890.05

33 0.124029 0.0994614 0.950924 0.96448 1952.59

34 0.115141 0.0824721 0.95641 0.966538 2010.29

35 0.127418 0.102276 0.95061 0.965954 2068.23

36 0.11104 0.0688331 0.956823 0.974216 2125.61

37 0.0997533 0.0797492 0.960572 0.969716 2187.98

38 0.108509 0.0764989 0.957282 0.96903 2245.14

39 0.101501 0.0716731 0.961042 0.972733 2302.46

 total [###################...............................] 39.02%

this epoch [#...] 2.44%

 400 iter, 39 epoch / 100 epochs

 0.17357 iters/sec. Estimated time to finish: 1:00:00.922183.

40 0.0957175 0.0730834 0.962931 0.97179 2359.95

41 0.0889849 0.0697198 0.965659 0.9725 2422.83

42 0.109669 0.121636 0.955574 0.962107 2480.33

43 0.103904 0.0728264 0.959595 0.97026 2537.58

44 0.0952033 0.0896886 0.962459 0.963557 2594.95

45 0.0961043 0.0647265 0.962201 0.975304 2657.06

46 0.0898943 0.0804596 0.964735 0.97182 2714.16

47 0.091459 0.0717713 0.963961 0.970845 2771.52

48 0.103929 0.0699394 0.95989 0.971433 2829.12

 total [########################..........................] 48.78%

this epoch [#######################################...........] 78.05%

 500 iter, 48 epoch / 100 epochs

 0.17456 iters/sec. Estimated time to finish: 0:50:07.620641.

49 0.0828965 0.0705439 0.968148 0.971807 2891.61

50 0.0785189 0.0811975 0.969644 0.970451 2949.08

51 0.0914359 0.0633786 0.964509 0.97742 3021

52 0.0841678 0.0630484 0.967562 0.97641 3079.17

53 0.0947962 0.0857803 0.963663 0.967 3142.42

54 0.0814097 0.11928 0.968978 0.965359 3200.08

55 0.0940421 0.0779933 0.962563 0.972216 3257.88

56 0.0886972 0.0655407 0.964402 0.974286 3316.03

57 0.0859889 0.0648892 0.967084 0.973419 3379.1

58 0.0869022 0.068124 0.965733 0.975923 3436.88

 total [#############################.....................] 58.54%

this epoch [##########################........................] 53.66%

 600 iter, 58 epoch / 100 epochs

 0.17334 iters/sec. Estimated time to finish: 0:40:51.759806.

59 0.0822741 0.0625559 0.968018 0.976533 3494.69

60 0.0831312 0.0682702 0.967713 0.974896 3552.44

61 0.0837534 0.0605224 0.966955 0.975377 3615.23

62 0.080858 0.0950384 0.969182 0.970821 3673.19

33

63 0.0858145 0.0697039 0.967085 0.974962 3730.97

64 0.0804658 0.0634525 0.968379 0.973715 3789.33

65 0.0820634 0.0679786 0.96692 0.976543 3853.05

66 0.0747686 0.0624412 0.970501 0.976478 3911.42

67 0.0778439 0.0587748 0.969718 0.977483 3969.79

68 0.0750105 0.0651996 0.971134 0.976345 4027.87

 total [##################################................] 68.29%

this epoch [##############....................................] 29.27%

 700 iter, 68 epoch / 100 epochs

 0.17314 iters/sec. Estimated time to finish: 0:31:17.112641.

69 0.0731202 0.0554982 0.97163 0.979046 4091.22

70 0.0730851 0.0632934 0.971921 0.975701 4149.39

71 0.0725655 0.0691743 0.971785 0.974449 4207.55

72 0.0759979 0.0567736 0.970344 0.979041 4265.78

73 0.0716494 0.0862464 0.97156 0.972297 4328.97

74 0.0765689 0.0569171 0.97015 0.97768 4387.21

75 0.0651007 0.0570131 0.97516 0.978539 4445.25

76 0.0677926 0.0536317 0.973084 0.979542 4503.42

77 0.0757188 0.0595677 0.970207 0.976759 4566.5

78 0.0674326 0.0638738 0.97378 0.977465 4624.64

 total [#######################################...........] 78.05%

this epoch [##..] 4.88%

 800 iter, 78 epoch / 100 epochs

 0.17282 iters/sec. Estimated time to finish: 0:21:41.967752.

79 0.0689469 0.0622197 0.973102 0.977563 4682.76

80 0.0747385 0.0515737 0.971226 0.979858 4740.75

81 0.0727194 0.0550089 0.971974 0.980278 4804.09

82 0.0643093 0.0571189 0.975393 0.977822 4862.13

83 0.0767177 0.0588132 0.969083 0.977863 4920.19

84 0.0722139 0.0571848 0.971718 0.977924 4978.26

85 0.0679254 0.0552411 0.973352 0.979098 5041.69

86 0.0706984 0.0503689 0.972849 0.981077 5099.83

87 0.0628854 0.0488895 0.975805 0.980857 5158.02

 total [###.......] 87.80%

this epoch [##..........] 80.49%

 900 iter, 87 epoch / 100 epochs

 0.17313 iters/sec. Estimated time to finish: 0:12:02.013041.

88 0.0696999 0.0541805 0.973247 0.97934 5216.16

89 0.0657108 0.0556194 0.974176 0.978367 5279.57

90 0.0683723 0.0558712 0.974289 0.979437 5338.04

91 0.0675669 0.0502057 0.974191 0.980271 5396.36

92 0.0740278 0.0538187 0.97133 0.979509 5454.57

93 0.064117 0.0519578 0.975001 0.980471 5517.75

94 0.0628196 0.0479857 0.976026 0.981419 5576.17

95 0.0604761 0.0703855 0.976585 0.973775 5634.91

34

96 0.0700984 0.0497585 0.9724 0.981013 5693.68

97 0.0777764 0.0600608 0.970134 0.978627 5756.87

 total [##...] 97.56%

this epoch [############################......................] 56.10%

 1000 iter, 97 epoch / 100 epochs

 0.17293 iters/sec. Estimated time to finish: 0:02:24.567267.

98 0.0752757 0.0687284 0.971306 0.975276 5814.82

99 0.071402 0.0537116 0.971968 0.979474 5872.67

100 0.072806 0.0477328 0.972347 0.981581 5930.5

