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(1)   «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με 

έγγραφη υπεύθυνη δήλωση  

του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο 

υπαίτιος αυτών των πράξεων  

σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή 

σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.» 

  

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της 

διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι: 

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να 

τα περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη 

σελίδα. Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι 

λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση 

εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς 

και η παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά 

στην πηγή. Αναφέρω πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, 

όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται 

από αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι 

αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν 

δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και 

παρουσίασή τους ως δική μου εργασία.  

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των 

παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε 

μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ.), προϋποθέτει ειδικές ρυθμίσεις, και 

όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι 

πίνακες και τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής. 



 

 

 





 

 

 

ΠΕΡΙΛΗΨΗ  

Η αυτοματοποίηση της εκτίμησης ζημιών σε κτίρια μπορεί να είναι δύσκολη. Σε 

αυτή την εργασία θα δούμε πώς η εφαρμογή αρχών μηχανικής μάθησης και 

μοντέλων βαθιάς μάθησης διευκολύνει κατά πολύ την επίλυση τέτοιων 

προβλημάτων. Θα διαπιστώσουμε ότι η μηχανές υποστήριξης διανυσμάτων  (Support 

Vector Machines – SVMs) μπορούν να έχουν σημαντικό αντίκτυπο στο στάδιο 

ταξινόμησης ζημιών και να μας δώσουν πιο ακριβή αποτελέσματα. Το μοντέλο μας 

χρησιμοποιεί δύο διαφορετικά νευρωνικά δίκτυα, ένα δίκτυο για ταξινόμηση 

κτιρίων και ένα δεύτερο με SVM λογική ως τελική αναγνώριση που χρησιμοποιεί 

τα βάρη του πρώτου για να ανιχνεύσει κτίρια και να εκπαιδευτεί στην εκτίμηση 

ζημιών με βάση ένα σύνολο δεδομένων δορυφορικής εικόνας που απεικονίζουν το 

πριν και το μετά. Κάνουμε μια σύγκριση μεταξύ του SVM και του μοντέλου που δεν 

βασίζεται σε SVM για να δούμε αν το επίπεδο SVM έχει κάποιο αντίκτυπο στην 

αναγνώριση καταστροφών. 

 

  



  

  



 

 

ABSTRACT  

Automating damage assessment in buildings can be a challenging 

research topic. In this thesis,  we are going to see how the application of  

machine learning algorithms and deep learning models can facilitate 

towards finding the solution of this problem. We elaborate on if Support 

Vector Machines (SVM) can have any major impact in the damage 

classification phase and provide us with more accurate results. Our model 

adopts two different neural networks, one for building the classification 

model and a second one with involving the SVM as the last layer that uses 

the weights of the first network to detect buildings and perform training 

on damage assessment based on a pre/post satellite image dataset. We do a 

comparison between the SVM and non SVM based model to see if the SVM 

layer has any impact to the damage classification.  
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Introduction 

 It would benefit our society, if we could know the damage assessment of buildings and 

therefore trapped humans in them after a natural disaster in a certain area (e.g., the 

capital city of Ukraine) in a few hours. In a natural disaster scenario (e.g., earthquake, 

tsunami) where affected areas are inaccessible (e.g., flooded) by land we need to know how 

many buildings have been damaged. Something like this can be achieved by grading the 

buildings through human visual inspection. An approach like this provides the most 

reliable classification method but needs proper staff training prior to the occurrence of the 

disaster and plenty of labor hours which translates into money and since we are dealing 

with a disaster the most critical of all, time. So, by automating the whole classification 

process rescuers could save time to focus on rescuing trapped people (Xu, Lu, Li, Khaitan, 

& Zaytseva, 2019) [1]. 

Over the last decade there have been huge advancements in the field of Machine 

Learning and consequently in deep neural networks (DNNs). 

We are going to use SpaceNet to train our model and detect what is a building in every 

satellite image. Then, using ResNet50 with some extra conv layers with the last of them 

being an SVM classifier we will train our model to identify level of damages in buildings 

and compare that to the baseline approach that xview2 provides to see if SVM as final 

layer can be effective. 

The main contribution of this paper is the study of machine learning along with SVMs 

in situations like humanitarian crisis and damage estimation after a major natural 

disaster. 

To properly train a model like the proposed, someone can train the model to recognize 

what a building is and then using satellite images of pre/post disaster images train it to 

the level of damage of any given image. 
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Machine Learning (Classifiers, SVMs, DMTs) 

We take advantage of machine learning in our everyday lives, sometimes without even 

noticing. From chatbots, language translation, text editors and even Amazon similar 

product recommendations. Most of the companies nowadays use the term Artificial 

Intelligence and machine learning as homonyms. Actually, the second one is a 

subcategory that gives computers the ability to learn things without having to be 

programmed to do a specific task. Even the companies that have not adopted Machine 

Learning yet are planning to use it in the coming years.” It is important to engage and 

begin to understand these tools, and then think about how you are going to use them well. 

We must use these [tools] for the good of everybody” said Dr. Joan LaRovere1. Considering 

that we are going to analyze the different machine learning approaches along with various 

classifiers (e.g., Support Vector Machines - SVMs, Decision Making Trees) and see how 

the study of SVM and damage assessment can help the society address natural disasters 

more efficiently. 

Therefore, supervised machine learning models needs to be trained using labelled data 

sets which allow the model to learn and grown over time by itself. For example, providing 

the model with images of buildings labelled by humans, the model can learn what a 

building is and classify images containing buildings without prior access to them.  

On the other side, unsupervised machine learning can look for patterns in un-labelled 

data to find patterns or the trends. A model like that can look through a company’s sales 

data and identify several types of clients and therefore the company can provide more 

targeted ads to each of them. 

Finally, we have reinforcement machine learning which trains the model through trial 

and error and reward the model when it makes the best decision. Models like this can and 

have been used numerous times to train Stockfish [15] or Othello 8 x 8 and even 

autonomous vehicles so they will know that they made the right decisions and by doing 

that they will learn over time what actions they should make [16]. 

 

 

 

 

 

 

 

1 https://www.childrenshospital.org/directory/physicians/l/joan-larovere 
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Machine Learning with SVM 

According to the OpenCV documentation the definition of a SVM is “a discriminative 

classifier formally defined by a separating hyperplane. In other words, given labeled 

training data (supervised learning), the algorithm outputs an optimal hyperplane 

which categorizes new examples” [4]. 

The SVM algorithm, in its original form, is an algorithm for 

two-class classification, meaning that the algorithm, in its infancy, could only classify data 

into two distinct classes. It maps the input vectors into a high dimensional feature space. 

In this feature space, a hyperplane is created with properties that ensure a high 

generalization ability of the network (Cortes & Vapnik, 1995). The optimal separating 

hyperplane discriminates the data set fifteen into discrete number of classes that 

minimizes misclassification attained during the training phase (Kavzoglu & Colkesen, 

2009) (Maulik & Chakraborty, 2017).The implementation of a linear SVM assumes that 

the feature data are linearly separable. However, in practice, data points of different 

classes often overlap with each other making the basic linear decision boundaries 

insufficient. Kernel functions have thus been developed (Mountrakis, Im, & Ogole, 

2011).Non-linear kernels, like the radial-basis function, map the input to a higher spatial 

dimensional feature space where a linear decision boundary, via hyperplane, separates 

the classes. SVMs can manage small training data sets while often producing higher 

classification accuracy than traditional methods (Mantero, Moser, & Serpico, 2005). In 

addition, the SVM learning process follows a structural risk minimization scheme that 

Figure 

 0 Thomas Malone, MIT Sloan See: https://bit.ly/3gvRho2 
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minimizes classification error on unseen data without any previous assumptions made on 

the probability distribution of the data. Another benefit of the SVM model is its ability to 

strike a balance between accuracy on a limited amount of training data and the ability to 

generalize unseen data (Mountrakis, Im, & Ogole, 2011).This means the SVM can strike 

a reasonable balance between bias and variance. If the classifier has too many adjustable 

parameters (bias), it will learn the training data without difficulty, but it is unlikely that 

it will generalize properly for the unseen data patterns (Boser, Guyon, & Vapnik, 

1992).One challenge of the SVM model is the choice of an optimal kernel. Although there 

are many kernel functions, some are not optimal for certain remote sensing applications 

(Mountrakis, Im, & Ogole, 2011). Research has shown that kernels such as the radial 

basis function and polynomial kernels produce different results when applied to satellite 

imagery (Zhu & Blumberg, 2002). 

 

Linear SVM 

It is the simplest form of Support Vector Machine that does not take advantage of 

kernels and sometimes also called Large Margin Classifier so it can only classify data into 

two distinct classes. In a random plot that has two classes (binary classification) we 

separate them in many ways (vertical lines that split data in half). SVM classify samples 

to split the data with the largest margin possible. So, a Support vector is either close to 

the boundary or falsely classified. So basically, SVM tries to find the optimal hyperplane 

that split the data into with the highest maximized margin. When we train a SVM model 

support vectors have a major impact in the classification process, that by removing 

nonsupport vector (far away from the boundary samples) has no impact to the model at 

all. 

ℎ𝜃(𝑥) =
1

1 + ⅇ−𝜃
𝑇𝑥1

 

The cost function that is used to train the SVM is remarkably like Logistic Regression 

function but with a piecewise linear approach. Achieving lower theta values, we can be 

more confident that our result is more accurate. 

 

Non-Linear SVM 

Nonlinear SVM is used to classify non-linear separated data and therefore someone 

cannot classify it using a straight line to separate into two categories. The classifier is 

called Non-Linear SVM Classifier. When we are dealing with non-linear data, we need 

to separate our data in a way that using a straight line cannot help us. For example, in 

three dimensions using a circle to encapsulate one area provides us with a binary 

classification in the three dimensions by assuming everything outside of this circle 

belongs to one class and vice versa. 
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Deep Learning   

Imagine what is like being an infant and keep asking if every individual item that you 

stumble across is a dog. After many iterations of the same question the infant will learn 

to recognize the characteristics that every dog has and therefore recognize them easier. 

Similarly Deep Learning use neural networks with many layers to extract if the given 

image is a dog or not. To achieve this behavior the network, learn what a dog is using a 

labelled dataset and extract features that every dog has (e.g., tail, fur, four legs etc.) so 

when you give the model a new dog image it can use some layers to detect individual 

features of a dog (e.g., paws, tail, mammary glands etc.) while another layer will conclude 

if all this assemble a dog or not. Sometimes those models are so smart that they can even 

do breed classification along with whether if the image contains a dog or not. 

ResNet 

Deep convolution neural networks are widely used for image classification. Deep 

Networks contain level features and classifiers that can be benefit by stacking more layers 

to extend the depth of the network. Using more than usual layers in deep learning models 

is a quite common approach in visual recognition tasks (e.g., against ImageNet dataset) 

alongside with some non-visual problems but how are we sure that stacking more layers 

is going to give as a better model performance? The first part of the equation to this 

problem was the problem of vanishing/exploding gradients (Bengio, Simard, & Frasconi, 

1994)[10] but using normalized initialization and intermediate normalization layers gave 

the networks with tens of layers the ability to start converging for stochastic gradient 

descent with back propagation. However, after applying the new layers the networks 

training gets saturated and starts to degrade leading to a degradation problem that 

cannot be fixed by providing more layers because that will only give the network higher 

training errors. So, to fix the degradation problem the authors of (He, Zhang, Ren, & Sun, 

2015)[3] proposed a deep residual learning framework. 

A residual neural network (ResNet) [3] is a special type of artificial neural network 

(ANN) that has been proposed by (He, Zhang, Ren, & Sun, 2015) [3] and won the first 

place in the ILSVRC 2015 with a top5-error of 3.57%. They were inspired by VGG and 

created a plain network with same time complexity across the layers by keeping or 

doubling the filters based on the output of the feature map and down sampling to 

convolutional layers with a stride of two. The last layer used global average pooling layer 

and a 1000-way fully connected layer with SoftMax providing thirty-four weighted layers 

way less that VGG nets. Based on the plain network they created shortcut connections to 

achieve the residual network. 

ResNet tend to get higher accuracy for increased depths compared to other 

approaches. 
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ResNet50 

ResNet50 is a variant of ResNet model which has 48 Convolution layers along with 1 

MaxPool and 1 Average Pool layer. 

The architecture of ResNet in general and therefore ResNet50 is: 

Inceptionv3 

Inception-v3 is a convolutional neural network architecture from the Inception 

family that makes several improvements including using Label Smoothing, Factorized 7 

x 7 convolutions, and the use of an auxiliary classifier to propagate label information lower 

down the network (along with the use of batch normalization for layers in the sidehead). 
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Detection of Damages in Building 

  As the problem of detecting damages in buildings is quite extensive and the 

approaches to solve it vary from mathematical prediction models based on previous 

natural disasters data. Specifically for an earthquake disaster the observation of seismic 

activity before an earthquake occurs helps  the calculation  of the impact of damage in 

buildings .Therefore this  will help  rescuers to  decide which building are more crucial for 

human evacuation  (Morales-Valdez, Alvarez-Icaza, & Escobar, 2020).In the other hand 

we have  properly trained deep learning models (e.g., ResNet) with the help of pre/post 

disaster satellite images for real-time classification damage assessment. More specifically 

on earthquake impacted buildings that human inspection is difficult, we can benefit from 

the use of an Unmanned Aerial Vehicle (UAV) that can go to the affected area relatively 

easier and provide the rescuers with a damage assessment report for every single 

impacted building. 

Building Damage Assessment Using Deep Learning and 

Ground-Level Image Data 

With the help of computer vision, Karoon Rashedi and Nia Greg Mori [5] tried to solve 

a different variation of the problem that was mentioned in the introduction. Their main 

difference is that this approach performs damage classification on buildings when the 

remote sensor is on ground-level instead of aerial image input. By using only post-disaster 

images from a small dataset that they created on their own as of the time of publishing 

the paper there was no prior properly labeled dataset with round-level images of areas 

affected to fit with their approach. So only by using post image data of damaged or not-

damaged building they implemented three different convolutional neural networks each 

of them designed to perform an extremely specific task. The first one simply analyzes the 

image. Both, second and third, require some image preprocessing because images 

sometimes contain irrelevant information in comparison to buildings, such as roads, cars 

and basically anything that is not a building so to fix that they used a semantic 

segmentation algorithm to extract buildings and anything else in the image that indicates 

that buildings have any damage in them (e.g., broken walls on the ground close to the 

house). The Convolution Networks later take the raw and preprocessed data in order to 

extract features and as final step a regressor is used to output a percentage value 

corresponding to the damage that the image has. They only use post images, and the 

output is a continuous value as a factor measurement rather than predefined damage 

categories. (Nia & Mori, 2017) [5] 

Earthquake Damage Assessment Based on Deep Learning  

Method Using VHR Images 

Another approach of the damage assessment problem and human security after a 

natural disaster was addressed with the help of Deep Learning Neural Networks along 
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with VHR (Very High Resolution) satellite images by Masoud Moradi and Reza Shah-

Hosseini and presented at the 3rd International Electronic Conference on Geosciences. 

They used Haiti earthquake that happed on the capital city Port-au-Prince on 12 January 

2010 as their base rural area to build their training dataset. Pre disaster images of the 

area acquired after four days of the earthquake and post disaster are based on images 

from 1 October 2009. Both pre/post images had four multi spectral bands along with one 

high resolution band. To proper label the above-mentioned approach of dataset the 

International Institute UNITAR / UNOSAT data and Earthquake Geo-spatial Data 

“Dataverse” (CGA, Harvard University) was used. After the collection of pre/post images 

they compiled every pre/post VHR image into a large image with every pixel have a binary 

value that represent the state of the destruction of the building structure. The newly 

created images were projected into UTM/WGS84 geo-referenced coordinate system, and 

they used random patches of the dataset that have higher that fifty percent of pixel 

labeled as damaged or undamaged. Their base network architecture and training is based 

on the proposed of UNet (Ronneberger, Fischer, & Brox, 2015)[6] along with Deep 

Residual UNet (Zhang, Liu, & Wang, 2018) [7]. To accelerate the network convergence, 

they took advantage of Batch Normalization and normalized the input layer by 

performing adjusting and scaling across the activation layers of the network. Convolution 

layer was used to replace the max pooling layer that all UNet have by nature because it 

performs better. In addition, they used a batch size of twenty-five along with image patch 

size 256x256 used to train the UNet model for about fifty epochs with a learning rate of 

0.01 along them. Root Mean Square Probability was used as the parameter optimization 

as we speak for a large dataset and cross-entropy as the loss/cost function. The model they 

proposed is used for mapping earthquake building condition assessment but with the 

proper dataset for any other type of natural disaster (e.g., fire, tsunami, etc.) and the 

corresponding labeling it can be trained again as it is a supervised model and well 

developed so it can meet the criteria of any other natural disaster easily (Moradi & Shah-

Hosseini, 2020)[8]. 
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Our Model 

Firstly, before starting to explain our deep learning model, we must first collect data 

for the problem we are willing to solve because the more data someone has for a problem 

the better the model is going to be trained. This can be done quite easily with the help of 

DIU (Defense Innovation Unit) that offers through the xView2 challenge site the xBD 

(Gupta, et al., 2019) [2], a large-scale dataset containing pre/post satellite imagery with 

ground sample distance lower than 0.8 for various natural disasters (e.g., earthquakes, 

wildfires, etc.) covering plenty of geographical locations along with over 800,000 building 

annotations. Also due to that wide building coverage across many regions the dataset 

creates a perfect diversity for different building (e.g., sizes, techniques, etc.) along with 

negative satellite images that contains areas with undamaged buildings or no buildings 

at all making the perfect for checking if building classification was trained properly. After 

consulting disaster response experts they created a joint damage scale that properly 

representes real building damage conditions as shown in Figure 1. 

Model 

“The localization model was based on a SpaceNet submission by Motoki Kimura, 

which featured an altered U-Net architecture [18]. We lightly modified this model to fit 

our dataset. The model was trained on an eight GPU cluster for seven days. The model 

achieved an Intersection over Union of 0.97 and 0.66 for “background” and “building,” 

respectively. 

The classification model is shown in Figure 2. The ResNet50 is pre-trained on 

ImageNet [4] whereas the smaller side network is initialized with random weights. All 

convolutional layers use a ReLU activation except the last one that uses soft-max 

activation. The output is a one-hot encoded vector where each element represents the 

probability of an ordinal class. The model uses an ordinal cross-entropy loss function. 

Figure 1 Joint Damage Scale from xView2 site 
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Unlike traditional cross-entropy, ordinal cross-entropy penalizes relative to the distance 

between true and predicted ordinal class. Since the difference between any two classes is 

not interchangeable, this loss function allows the model to better distinguish between the 

various levels of damage.” 

 

 

 

 

Uses the Space Net [9] model for the building classification that is based in UNet a 

Convolutional Network for Biomedical Image Segmentation [6] and a damage training 

classification based on ResNet50 with some additional “fuzz” layers and for the last layer 

we simulate an SVM using categoral_hinge as the loss function to determine in which of 

four classes of the damage scale each individual building belongs to. 

 

 

 

 

 

 

 

 

Figure 2 Architecture of the baseline classification model. The input is fed into a pre-trained ResNet 50 as well as a 

shallow CNN. The outputs of each stream are concatenated and passed into dense layers for classification 



18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



19 

 

Use cases and performance results. 

Taking into account the earthquakes that happened in October 2021 in Heraklion, 

Crete with magnitudes varying from small ones to 6,3 in the scale of Richter as seen in 

Figure 3 and in general Greece having a high seismic activity though out its land we 

believe that a deep learning model like this can be a very powerful “weapon” in the hands 

of  civil protection rescuers to properly have an estimate of damages in the affected area 

and more efficiently organize the teams to go to buildings more targeted rather that 

visually inspecting each one and deciding on premise. Also sometimes given the high 

number of Richter some places become obscured and inaccessible by foot so having the 

damage assessment for each building can help provide aerial support to these buildings 

and therefore rescue trapped people in them. 

Another scenario is when a wildfire occurs for example the fires that happened the 

summer of 2021 in Attica and destroyed 16% of the forests [12]. Along with the forest a 

lot of buildings suffered various damages to their structural integrity. Something similar 

happened to Evia Island due to the summer heatwave and other factors that are not my 

study field but left us with over 500.000 acres of burnt forest and of course a lot of damaged 

and even totally collapsed buildings. So, people living in these areas need compensation 

from the current government. Therefore, all the damaged buildings need to pass a visual 

inspection from government assigned civil engineers to create reports for each individual 

building. But when we are dealing with thousands of buildings across a wide area of an 

island like Evia something like this is very time consuming. To put it in a simpler way 

people, need to re-build/fix their homes in expectation of having a place to live and 

Figure 3 Total Number of Earthquakes in Crete 
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government must classify the damages quickly. Being able to use satellite images of the 

affected acres to generate a report with the help of deep learning model or even use 

multiple UAVs to scan the whole affected area by divide and conquer method or a 

combination of both it will save a lot of time and money. 

Performance 

Using the SpaceNet algorithm to train our model so it can easily detect building so it 

can identify buildings in new locations that a new disaster might occur. We used santa-

rosa-wildfire as a subset of our dataset to train our model to detect what is classified as a 

building. (Figure 4-5) 

Figure 4 Accuracy of SpaceNet (Santa-Rosa-Wildfire) 

Figure 5 Loss of SpaceNet (Santa-Rosa-Wildfire) 
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LinearSVM 

For demonstration purposes if someone uses as a last layer a linear SVM he will get 

an accuracy of 25% of the classification based on the joint damage scale. This happens 

because the linear SVM will classify all buildings as one category. For example, if all 

building will be destroyed or will have a minor damage. 

Epoch main/loss validation/main/loss main/accuracy validation/main/accuracy elapsed time 

01 0.248371 0.228309 0.918139 0.959325 72.3883 

10 0.149629 0.0970564 0.939556 0.956784 600.198 

20 0.117099 0.088584 0.953469 0.965297 1184.31 

30 0.116498     0.0813691              0.954175        0.96966                    1770.02 

40 0.0957175    0.0730834              0.962931        0.97179                    2359.9 

50 0.0785189    0.0811975              0.969644        0.970451                   2949.08 

60 0.0831312    0.0682702              0.967713        0.974896                   3552.44 

70 0.0730851    0.0632934              0.971921        0.975701                   4149.39 

80 0.0747385    0.0515737              0.971226        0.979858                   4740.75 

90 0.0683723    0.0558712              0.974289        0.979437   5338.04 

100 0.072806     0.0477328              0.972347        0.981581         5930.5 

Figure 6 Damage Classification with Linear SVM (Santa-Rosa-Wildfire) 
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Figure 7 Damage Classification with Linear SVM (Santa-Rosa-Wildfire) 

Figure 8 Damage Classification using baseline approach (Santa-Rosa-Wildfire) 
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 Nonlinear-SVM 

Running nonlinear SVM as the last layer of our damage classification model gives us 

reliable results but with some false positives but they are mostly misidentified buildings 

i.e. (top-right corner show two green “houses”) but that is caused from the building 

classification model that was only trained one hundred epoch and with a very small subset 

(Santa-rosa-wildfire) of the whole xView2 dataset.  

  

 

 

 

 

 

 

 

 

 

 

Figure 9 Damage Classification using Non-Linear SVM as last layer (Santa-Rosa-Wildfire) 
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Conclusion and Future Work 

Taking everything into account, building detection can be a very challenging due to 

the fact that when you create or extend your dataset with images you have to deal with 

photos that have some noise (i.e., clouds covering part or the whole building, foggy/muddy 

area) but xview2 seem to merged a lot of useful data into one properly label dataset to 

help with a good baseline that can be extended relatively easier. In addition, damage 

assessment can be a very interesting research field as it can help in a lot of difficult 

situations i.e. (earthquake, tsunami or even a war).So to contribute in this area we wanted 

to see if an SVM as it a very common last layer along with the soft-max approach in order 

to solve classification problems [19] and find out if it will benefit our damage classification 

model. 

Future Work 

To further improve the proposed model someone can use ArcGIS Pro to fetch building 

feature map of the affected area so the model will only perform damage classification 

because it will already know where the buildings are based on the extracted feature map. 

Another approach is to use Google Maps API to fetch satellite images of affected area days 

prior to the natural disaster tailored to his needs (e.g., same weather conditions as the 

disaster ones) and use SpaceNet or Building Footprint Extraction [13] to extract building 

feature map. The second one works well with both satellite images and aerial ones, so the 

use of a UAV becomes a lot easier. The only downside of this is that after the address of 

the natural disaster the model needs to be trained again with the new provided data. 

Considering the above, the use of an SBC (e.g., Raspberry Pi) equipped with a camera 

on top of a drone with the help of a 5G capable model can easily send those images in real 

time (1ms) to a cloud infrastructure to perform the whole classification process and 

provide the drone of better the human that controls the drone a separate feed of video 

containing colored buildings corresponding to their damage. 

Another approach of the propose of a drone is the use of the Jetson Nano to perform 

the AI workload on the device as Jetson is capable of such GPU heavy tasks without the 

need of cloud and save time for transmission to the cloud infrastructure and vice versa. 

To further complete the entire process the whole dataset can be used to train the 

building classification algorithm and later train the damage classification per disaster. 

So, in any future disaster the specific model can be used to address that extremely specific 

disaster-problem and therefore have one model for every disaster that might occur in the 

future. 
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Section A 

GPU: 0 

# Minibatch-size: 16 

# Crop-size: 400 
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# Epoch: 100 

 

epoch       main/loss   validation/main/loss main/accuracy 

validation/main/accuracy elapsed time 

1           0.248371    0.228309              0.918139       0.959325                  72.3883        

2           0.171758    0.184291              0.941087       0.959417                  130.107        

3           0.174309    0.165682              0.937529       0.957574                  187.6          

4           0.156248    0.130873              0.942095       0.958216                  244.938        

5           0.150401    0.155715              0.945608       0.941414                  307.313        

6           0.160608    0.110339              0.942958       0.956322                  364.715        

7           0.162063    0.105588              0.939092       0.959988                  422.048        

8           0.148145    0.108511              0.94729        0.954119                  479.314        

9           0.150408    0.100966              0.94088        0.958286                  542.456        

     total [####..............................................]  9.76% 

this epoch [#####################################.............] 75.61% 

       100 iter, 9 epoch / 100 epochs 

       inf iters/sec. Estimated time to finish: 0:00:00. 

10          0.149629    0.0970564             0.939556       0.956784                  600.198        

11          0.137875    0.0994239             0.945984       0.958634                  657.487        

12          0.143337    0.100507              0.94334        0.95379                   714.853        

13          0.142189    0.212782              0.94318        0.95973                   777.116        

14          0.137869    0.0964185             0.944517       0.959419                  834.402        

15          0.134803    0.0881785             0.945146       0.963328                  891.748        

16          0.13055     0.110902              0.948457       0.963406                  949.162        

17          0.141082    0.0873135             0.945165       0.964491                  1011.66        

18          0.142233    0.0955827             0.944351       0.966174                  1069.22        

19          0.119621    0.0849503             0.953885       0.967461                  1127.02        

     total [#########.........................................] 19.51% 

this epoch [#########################.........................] 51.22% 

       200 iter, 19 epoch / 100 epochs 

   0.17415 iters/sec. Estimated time to finish: 1:18:57.398682. 

20          0.117099    0.088584              0.953469       0.965297                  1184.31        

21          0.121465    0.0816433             0.952036       0.965443                  1246.43        

22          0.126179    0.0872653             0.951859       0.966938                  1303.42        

23          0.107696    0.0772394             0.957968       0.968948                  1360.53        

24          0.112647    0.077409              0.956857       0.968368                  1417.5         

25          0.111414    0.0841082             0.957264       0.967176                  1479.61        

26          0.115445    0.092549              0.955892       0.968219                  1536.62        

27          0.127015    0.0863309             0.951334       0.964179                  1593.64        

28          0.111527    0.0822129             0.958583       0.967748                  1650.82        

29          0.10085     0.0808828             0.96147        0.965174                  1712.68        

     total [##############....................................] 29.27% 

this epoch [#############.....................................] 26.83% 

       300 iter, 29 epoch / 100 epochs 

   0.17466 iters/sec. Estimated time to finish: 1:09:10.910317. 
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30          0.116498    0.0813691             0.954175       0.96966                   1770.02        

31          0.104715    0.0898064             0.959501       0.962393                  1832.73        

32          0.111302    0.0715475             0.955923       0.972555                  1890.05        

33          0.124029    0.0994614             0.950924       0.96448                   1952.59        

34          0.115141    0.0824721             0.95641        0.966538                  2010.29        

35          0.127418    0.102276              0.95061        0.965954                  2068.23        

36          0.11104     0.0688331             0.956823       0.974216                  2125.61        

37          0.0997533   0.0797492             0.960572       0.969716                  2187.98        

38          0.108509    0.0764989             0.957282       0.96903                   2245.14        

39          0.101501    0.0716731             0.961042       0.972733                  2302.46        

     total [###################...............................] 39.02% 

this epoch [#.................................................]  2.44% 

       400 iter, 39 epoch / 100 epochs 

   0.17357 iters/sec. Estimated time to finish: 1:00:00.922183. 

40          0.0957175   0.0730834             0.962931       0.97179                   2359.95        

41          0.0889849   0.0697198             0.965659       0.9725                    2422.83        

42          0.109669    0.121636              0.955574       0.962107                  2480.33        

43          0.103904    0.0728264             0.959595       0.97026                   2537.58        

44          0.0952033   0.0896886             0.962459       0.963557                  2594.95        

45          0.0961043   0.0647265             0.962201       0.975304                  2657.06        

46          0.0898943   0.0804596             0.964735       0.97182                   2714.16        

47          0.091459    0.0717713             0.963961       0.970845                  2771.52        

48          0.103929    0.0699394             0.95989        0.971433                  2829.12        

     total [########################..........................] 48.78% 

this epoch [#######################################...........] 78.05% 

       500 iter, 48 epoch / 100 epochs 

   0.17456 iters/sec. Estimated time to finish: 0:50:07.620641. 

49          0.0828965   0.0705439             0.968148       0.971807                  2891.61        

50          0.0785189   0.0811975             0.969644       0.970451                  2949.08        

51          0.0914359   0.0633786             0.964509       0.97742                   3021           

52          0.0841678   0.0630484             0.967562       0.97641                   3079.17        

53          0.0947962   0.0857803             0.963663       0.967                     3142.42        

54          0.0814097   0.11928               0.968978       0.965359                  3200.08        

55          0.0940421   0.0779933             0.962563       0.972216                  3257.88        

56          0.0886972   0.0655407             0.964402       0.974286                  3316.03        

57          0.0859889   0.0648892             0.967084       0.973419                  3379.1         

58          0.0869022   0.068124              0.965733       0.975923                  3436.88        

     total [#############################.....................] 58.54% 

this epoch [##########################........................] 53.66% 

       600 iter, 58 epoch / 100 epochs 

   0.17334 iters/sec. Estimated time to finish: 0:40:51.759806. 

59          0.0822741   0.0625559             0.968018       0.976533                  3494.69        

60          0.0831312   0.0682702             0.967713       0.974896                  3552.44        

61          0.0837534   0.0605224             0.966955       0.975377                  3615.23        

62          0.080858    0.0950384             0.969182       0.970821                  3673.19        
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63          0.0858145   0.0697039             0.967085       0.974962                  3730.97        

64          0.0804658   0.0634525             0.968379       0.973715                  3789.33        

65          0.0820634   0.0679786             0.96692        0.976543                  3853.05        

66          0.0747686   0.0624412             0.970501       0.976478                  3911.42        

67          0.0778439   0.0587748             0.969718       0.977483                  3969.79        

68          0.0750105   0.0651996             0.971134       0.976345                  4027.87        

     total [##################################................] 68.29% 

this epoch [##############....................................] 29.27% 

       700 iter, 68 epoch / 100 epochs 

   0.17314 iters/sec. Estimated time to finish: 0:31:17.112641. 

69          0.0731202   0.0554982             0.97163        0.979046                  4091.22        

70          0.0730851   0.0632934             0.971921       0.975701                  4149.39        

71          0.0725655   0.0691743             0.971785       0.974449                  4207.55        

72          0.0759979   0.0567736             0.970344       0.979041                  4265.78        

73          0.0716494   0.0862464             0.97156        0.972297                  4328.97        

74          0.0765689   0.0569171             0.97015        0.97768                   4387.21        

75          0.0651007   0.0570131             0.97516        0.978539                  4445.25        

76          0.0677926   0.0536317             0.973084       0.979542                  4503.42        

77          0.0757188   0.0595677             0.970207       0.976759                  4566.5         

78          0.0674326   0.0638738             0.97378        0.977465                  4624.64        

     total [#######################################...........] 78.05% 

this epoch [##................................................]  4.88% 

       800 iter, 78 epoch / 100 epochs 

   0.17282 iters/sec. Estimated time to finish: 0:21:41.967752. 

79          0.0689469   0.0622197             0.973102       0.977563                  4682.76        

80          0.0747385   0.0515737             0.971226       0.979858                  4740.75        

81          0.0727194   0.0550089             0.971974       0.980278                  4804.09        

82          0.0643093   0.0571189             0.975393       0.977822                  4862.13        

83          0.0767177   0.0588132             0.969083       0.977863                  4920.19        

84          0.0722139   0.0571848             0.971718       0.977924                  4978.26        

85          0.0679254   0.0552411             0.973352       0.979098                  5041.69        

86          0.0706984   0.0503689             0.972849       0.981077                  5099.83        

87          0.0628854   0.0488895             0.975805       0.980857                  5158.02        

     total [###########################################.......] 87.80% 

this epoch [########################################..........] 80.49% 

       900 iter, 87 epoch / 100 epochs 

   0.17313 iters/sec. Estimated time to finish: 0:12:02.013041. 

88          0.0696999   0.0541805             0.973247       0.97934                   5216.16        

89          0.0657108   0.0556194             0.974176       0.978367                  5279.57        

90          0.0683723   0.0558712             0.974289       0.979437                  5338.04        

91          0.0675669   0.0502057             0.974191       0.980271                  5396.36        

92          0.0740278   0.0538187             0.97133        0.979509                  5454.57        

93          0.064117    0.0519578             0.975001       0.980471                  5517.75        

94          0.0628196   0.0479857             0.976026       0.981419                  5576.17        

95          0.0604761   0.0703855             0.976585       0.973775                  5634.91        
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96          0.0700984   0.0497585             0.9724         0.981013                  5693.68        

97          0.0777764   0.0600608             0.970134       0.978627                  5756.87        

     total [################################################...] 97.56% 

this epoch [############################......................] 56.10% 

      1000 iter, 97 epoch / 100 epochs 

   0.17293 iters/sec. Estimated time to finish: 0:02:24.567267. 

98          0.0752757   0.0687284             0.971306       0.975276                  5814.82        

99          0.071402    0.0537116             0.971968       0.979474                  5872.67        

100         0.072806    0.0477328             0.972347       0.981581                  5930.5        


