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(1)   «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με 
έγγραφη υπεύθυνη δήλωση  

του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο 
υπαίτιος αυτών των πράξεων  

σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή 
σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.»

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της 
διατάξεις της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι: 

1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να 
τα περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη 
σελίδα. Η αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι 
λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση 
εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς 
και η παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά 
στην πηγή. Αναφέρω πάντοτε με πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, 
όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται 
από αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι 
αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν 
δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και 
παρουσίασή τους ως δική μου εργασία.  

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των 
παραθεμάτων που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε 
μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και 
όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι 
πίνακες και τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής. 





  
 

ΠΕΡΙΛΗΨΗ  

Τα αυτόνομα οχήματα είναι ένα μείζον θέμα στον τομέα της τεχνητής 

νοημοσύνης. Μπορούν να λύσουν πολλά από τα προβλήματα της 

καθημερινότητας, και πιο συγκεκριμένα το πρόβλημα της ασφαλούς 

συγκοινωνίας. Έχει αποδειχθεί πως ο πιο αποτελεσματικός τρόπος για να 

μετατρέψει κανείς ένα αυτοκίνητο σε αυτόνομο όχημα είναι η χρήση μόνο 

της κάμερας ως αισθητήρα αντίληψης, σε συνδυασμό με την χρήση μηχανικής 

μάθησης για την λήψη αποφάσεων ως προς το πού πρέπει να κινηθεί το όχημα 

αυτό. Η χρήση φθηνών αισθητήρων (συγκεκριμένα κάμερα) καταφέρνει να 

μειώσει σημαντικά το κόστος παραγωγής και ταυτόχρονα την τιμή πώλη σης, 

συγκριτικά με άλλους αισθητήρες όπως LiDAR, οι οποίοι έχουν πολύ υψηλό 

κόστος και έχουν αποδειχτεί μη απαραίτητοι. Δύο βασικές εταιρείες 

επιτυγχάνουν την αυτονομία οχημάτων για τον μέσο καταναλωτή, η Tesla 

και η Comma.ai, οι οποίες χρησιμοποιούν προηγμένη μηχανική μάθηση πάνω 

στις εικόνες που παρέχει η/οι κάμερα/ες σε συνδυασμό με άλλους 

αλγορίθμους που καθορίζουν την κίνηση του οχήματος. Συγκεκριμένα, η 

Comma.ai χρησιμοποιεί μια μόνο κάμερα που βλέπει μπροστά από το 

αυτοκίνητο,  δηλαδή ένα smartphone που εφάπτεται στο παρμπρίζ (πράγμα 

που επιτρέπει το Openpilot, όπως λέγεται το προϊόν τους, να υποστηρίζεται 

από τα περισσότερα αυτοκίνητα της αγοράς). Τα ζωντανά βίντεο της κάμερας 

προωθούνται σε ένα τύπου end -to-end μοντέλο μηχανικής μάθησης το οποίο 

είναι υπεύθυνο για την κίνηση του αυτοκινήτου. Αυτή ήταν και η βασική 

έμπνευση της συγκεκριμένης πτυχιακής εργασίας, όπου μέσω βίντεο από 

smartphones που εγκαταστάθηκαν στο παρμπρίζ διαφόρων αυτοκινήτων, 

έγινε προσπάθεια εντοπισμού διασταυρώσεων, ορίων του δρ όμου και 

δρομολόγηση του οχήματος με την χρήση μηχανικής μάθησης πολλαπλών 

εργασιών.  



  

  



 
 

  



  

ABSTRACT  

Autonomous vehicles is an important topic, among many others, for the 

AI (Artificial Intelligence) community. For many years, self -driving cars 

have been considered science fiction. However, with the works of companies 

such as Tesla (Autopilot) and Comma.a i (Openpilot),  this “science fiction” 

seems highly achievable. These software products use simple sensors 

(cameras, radar, etc) and Deep Learning to eventually output a drivable 

path for the car to follow, and then other types of software handles the 

execution of the that path. One approach is more of a mid-to-mid solution 

(highly used by Tesla), meaning that deep learning is used to detect various 

objects such as pedestrians, stop signs, lane lines, etc to produce a 3D map 

of the car’s environment. Then other algorithms are used (probably more 

deep learning), that take into account the generated map and output the 

final path the car should follow based on human driving data. This solution 

builds more trust to end users since they can see the map (therefore what 

the software “sees”), however it requires top -of-the-line expensive 

hardware and also causes doubts in it ’s scalability. Another solution uses 

a more end-to-end approach (meaning one big neural network takes the 

sensor data as input and outputs the final path), which doesn’t output a 

fancy 3D map to the user, but promises more scalability for the future 

(highly used by Comma.ai).  This approach basically relies more on AI and 

lets a machine learning model decide the path (based on previous data from 

human drivers) via the sensors themselves rather than creating a  map of 

the environment. This approach has been proven very efficient on highway 

driving using less expensive hardware and being compatible with many car 

brands and models (even Tesla cars),  however this open -source driving 

agent is not ready yet for driving in big cities, towns, etc, thus it is not 



 
 

ready for full self driving capabilities. A big problem of city driving is how 

the car should handle crossroads. This thesis tries to provide a simple (yet 

not necessarily scalable) solution to how the car shoul d handle crossroads 

by learning how to detect them and plan a path accordingly based on how 

humans drove in similar situations. There is also some experimentation 

with the performance of multi -task deep learning. The final application 

shows promising results in simple tasks such as crossroad detection, road 

edge detection and path planning, using just neural network(s), while also 

benchmarking single networks against multi -task networks in both task 

efficiency/accuracy and performance (speed). The only sens or used for this 

project was a single camera (monocular). Software libraries such as 

pytorch, opencv, etc have been proven very useful.
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CHAPTER 1 Introduction 

1.1 What is autonomous driving? 

Nowadays, a lot of cars ship with many assistance and automation features. 

The golden standard is cruise control, which keeps the car’s speed at a specific 

value for extended periods of time, in order to make driving long distances a bit 

more relaxing for the driver. There is also adaptive cruise control, which is 

programmed to change the speed value depending on the situation (i.e. when 

making some turns the car needs to slow down). 

Another feature that recently has come to play in a lot of modern cars is lane 

keeping assist, that requires some robust lane-lines detection. It can either work 

as a warning for when the car is shifting out of lane, so that the driver fixes his 

course to avoid an accident, or it can also have some autonomy in order for the car 

to slightly correct it’s path by itself. 

The features mentioned above belong in different vehicle automation levels 

that describe how much the driver has to participate in actual driving. There are 

4 main levels (even though there could be more, depending on how one categorizes 

the given features). On level 1 we have the basic cruise control that was mentioned 

earlier. On level 2 we have adaptive cruise control and maybe some lane-line 

detection with warnings (or even a slight corrective turn of the wheel) for when 

the car strays out of it’s supposed path. Here, there is a minimal level of 

automation and it’s purpose is just to assist the driver in order to avoid accidents 

and make the process of driving more comfortable. 

When referring to level 3 automation, one means that 99% of the time the 

driver does not need to take any action and the car successfully drives itself, with 

some probability of error. Level 3 features include longitudinal and lateral path 

planning and full controls autonomy, meaning that the car can fully moderate it’s 

speed and steering in order to drive in different situations, while the driver only 

needs to pay attention so that he can take over in case the system fails at any 

moment. 

Finally, at level 4 there should be no humans on the driver’s seat. The car 

should be able to fully drive itself like a human (or even better) without the 

probability of a system failure or any accident. This level unfortunately still 

belongs in the category of science-fiction, for the time being. This is why modern 

autonomy algorithms require the driver to be engaged at all times, so that if the 

car itself fails to successfully drive in a given scenario, the driver can always take 

over and correct it. 

Today, there is a number of companies that have achieved autonomy close to 

level 3. Most notably, Comma.ai and Tesla have done so by minimizing the cost, 

relying on less expensive sensors such as cameras and radar (as opposed to the 

costly LIDAR sensors) and utilizing deep learning so that the car actually learns 

to drive by the example of humans. 
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1.2 Sensors used 

Human driving consists roughly of 3 steps, perception, planning and control. 

The same goes for the computer/machine that drives the car. For perception we 

use various sensors such as cameras, GPS, radar, etc. In this project, only a single 

smartphone camera was used, just like in Openpilot. Monocular (i.e. using one 

camera) has been proven to be enough for many self-driving tasks, and can be more 

usable since the end user only has to mount a smarphone on the windshield 

instead of installing a bunch of cameras in the car. Comma.ai claims that they 

achieve great results without even using the full potential of monocular self-

driving. 

LIDAR is not practical either, since it is expensive and quite unnecessary. 

Humans drive by mostly using their vision for perception, therefore an HD map of 

the whole environment of the car is overkill and impractical. There are also 

sensors such as RADAR, that can assist the process of self-driving while on the 

path for level 4, however eventually the algorithms should be able to drive a car 

without relying on it. For now, it is being used for corrective purposes, in order to 

assist the machine learning algorithms in depth estimation, leading car detection, 

etc. 

This thesis focuses more on perception (monocular detection of crossroads and 

road edges) while implementing a simple but not so practical path planner. There 

is no implementation of controls, since this was never the focus of this project, so 

other possible car sensors are ignored. 
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CHAPTER 2  Previous Work on Self-Driving Cars 

This thesis is heavily inspired by the works of Tesla and Comma.ai in the 

market of self-driving cars, with their products (Autopilot and Openpilot from each 

company respectively) showing great results and a large fleet of users. Both self-

driving agents use machine learning algorithms and rely on cheap sensors such as 

cameras in order to decide the overall driving policy of the car. There are 3 basic 

steps for the autonomy stack in cars regarding software, perception, planning and 

controls. 

Tesla utilizes many multi-task deep neural networks in order to cover the 

whole stack. For perceptions, many large neural networks are used in order to 

detect cars, pedestrians, signs, road edges, lane lines, obstacles, etc. This leads to 

the creation of a detailed map of the environment of the car. Many other 

approaches use static algorithms on LIDAR sensor readings in order to create an 

HD map of the environment, which is quite impractical since LIDAR sensors are 

expensive and the algorithms used are not robust to noise or edge cases. The 

machine learning approach tries to replicate human behavior so that the car can 

handle itself well enough in most situations without following static rules on how 

to drive. After creating a map using machine learning, the same techniques are 

used in order to plan the path for the car to follow. For controls, since Tesla makes 

it’s own cars, the software has full access to steering and gas/break pedals. The 

last part, however, does not concern this thesis so it shall not be focused on. 
On the other hand, Comma.ai’s approach skips the perception step and uses 

one deep multi-task neural network in order to plan the path, based just on raw 

video data from a dashboard camera. This approach is called end-to-end and has 

been focused on by Nvidia and other companies as well. It is the most promising, 

but still requires a lot of research and especially a lot of data. It scales better since 

it let’s the complex machine learning model what to focus on from the video feed, 

instead of relying on a map of the environment. With this approach, the car can 

drive itself in a smoother way, replicating the behavior of a human more 

accurately. This approach was focused on the most for this project, since the main 

goal was to help an end-to-end path planner make better decisions when meeting 

crossroads, by training a multi-task model alongside a crossroad and road-edge 

detector.  
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CHAPTER 3 Algorithms Used 

3.1 Artificial Intelligence 

3.1.A Learning from humans 

Many people think that to make a car drive itself we need to define an 

enormous amount of static rules (traditional programming) such as how much 

distance it needs to leave from the leading car, or where exactly to stop if it sees a 

stop-sign. This is mostly how cars drive in video-games, where the environment of 

the car is quite predictable and the car itself is not required to do any hard tasks 

rather than just roam without crashing. But we want to deploy a self-driving car 

into the real world, which can be very unpredictable. Even if a decent traditional 

programming solution is proposed (which is unpractical since it requires a lot of 

unnecessarily complex code), it will not be able to handle edge cases that 

surprisingly happen a lot on a daily basis. 

The biggest question that provides the solution is the following: “How do 

humans actually learn to drive?”. Before we even start studying for a driving 

license, we already know what a stop sign is and what to do when we meet one on 

the road. Why is that? Well, we learn basic driving before we even get a hold of a 

wheel by observing other people (such as parents, etc) drive. Why not apply that 

method for the self-driving agent? Basically, instead of instructing the machine 

how to drive by providing static rules, we teach it by showing it how humans drove 

in a variety of situations. Instead of telling it to stop when a stop sign is present, 

we should show it scenarios where an actual person stopped while encountering 

one. 

This solution should achieve autonomous vehicles that drive like actual human 

beings, in order to handle any scenario and achieve more “natural” movements. 

Humans are good at judging several situations, such as when the car doesn’t have 

to or even should not follow the lane-lines and instead drive either towards the 

center or the outer side of the lane. In a scenario like this, a static algorithm 

wouldn’t be able to judge the situation correctly and thus would keep following the 

lane-lines. By using artificial intelligence in order to teach the car how to drive 

itself like a human, we can just show the car what to do in every situation so that 

it decides for itself, based on it’s given data, what to do. The main goal is to make 

a self-driving car that drives like an actual human without any error, which will 

eventually achieve safer driving and less accidents. Most accidents don’t happen 

because a driver can not handle his/her car, but due to distractions and lack of 

awareness. A computer will always pay attention and combining it with a correct 

and safe driving policy, this would make the roads safer. 

 

 

 

 

Section 3.1.B Machine Learning 
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With this solution proposed, another question arises: “How do computers learn 

to complete tasks based on real-world data?”. The answer is “By using machine 

learning”. But what exactly is machine learning and why is it becoming such a big 

deal for artificial intelligence the last decade? 

There are three types of machine learning: supervised, unsupervised and 

reinforcement learning. This project uses supervised machine learning, which 

means that the computer learned the given tasks based on previous data it was 

shown. For these tasks, human driving videos (dash-cam) were used as training 

data. 

There are two basic types of tasks a machine learning model can do: regression 

and classification. For regression, the model is given a set of inputs and some 

continuous numeric values as training data. After some iterations of the training 

data and a suitable machine learning model (which is more like a big 

mathematical function), the computer learns not only what to output given an 

input it has already seen, but can also generalize from the given dataset in order 

to give correct outputs from inputs similar to what it has already “seen”. There are 

different machine learning models for such tasks, such as linear or logistic 

regression, etc. 

For classification, the model is once again given a training dataset that consists 

of inputs and their expected outputs, however this time the outputs are not 

continuous values (for example numbers), but different classes (e.g. male, female, 

dog, cat, etc). There are two types of classification, binary and multi-class. Binary 

classification happens when the output classes are only two (e.g. yes or no, male 

or female, etc), while multi-class when we have more that two possible classes in 

the dataset. There are different classification models/algorithms, such as decision 

trees, Bayesian classifiers, etc. 

Unsupervised machine learning algorithms, such as clustering, are used in 

situations where we are given only input data, in order to find various correlations 

between the tuples/rows. These algorithms automatically extract statistics and 

other characteristics of the given data resulting in a more detailed analysis. 

In reinforcement learning, an intelligent agent is deployed in an environment 

and, given a specific set of controls, tries to learn by trial and error. The 

programmer defines a reward function, so that the model knows when it is doing 

the right things or the wrong ones. After performing some sets of actions and 

episodes, the agent calculates it’s reward and evaluates it’s policy. This type of 

machine learning can perform great in games whose rules are deterministic, such 

as mazes, tic tac toe, etc, where the agent plays a lot of rounds, tries, fails and 

learns from it’s mistakes in order to win the given game or complete a task. Such 

type of learning algorithms have been used in mini-projects for self-driving cars in 

video games, where after a large amount of episodes (trials and errors until the 

game is over), the car could drive itself without crashing, even though the actual 

driving was not really elegant. This method can work in a video-game where the 

environment is quite predictable and the rules are predefined, however in the real 

world it could be dangerous and highly sub-optimal. 

The algorithms/models mentioned above have shown great results and 

performance in simple tasks, however for autonomous driving tasks, a more 

sophisticated solution has been proven to work greatly. The models used for this 
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project belong in the category of Neural Networks, they are part of a subcategory 

of machine learning, called Deep Learning. 
 

 

 

3.1.C Deep Learning and Artificial Neural Networks 

With the huge improvements that have been made in computer hardware, 

specifically on GPUs and memory, the concept of Artificial Neural Networks has 

been tackled and researched intensively. Today, they are widely used for various 

complex machine learning tasks. Basically, Deep Learning is the use of artificial 

neural networks for machine learning problems instead of the more traditional 

algorithms/models. 

But what exactly is an artificial neural network? In simple words, it is an 

attempt to model the human brain (which is proven by research that it is a big 

network of neurons) using computers. Like the human brain, artificial neural 

networks have many connected neurons that receive and transmit signals from 

and to other ones. In reality, this explanation is merely a simple visualization of 

such models, a concept that was followed during their creation. These networks 

consist of many layers of neurons that are inter-connected, where the number of 

layers dictates their depth. Deep learning is associated with the research and use 

of these deep artificial neural networks for various tasks, thus it’s name. 

A more pragmatic explanation of what an artificial neural network is would be 

the following: a large and complex mathematical function f(x) = y where x is the 

input and y the output of the network. How f is defined is really arbitrary and 

widely researched until even today, but simply put: f is visually the architecture 

of the network (the calculations that the function executes). 

To understand neural networks and their architecture, one must first 

understand what a single neuron is. A neural network that consists of one neuron 

is called a perceptron (since it is not really a network, no actual connections exist). 

A simple perceptron is basically a linear regressor, which means it utilizes the 

mathematical function of y = w*x + b, where w is called the weight and b the bias. 

So, a simple perceptron model tries to find a straight line that best suits and 

generalizes the line the training data creates. It achieves that by finding the right 

weight and bias for the given task. W and b are initialized randomly (they can 

however be initialized by using other algorithms, depending on the training data 

and machine learning task), and during training the inputs x from the given 

dataset are “fed” forward to the perceptron (and therefore to the whole network 

when we are dealing with more than one neuron). Y (the output of the model) is 

calculated through the given function, and then is compared with the 

corresponding Y of the training data. The difference between Y_train and Y_out is 

called Error. The goal of the training process is to minimize that error (also called 

loss), therefore improving accuracy, while being able to generalize on similar 

previously unseen data. 

There are many ways to define the error and they are called loss functions. 

Some examples for regression are Mean Squared Error (1/n * Σ(yi yi’)^2), Mean 

Absolute Error (1/n * Σ|yi – yi’|), etc. The weight w and bias b are updated with 
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each iteration of a tuple/row (i.e. one input x and it’s corresponding output y) 

depending on the value of the error. 

But how are they updated? By using a method called backpropagation that uses 

gradient descent: 

 

Wnew = W + ΔW 

ΔW = a* Error * σ(W*x) * (1 - σ(W*x)) * x 

Error = y – f(x) 

where y is the correct value from the dataset and f(x) the output of  the 

perceptron/network . 
 

Where a is called the learning rate, which determines how much the value of 

the weights will change, i.e. how fast the network learns. If the value is too big, 

the network will make huge changes to it’s weights and not be able to match the 

training data properly, while if it is too small, the network won’t make changes 

drastic enough to learn the task. The ideal value of a is a matter of experience and 

experimentation.  
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3.1.D Learning more complex models by using Activation Functions 

 

Perceptrons and neural networks are good enough for simple problems. The 

architecture that has been explained has some problems, such as disappearing 

gradiens, inability to match more complex mathematical functions, etc. These 

problems have been solved by using activation functions. 

An activation function works like a gate for the output of a single neuron. It is 

a mathematical function which takes as input the output of a perceptron and, 

depending on the function’s type, outputs a different value. There are many 

activation functions used, such as Sigmoid, Softmax, Tanh, ReLU, ELU, etc. The 

activation functions that were used in this project will be explained later on. 

What these function allows the neural networks to do is achieve better logistic 

regression, thus learning more complex tasks. The simple perceptron without an 

activation function can only perform linear regression. By using these functions, 

it can perform different types of classification, binary (using sigmoid, which 

clamps the output between 0 and 1) or multi-class (using softmax). 

In conclusion, activation functions are used for more complex regression or for 

classification. The output of a binary classifier neural network or perceptron is a 

single value, 0 or 1, while the output of a multi-class classifier is a vector of length 

equal to the number of possible classes. Each value in the vector represents the 

probability of the class in the corresponding index, the highest one is the one the 

network eventually chooses. 
 

 

Some of the most basic and commonly used activation functions in neural networks  
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3.2 Neural Networks Architectures Overview 

3.2.A Data 

As mentioned previously, the data that was used in this project is in the form 

of video files (mp4) from a single dashboard camera, thus the name monocular 

crossroad detection. Data is a very crucial, if not the most important, piece of the 

puzzle, since it defines the overall behavior of the model. The network learns and 

matches the training data while also performing relatively good on similar 

scenarios/videos that it has never been exposed to before. 

The videos’ quality is mostly HD, however training on actual HD data is 

memory demanding and highly impractical. Neural networks do not require HD 

frames to be accurate, therefore all the frames of each videos are preprocessed and 

converted to a lower resolution, specifically  320x160. Most of the data is urban 

driving, where crossroads are frequent, along with stop signs and traffic lights. 

The overall preprocessing of the data consists of breaking the mp4 file into 

individual frames (using PIMS library) that are downscaled as mentioned above. 

All frames from all available videos are stored to RAM, which is hardware 

demanding (over 16GB of memory is used by the training script), along with the 

corresponding label or annotation (road edges, path, etc) for each and everyone of 

them. 

As mentioned before, importance of data is tremendous. Correct labeling of that 

data is crucial and needs to be done with precision and efficiency. Big companies 

have either a large team for manual labeling the given data, or have developed a 

sophisticated auto-labeling stack. During the development of this project, manual 

labeling using various tools such as the custom crossroad labeler script and 

computer vision annotation tool has proved to be enough for this thesis but not 

scalable for large production. 

Specifically for labels, crossroads were just two possible values (binary 

classification), 0 or 1, thus labeling was quite simple, by using a custom script that 

utilizes opencv python library. For road edge detection and path planning, 

polylines had to be drawn on each frame. Therefore, a tool called computer vision 

annotation tool proved very useful, since it required a static amount of points per 

polyline, and the lines themselves were tracked automatically. The neural 

network has to regress the points for each polyline. Scripts for various tweaking 

and preprocessing of the annotations were written, with the most important tasks 

being serializing/flattening polylines’s points into one large vector that matches 

the output of the neural network, and deserializing that output back into the 

polylines. 

Each polyline consists of about 8 points with 2 coordinates (i.e. x, y). So the 

annotations of each frame are one 3D array (1st dimension indicates the polyline, 

2nd dimension indicates the point and 3rd dimension the coordinate). The 

algorithms used for this type of preprocessing do not have the most optimal time 

complexity (O(n^3)), although training performance was quite safisfying, in terms 

of time efficiency. 
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3.2.B Computer Vision and Convolutional Neural Networks 

Since the given data consists of videos, specifically a series of frames, computer 

vision algorithms seem to be the solution to crossroad detection and the rest of the 

given tasks. However, traditional computer vision algorithms such as edge 

detection, static feature detectors, etc are not good enough for the complexity of 

the given problem. 

Each image/frame consists of pixels. A pixel basically is the smallest possible 

square on the image or generally on the screen itself. In programming and digital 

image processing, a greyscale image is a 2D matrix, each cell representing a pixel, 

which is an integer, an arithmetic value that determines how light or dark the 

specific part of the screen will be. For colored images, the frame is represented by 

a 3D matrix in the form of RGB (Red Green Blue). This 3D matrix therefore 

consists of 3 2D matrices that follow the same pattern as the greyscale image, i.e. 

each cell of those matrices represents the intensity of each pixel (how much Read, 

Green or Blue exists in that pixel). So in conclusion, a colored image consists of 3 

different images combined together and creating many other colors through 

combinations. For this project, each frame is likewise a 3D image of 320*160*3 

pixels. 

For simple problems such as low resolution hand-written digits recognition 

(MNIST dataset), were the input matrix would be a flatten/serialized vector of 

each image’s pixel, a simple neural network can perform quite well without any 

modification. But for an input vector of size 320*160*3 = 153600, computation is 

impractical. However, not all of the pixels of a frame are useful. We only need 

specific features. As mentioned above, in computer vision there are many static 

algorithms that detect specific features (such as corners), each feature being a 

small neighbourhood of pixels, resulting in a much smaller input vector for the 

neural network. This method unfortunately does not perform very well since we 

are telling the net to look for very specific and static things on each image and 

there are many ways it can go wrong. 

But why not use the same philosophy of machine learning, specifically deep 

learning, for extracting features. Instead of statically defining what to look for, we 

can train the network to learn the features it needs along with how to classifiy 

them. This is done using a specific architecture called Convolutional Neural 

Network. 

A convolutional neural network consists of 2 parts, the feature extractor that 

learns which parts of the input image it should focus and outputs a vector, and the 

classic neural network part that takes that vector and performs the given task, 

either classification or regression. 
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3.2.C Convolutional Layers 

In digital image processing, the concept of filters is really important. They 

change the overall look of the image, making it sharper or blurry, extracting 

boundaries and many more operations. All these are done by utilizing the concept 

of convolution. 

As mentioned above, each image consists of pixels. An image is represented by 

an array of them, each cell containing information about it’s intensity. A filter is a 

relatively small kernel of pixels, an array that represents a tiny neighborhood. 

Typically, a filter’s size is estimated at 3x3, 5x5, 7x7, etc (all odd numbers for 

easier application) for gray-scale images, and 3x3x3 5x5x3, etc for RGB ones (the 

third dimension represents the color). 

But how does convolution (i.e. the application of the filter) actually work? Let 

us assume a 3x3 filter and a 3x3 neighborhood in an image. The pixel of the 

neighborhood that will be affected by the filter is the central one. The method will 

be explained in the following example. 

K1 K2 K3 

K4 K5 K6 

K7 K8 K8 

 

I1 I2 I3 

I4 I5 I6 

I7 I8 I8 

Above is the 3x3 (K) kernel mentioned before and the 3x3 neighborhood from 

the image (I). The pixel that will be affected is I5. The mathematical function used 

is the following: 

I5_new = K1*I1 + K2*I2 + K3*I3 + K4*I4 + K5*I5 + K6*I6 + K7*I7 + K8*I8 
 

Filter K can also be called the weight W (just like in basic neural networks). 

This method applies for a 3x3 portion of the image. For the filter to be applied to 

the whole image, the same function is used using every pixel as the center of a 3x3 

neighborhood. For the boundaries of the image, where some pixels are missing 

since they are out of bounds, we use a method called zero-padding, meaning the 

missing pixels of the neighborhood are replaced by 0. There are also some different 

methods of padding, they are however irrelevant to this thesis. 

Another concept in convolution and filter application is called stride. When we 

use a stride equal to 1, we basically “move” the filter by one pixel at a time, as 

mentioned above. Using a stride value greater than 1 will result in skipping some 

pixels (depending on that value). For example, with stride=2, the filter will be 

applied on pixel (0,0) then on (0, 2), (0, 4), etc, instead of moving right to the next 

ones. 

The concept of convolution can be applied in convolutional neural networks, 

where the network attempts to learn the value of the kernel needed for the task. 

A convolutional layer is basically the application of a specific filter, and the 

parameters that can be given are the kernel size and the stride value, but also the 
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output channels (third dimension of the image), that is determined by the third 

dimension of the kernel itself. 

Another concept that is used very often after convolution is pooling (max, 

average, etc). A 2x2 max-pooling will take a 2x2 neighborhood of the image and 

replace the whole 2x2 area with the max (or average in average-pooling) of that 

neighborhood, resulting in overall less total pixels in the image (since we want to 

be reducing the input image by extracting smaller features that the network can 

handle). 

After some convolutional layers, the end result will be several feature maps 

(small images that represent features the network detected and focuses on). 

Depending on the final output channels (the number of output channels represents 

the number of the feature maps the layers give), we are left with smaller more 

manageable images, which are then serialized/flattened into a single vector that 

is fed to the remaining of the neural network. The final layers behave like the ones 

discussed in previous sections and are responsible for the actual given task. 
 

3.2.D Residual Blocks and ResNet 

A typical convolutional neural network consists of several blocks of 

convolutional layers (with ReLU activation function, which will be discussed 

further on), followed by a max or average pooling layer and sometimes batch-

normalization is utilized (will also be explained later). Stacking these blocks will 

scale the network up, making it more powerful and able to meet the requirements 

of more complex tasks. This is called vertical scaling (increasing the depth), but 

there is also horizontal scaling, which increases the neurons per layer. 

Vertical scaling has proven to be very efficient in increasing accuracy and 

minimizing loss in plain convolutional neural networks, however there seems to 

be a ceiling to that performance. After stacking several blocks (about 34 according 

to some experiments), accuracy stops increasing (and in some cases even 

decreases, just like in over-training for more epochs than needed) and the extra 

blocks become practically useless. This limits the networks to less complex tasks. 

In autonomous driving, the need for highly powerful convolutional neural 

networks is tremendous, so this limitation can be troublesome when trying to train 

on hours upon hours of complex driving data, especially when utilizing a more end-

to-end approach, like comma.ai does. 

In 2015, a new method and a new type of block was introduced, called the 

Residual Network. A residual connection/block is basically similar to a plain one, 

with a seemingly minor, however very effective, tweak. The input of the block is 

kept, and added to it’s output. For instance, consider y to be the output of a 

residual block, x it’s input, while F represents the overall function of the plain 

convolutional block. Then we would have the following: 
y = F(x) + x  (or) y = F(x, {Wi}) + Ws*x 

 

This method takes into consideration the previous state of the input, and 

improves vertical scalability, allowing for more layers to be added while improving 

overall performance and allowing this Residual Neural Network to learn much 

more complex tasks. However, vertically stacking layers might work in theory, a 

large amount of computation performance is required for this to be relevant. 
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Thankfully, modern hardware can support up to 152 (or more) convolutional layers 

is a ResNet (as it is called), while achieving amazing results, surpassing previously 

propsed convolutional neural network architectures such as ImageNet, CIFAR, 

VGG, etc. 

For this project, an 18-layer ResNet was used as the backbone (feature 

extractor) for most of the neural networks used. It’s performance has proved 

indeed to be amazing, however due to lack of data, it can easily over-fit some tasks. 

This promises great scalability for larger datasets, which only big companies such 

as tesla and comma.ai possess due to their large fleet of cars using their products. 

Over-fitting was not discussed before, but it simply happens when a really 

powerful network learns the given training dataset too well. This results in great 

statistics in training (almost 0 loss and 100% accuracy), however the model cannot 

generalize the data it has learned, resulting in low accuracy during evaluation. 

This can be solved by either using a less powerful model (not practical for self-

driving cars since it is a highly demanding task) or by feeding the network a much 

larger dataset, covering edge-cases along with day-to-day driving. 

The following is a small portion of one of the ResNets used in this thesis: 
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3.2.E Batch Normalization in Deep Neural Networks 

When dealing with deep neural networks with tens of layers, like the ones 

used in this project, several problems arise, besides computation power needed. 

The initial random weights during training can affect the whole training process 

negatively and combined with the need to update all the parameters from the 

many layers used, it results in the deeper layers’ inputs to be distributed 

differently, making the learning process more difficult or near impossible. During 

some testing for crossroad detection, the used network’s output always remained 

the same, indicating that there was no learning of the dataset. 

This problem was solved by using a technique called batch-normalization. 

Using Batch-Normalization layers in the network helps counteract the different 

distribution in the inputs of the deeper layers, giving us the desired result. 

To properly understand how these layers work, one needs to understand what 

normalization really is. In general, it is mapping some given data that has a 

specific range (max and min value), to a new one (e.g. [0,1]). There are different 

algorithms for normalization, all achieving similar results. We have min-max, z-

score and normalization by decimal scaling. 

In min-max normalization, the range is modified using a linear transform on 

the data. Suppose that Vi is a sample from the dataset and (min, max) is the range 

it currently belongs to. To map Vi to a new range (min_new, max_new), one needs 

to apply the following mathematical function: 

Vi_new = [(Vi – min) / (max – min)]*(max_new – min_new) + min_new 

The biggest advantage of this method is that the correlations of the data 

remain intact. 

In z-score normalization, the average and standard deviation of the data is 

used. The math is as follows: 

Vi_new = (Vi – avg)/σ 

Where avg is the average of the data and σ the standard deviation. The 

advantages of this method is that one does not need to specify a new range and it 

is resilient to outliers (which are anomalies in the dataset, data points that do not 

match the rest of them). Another variation of z-score normalization is by using the 

mean absolute deviation instead of standard deviation: 

s = 1/n * (|v1 - avg| + |v2 - avg| + … + |vn - avg|) 

This variation achieves even better results against outliers. 

So, as mentioned before, a batch normalization layer takes an input and 

normalizes it for the next hidden layer. Since this kind of layers belong to a neural 

network, they have several parameters, some are learned and others not. This 

differentiates them from the classic approach to normalization, they are different 

since they deal with a different kind of data. 

The two parameters that are learned are called Beta and Gamma, while the 

other two non-learnable are the Mean Moving Average and the Variance Moving 

Average. Specifically, let’s suppose that A is the input vector (activation or 

generally the output of a previous layer). The batch normalization layer applies 

the following math: 

- step 1: 

μi = 1/M*ΣAi (calculate mean, M is the number of samples in A) 

σi = sqrt[(1/M)*Σ(Ai – μ)^2] (calculate standard deviation) 



16 
 

- step 2: 

Ai’ = (Ai – μi) / σi (normalize the sample) 

These steps are very similar to how z-score normalization works. Generally 

the layers might be different in how they work but there are quite some 

similarities to be noticed with the previously mentioned algorithms. Up until now, 

the learnable parameters were not used at all. The next few steps are the most 

important: 

- step 3: 

ΒNι = γ * Ai’ + β (Scale and swift, β=beta – γ=gamma, gamma multiplication 

is element-wise unlike matrix multiplication) 

In this step, the parameters meant to be learned (gamma and beta) are very 

similar to the weights and biases for basic neural network layers. BNn (the whole 

vector of BNi elements) is the layer’s output vector, which is fed to the next one. 

Now, for the two other non-learnable parameters: 

- step 4: 

μ_movi = α*μ_movi + (1-α)*μi 

σ_movi = α*σ_movi + (1-a)*σi 

The above step demonstrates how the mean moving average and the variance 

moving average are updated. This step is not that important since these 

parameters are not really used during training, but they can be useful during the 

inference phase where evaluation of the network happens. 
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3.2.F Bayesian Layers 

In standard neural networks, for each layer we have the following 

mathematical function: 

y = f(wT*x) = f(w1*x1 + w2*x2 + …) 

The learnable parameters of the network’s layers are the weights (weight 

vector W). These weights are learned in a deterministic way, meaning that the 

weights are updated into new static values, without any doubt of those values. 

However, the network is not entirely “sure” of the updated weight values, 

especially in the early stages of training. 

The core idea behind Bayesian layers is that instead of using weight values 

for the learnable parameters, the network can use a distribution of the weights. 

For instance, instead of updating a weight w1, we update the values of a normal 

distribution N(μ1, σ12), where μ is the mean value and σ2 the standard deviation. 

So, instead of learning the weights, the network learns the parameters of the 

normal distribution of the weight. This introduces the concept of confidence. The 

mean is an estimation of the actual weight and standard deviation indicates how 

confident the network is about it. 

w1 → N(μ1, σ12) 

w2 → N(μ2, σ22) 

... 

Typical neural networks are deterministic in their nature, which means that 

for each input the net will give only one specific output. Bayesian neural networks 

are non-deterministic due to the Gaussian normal distributions of the weights, 

meaning that each input might give slightly different outputs, depending on the 

deviations. This achieves higher generalizability for the network, allowing it to 

tackle more complex problems, such as road edge detection, where they were used. 

In road edge detection we are trying to regress the points of each road edge that 

can be detected. Standard neural networks proved incapable of doing that since 

the data is far too complex for their capabilities, but adding Bayesian layers after 

the convolutional ones (instead of linear layers) proved to be much more efficient. 

Ofcourse, there is always room for improvements for this task. 

There are many types of Bayesian layers, since their concept can be applied 

to many types of weights, such as Convolutional Bayesian Layers, etc. In this 

project, only Linear Bayesian Layers were used, in replacement of the standard 

linear layers at the end of the convolutional ones. 

To explain this concept in more detail, let us suppose that we have a dataset 

D = (xi, yi)n
i=1 and a model/neural network Fθ(), using a  loss function L(), such as 

cross-entropy (θ are the model’s learnable parameters). Then for a deterministic 

model we have: 

During Training: 

θ* = argmaxθ Σ log[p(yi|xi,θ)] where θ* is the optimal value for θ 

or 

θ* = argminθ Σ L(Fθ(xi), yi)  meaning we are trying to learn the best 

parameters that minimize the loss 

During Prediction: 

y = Fθ*(x) 

For a Bayesian Neural Network model we have: 
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During Training: 

μ*, Σ* = argmaxμ,Σ Σ log[p(yi|xi, θ)] – KL[p(θ, p(θ0))] 

where μ* and Σ* are the mean and standard deviation of the optimal 

parameter’s θ* normal distribution and KL is the regularization 

θ → N(μ, Σ) θ0 → Ν(0, Ι) 

(we are trying to minimize KL and maximize the log-likelihood) 

This method prevents overfitting to the data, since it ensures that the 

weights’ are not too big 

 

or 

μ*, Σ* = argminμ,Σ Σ L(Fθ(xi), yi) + KL[p(θ), p(θ0)] 

 

During prediction: 

y = 1/K * Σ Fθ*κ(x) meaning that we average all the individual sample 

predictions 

 

The library called BliTZ proved really useful in combination with PyTorch, 

and provides many utilities in order to build a Bayesian Neural Network, since 

most deep learning frameworks do not provide such functionality.  
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3.3 Network Tasks and Loss Functions 

 
3.3.A Crossroad Detection - Binary Classification 

As mentioned before, crossroad detection is a binary classification problem. 

There are only two possible answers to the question “Is there a crossroad in front 

of the car?”, yes or no. If it was attempted to deal with this problem as multi-class 

classification (treating yes and no as two separate classes) there would be 

unnecessary computations. 

So, the output tensor (meaning the output matrix, this is how they are called 

in the most used deep learning frameworks for python) of the crossroad detection 

convolutional neural network will be a single neuron that can either be 0 or 1. For 

the clamping of the output value in the range of [0,1], we use the sigmoid activation 

function. 

For the network to learn, a criterion is required to define the loss/error of the 

network’s results. This is quite simple when one is dealing with continuous values, 

since there are many simple loss functions such as mean squared error, mean 

absolute error, etc. But for such kind of a task we need something different. The 

output tensor doesn’t usually take the value of 0 or 1, but something in-between, 

resulting in it being a probability instead of a straight answer. Simply put, the 

network actually answers the question “What is the probability of a crossroad 

being in front of the car?”. This probability is then rounded into the binary answer 

(with a custom threshold of 0.8 instead of 0.5, since we need it to be confident 

enough). The loss function used for binary classification is called Binary Cross-

Entropy Loss (also called Log Loss), or BCELoss in short. 

L = - 1/N Σ[yi * log(yi’) + (1-yi) * log(1-yi’)] 

Where L is calculated loss, N the output size, yi the training label (correct 

output value), yi’ the predicted probability value (network’s output). 

Note that by log we mean ln, natural logarithm of base e (Euler’s Number) 

and not base 10. 

Logarithms of base e are used quite a lot and with good reason, since we are 

dealing with probabilities. Loss calculates how wrong the network is, and in 

logarithm of base e, the closest to 1 the value is, the closest to 0 the loss tends to 

be (we take the negative of the summary calculated since we need loss to be 

positive). Note that we do not care for positive logarithm output (when x is greater 

than 1) since the output yi’ is clamped between 0 and 1. 
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3.3.B Road Edge Detection – Dealing with Poly-lines 

For this task, many possible ways to represent road_edge lines were thought 

of. To define the problem, we need to extract road edges from an image. A road 

edge is basically the boundary of the drivable space, Tesla uses it along with many 

other tasks to create a map of the environment. It is useful for crossroad detection, 

since the slight changes on the slope and the curves of the detected road edges can 

be used to determine whether there is a crossroad in front of the car or not. Good 

and robust road edge detection can also prove that actual crossroad detection is 

not really needed in it of itself, simply because the autonomous car only needs to 

know the shape and the boundaries of the road it drives on. Knowing whether the 

shape of the drivable area creates a crossroad or not is not  really necessary. 

However, in this project the resources for building a robust and high-performance 

road edge detector were not present, although given the small amount of data that 

was used, the results were quite decent. This thesis’ goal and main task is 

crossroad detection/recognition and how it can prove useful to other self-driving 

car deep learning tasks, so it was later on used to train along with road edge 

detection (multi-task learning) in hope that it might help the actual road edge 

detection performance. In general, crossroad detection in it of itself might not be 

as useful for the end user, but it can help improve the performance of other neural 

network tasks. 

In highway driving, to represent the edges of the road, only two lines are 

needed. When dealing with crossroads however, more are needed. For a simple 

crossroad we can assume that 4 lines will be needed. In this project the maximum 

amount of road edge lines that was used is 6 (assuming that the road the car is 

driving on has 2 separate lanes with opposite flows, so we are counting in the 

possible obstacle that separates them), but a max number of 8 road edges can be 

found in some crossroads when both the roads that cross each other have 2 lanes 

of different flow each. The cartesian coordinate system was used for representing 

the points of the lines in the 2D plane of the image (x,y). Each line has 4 points, 

which proved to be the minimum number needed to represent the curves of 

crossroads. So, a 3D array of shape [6, 4, 2] is how the road edges are perceived by 

the algorithms used in this project. To transform this matrix into a proper output 

vector for the network all we have to do is flatten it, serialize it to a vector of length 

6*4*2=48 floating point numbers. A function for deserialization was also needed, 

so that the lines could be properly processed and drawn onto the display. So in 

conclusion, this task is basically a regression of the various coordinates of the 

points that belong to the lines of the road edges. 

For the loss function, a custom negative log likelihood loss was used 

(NLLLoss from PyTorch was incompatible for the networks). It was suitable for 

the Bayesian layers that were used, since linear layers with MSELoss proved 

inadequate for the given task. This algorithm calculates loss by using the negative 

natural logarithm of the given probability/likelihood, which is the output of the 

model. 
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In the image above we have the custom implementation of this loss, since 

NLLLoss gave some errors and was probably designed for classification tasks 

while we need it for regression. As it is shown, the loss takes the output of the 

network and creates a normal distribution with sigma=1.0 (mean=output, 

std_deviation=sigma). Since output is a vector with multiple values, the loss 

function calculates each values’ natural logarithm (ln not log), sums them up and 

returns the negative sum. This loss in combination with Bayesian layers has 

shown performance far greater than MSELoss with linear layers. 

 

3.3.C Path Planning 

Path planning is the most crucial task for autonomous driving. It is the final 

decision of where the car should go. In this thesis, path planning was simple and 

most of the data was driving on a straight line. 

We represent the path in the 2D image as a single line or curve, depending 

on the actual path the car must follow. The way path data is handled is very 

similar if not identical to how road edge lines were handled in road edge detection. 

In this task, the network tries to predict a single line, although some research has 

shown that predicting multiple paths and choosing the best of them could prove to 

be a much better solution, since it is closer to how an actual human would plan 

where the car should go. Because the task is very similar to the previous one, a lot 

of the algorithms from before were used. Here, a 3D matrix is used to represent 

the path curve, with a shape of [1, 8, 2], meaning 1 line with 8 points of 2 

coordinates (x,y). This matrix could also be 2D but the 3rd dimension was needed 

to match the algorithms for the road edge lines. This also achieves scalability since 

it can be expanded to multiple paths instead of just one. 

To match the network’s output, the path label is serialized/flattened into a 

vector of length 1*8*2=16 floating point values, each representing a coordinate of 

a corresponding point. The actual output of the convolutional neural network is 

deserialized back into a 3D matrix in order to be more suitable for further 

processing, like getting drawn into the 2D image. 

Since we are dealing with crossroads however, just predicting a line is not 

enough. Each crossroad has multiple possible paths, so we could either have the 

network output more than one path, as proposed above. This can also be solved by 

introducing a concept called desire. Comma.ai uses it in highway driving as an 

input from the end users when they want to change lane. For this project, desire 

was used to choose the direction the driver wants to go. It can either be left, right 

or forward. Desire is appended to the network’s input after the convolutional 

layers, when the input itself is flattened. It is represented by a vector of length 3, 

which uses one hot vector encoding. In this type of encoding, we have 3 possible 

values desire can take: 0, 1 or 2 (forward, right and left), but instead of using a 

single value (vector of length 1), we use a vector of length equal to the max value 

+ 1, meaning 3 for this task. So, value 0 will be represented as [0, 0, 1], 1 as [0, 1, 

0] and 2 as [1, 0, 0]. This method allows desire to affect the input a bit more, 

increasing it’s importance. Unfortunately, this path planner neural network was 

not trained on turns, so desire is constantly 0 (or [0, 0, 1]). The value of desire 

could be determined by the user by the blinker lights (although this will not make 

the car fully autonomous) or by using GPS commands. 
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The loss function that was used was once again negative log likelihood for the 

exact same reasons it was used for road edge detection. However, MSELoss with 

linear layers could also work quite well for this problem, since predicting a single 

curve that is usually a straight line is much more simple than multiple curves 

with different directions.  
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CHAPTER 4 Tools and Libraries 

4.1 OpenCV and PIMS for image processing 

Autonomous driving is believed to be mainly a computer vision problem. 

Humans drive using their eyes for perception, thus vision is the only necessary 

sense that is required to decide how to drive a car. Other solutions include the use 

of LIDAR and other expensive sensors to create HD maps of the environment, but 

this is simply unnecessary since cameras are much cheaper and more efficient for 

self-driving. This achieves lower cost for production and sale with the added 

benefit of emulating exactly how a human perceives the environment while 

driving. 

Since in this project the data consists of videos from a dashboard camera 

(monocular driving data), a library for image processing as well as higher level 

computer vision tasks is required. This is where OpenCV is very useful, since it 

provides a great set of utilities and functions for python, allowing for many 

computer vision tasks to be achieved. From simply opening an image and 

preprocessing it for the neural networks to displaying the video and drawing the 

different tasks they are used for (drawing the road edges it detects, the planned 

path, whether or not the network sees a crossroad ahead, etc). For the deployment 

application, we can also display the frames per second (FPS) to see how fast those 

neural networks perform their tasks, in order to confirm whether their speed and 

efficiency or the hardware is acceptable for use in the real world. Note that self-

driving cars require high performance and robust algorithms and hardware in 

order to avoid malfunctions and cause crashes. The whole application stack needs 

to operate in high speeds. In this project, 30 FPS is the average, running on a 

Ryzen 7 3700x CPU and an RTX 2060 6GB GPU. OpenCV is written in C++, which 

is a very fast compiled programming language, and also provides an Application 

Programming Interface (API) that connects it’s functions with python. That makes 

it the perfect choice for matching the speed requirements of the perception tasks. 

OpenCV is used mainly for opening the video files, processing the individual 

frames so that they can be used properly by the convolutional neural networks 

(input stack) and for displaying the results in video during the deployment of those 

networks (output stack). The whole deep learning stack sits somewhere in the 

middle and is the core of the project, but this will be further elaborated on in a 

later sub-chapter. For the data stack, the images were labeled using OpenCV for 

the simple task of crossroad detection and for adding desire label for path 

planning. For more complex annotations, Computer Vision Annotation Tool was 

utilized since it was more useful for drawing and tracking lines in video data for 

path planning and road edge detection. 

Specifically, for opening the images PIMS was used. Since we are dealing 

with video data, we need to extract all individual frames and add them to a list. 

To save some lines of code, the PIMS library can extract frames so that we can 

parse, preprocess and add them to a list. 

frames = pims.Video(video_path, format="mp4") 

However, PIMS reads files in BGR format. To make this project more 

versatile and global, images are converted to RGB, just in case they are fed into 
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the network without PIMS. This also allows OpenCV to display the frames with 

proper colors. 

 

 
Frames are converted to NumPY arrays since they are closest to PyTorch’s 

tensor format, which makes the conversion easier. After color conversion, the 

images are also resized/downscaled to a more manageable resolution (320x160), to 

save up RAM and computational resources, while making sure that all images 

have the same resolution. After that, the images are fed to the network after being 

converted to PyTorch tensors. 

OpenCV is also used for displaying the different curves of road edges and path 

using: 

 

For labeling crossroads in videos, we first read the mp4 file and parse it’s 

individual frames. Then, every frame is displayed in a sequence (as it would if we 

were watching the actual video), pausing at each one so that the user can label it. 

If the key C is pressed, the frame is labeled as crossroad (1), otherwise if any other 

key is pressed (apart from Q which aborts the process) then the frame is labeled 

as no-crossroad (0). 

The pause is achieved using key = cv2.waitKey(0), and the keystroke handler 

code is the following: 
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The labels are then saved in a .txt log file and are then opened by the training 

scripts. Each line contains one label, meaning each line represents the label of the 

corresponding frame.  
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4.2 NumPy 

NumPy is an open-source library for python, written in C programming 

language, that enables users to do numerical computing while also achieving 

speed (C code is executed way faster than Python). It provides a wide range of 

utilities that proved useful for this project. 

Most of the data is represented by matrices of static sizes and shapes. Python 

does not provide arrays, unlike many other programming languages. Instead, it 

has lists, which are quite useful for general purpose programming since a 

connected list is a data structure similar to an array, with the added benefits of 

having a variable length. This means that we can define a list of several data 

values, such as numbers, and later on add or remove them, while changing the 

length of the list itself. 

In deep learning however we are dealing with tensors and vectors, which have 

specific static lengths and shapes, such as an image resolution. This makes the 

need of lists insignificant, especially given that operations on them are more 

complex than in arrays (parsing, adding and removing data from a list requires 

more code, while such operation on an array don’t), making them performance 

inefficient. 

So, most of the data in this project are static arrays, vectors and matrices. 

This is where NumPy comes in. This library does not only provide functionalities 

for converting python lists into static arrays, making the code faster and more 

memory efficient, but also for various operations on them, saving the user from 

writing unnecessary code for operations such as matrix multiplication, changing 

the dimensions of a 3D array (such as an image), etc. 

To create a NumPy array in python one must first create a list and then call 

the corresponding function from the library: 

import numpy as np 

 

p_list = [1, 2, 3, 4, 5] 
arr = np.array(p_list) 

 

A small added benefit of high-dimensional NumPy arrays is that they are 

printed by default in a way that is easier to the eye, making debugging a smoother 

process. 

PyTorch works incredibly well with NumPy, since numpy arrays can be 

quickly converted into tensors and then fed to the neural network in use. An input 

image that was read using OpenCV will have a shape of Height x Width x 

NumberOfChannels and given that training is done using batches of images 

(multiple images are fed into the network at once) the shape becomes BatchSize x 

Height x Width x NumberOfChannels. PyTorch however requires the following 

shape: BatchSize x NumberOfChannels x Height x Width. To swap the dimensions 

in order to match the shape needed, one could write a custom made algorithm that 

would require precious time and resources (Python code is not really fast in 

comparison to other languages). Instead, one could use the NumPy function 

moveaxis() that will do exactly that, with the added benefit of speed since NumPy 

is written in C and, like OpenCV, provides an API for Python. 
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This library can also be used to create random samples for training (in order 

for the network to parse the training data in a non-serial way, which can make it 

more robust since it “sees” the images in a random order during each epoch). 
 
 
 
 

 
 

Since training is done using multiple videos, we must extract all frames from 

all videos and concatenate them together into an X_train array. NumPy provides 

that functionality as well: 
 

 

The above code is similar to appending the frames of a new video to the array 

of the previously processed ones, but with numpy arrays instead of python lists.  
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4.3 PyTorch 

Neural Networks require a lot of code. Even by using NumPy for most of the 

matrix computations, one would need to write thousands of lines of code in order 

to define the neural networks that are to be used. This is why deep learning 

frameworks are written. Instead of worrying about how the various layers work, 

the developer only has to worry about the overall architecture of the models. All 

one has to do is define a neural network architecture and use it either for training 

or deployment applications. The deep learning framework that was chosen for this 

project is PyTorch, although were are other choices taken into consideration such 

as Tensorflow. 

PyTorch was inspired by the Torch deep learning framework for the Lua 

programming language. However, it was not widely used since a lot of 

programmers did not prefer Lua for their projects. Later, an AI research team was 

inspired by this library and implemented it in python, calling it PyTorch. 

Nowadays, it is developed and maintained by Facebook’s AI Research lab (FAIR). 

There are two basic types of programming, imperative and symbolic. The first 

one uses an interpreter and code is read and executed at run-time (just like in 

python), while the second one uses a compiler that reads the symbols of the 

language and outputs a binary file to be run (like in C/C++). Imperative 

programming is more dynamic in nature while symbolic programming is more 

static, this allows for python code to be more flexible during run-time. Even though 

symbolic programs are more efficient and allow value reusability, this project 

required imperative programming’s flexibility. 

The Tensorflow framework belongs to the symbolic programming category, 

even though it is used in python. It’s definitions are more strictly written and a lot 

of tensorflow-specific functions are used. PyTorch on the other hand uses 

imperative programming, making it more natural for a python developer. It is 

better suited for research projects, due to it’s flexibility, while Tensorflow is widely 

used for deployment in the real world. However, Tesla has been using PyTorch for 

the whole deep learning stack of Autopilot, which is performing at high speeds, 

and recently Comma.ai has converted all of it’s code from Tensorflow to PyTorch 

claiming that they saw more benefits in that choice. PyTorch also provides a C++ 

library that utilizes Torchscript and achieves high speeds, which is possibly how 

Tesla chooses to deploy their huge models (about 48 networks with 1000 distinct 

predictions). However, C++ was not used for this project since the main goal was 

research and not deployment speed, even though self-driving cars require high 

performance for safety and responsiveness. 

Another key feature for PyTorch is Dynamic Computation Graphs 

(Tensorflow provides Static Computation Graphs), which makes it a define-by-run 

library, meaning that the neural network’s graph is generated at run-time. 

Tensorflow is a define-and-run library, which basically writes the whole 

program/neural network graph and then runs it (it is defined and assembled once 

and can then be run multiple times). While static graphs work better for fixed-size 

networks, dynamic ones work even better for more dynamic networks such as 

Recurrent Neural Networks (which are heavily used on video data, but they were 

not used for this project). 
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PyTorch makes debugging a bit easier, since the developer is writing more 

python code instead of using the framework’s  compiled functions. This allows for 

a more under-the-hood perspective that proved quite useful for this thesis’ 

research. 

To define a network, one must declare it as an ordinary python class that 

inherits PyTorch’s torch.nn.Module. The architecture is defined in the __init__() 

function, where the various layers are assigned to class variables/attributes (for 

example self.linear1 could be the first linear layer of the model). Then, the 

developer needs to define the order of the network’s layers, i.e. the flow of the input 

X through the network itself. That is done in the member function/method 

forward(self, x) which is called every time input is fed into the network, whether 

it is during training or inference. There is also another way to define the order of 

the layers, by using the Sequential function: 

class Net(nn.Module): 

 def __init__(self): 

  super(Net, self).__init__() 

 

  linear1 = nn.Linear(input_neurons, output_neurons) 

  linear2 = nn.Linear(input_neurons, output_neurons) 

  linear3 = nn.Linear(input_neurons, output_neurons) 
   

  activation = nn.functional.Relu() 

 

  self.network = Sequential(linear1, activation,  

      linear2, activation, 

      linear3) 
 

 def forward(self, x): 

  return self.network(x) 

 

This simplifies the model definition process a bit, however removing some 

control over the flow (which was needed for adding desire in path planning). 

Sequential was proven useful for the Multi-Task model, which will be discussed 

later on. Since PyTorch was used for most of the codebase, the specific functions 

used for training and deployment will be explained later on as well, in the code 

overview.  
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4.4 BliTZ 

As mentioned in earlier chapters, Bayesian Neural Layers, which introduce 

the concept of weight uncertainty in neural networks, were used for regressing the 

various points of curves for road edge detection and path planning. PyTorch does 

not offer this type of layers by default, so there is a need for a wrapper library that 

extends PyTorch, allowing for such functionality. This is were the library called 

Bayesian Layers in Torch Zoo (BliTZ) was proven quite useful. 

BliTZ is designed to work with PyTorch by simply importing the library and 

adding @variational_estimator above the model’s class definition. This allows the 

developer to use it’s various Bayesian Layers the same way PyTorch’s default 

layers are used. The library provides various types of Bayesian layers, such as 

BayesianLinear, BayesianConv1d, BayesianConv2d, BayesianConv3d, 

BayesianLSTM, BayesianGRU, etc, however only BayesianLinear ones were used 

for this project. 

These layers are used for the path planner and road edge detector, right after 

the convolutional layers, and manage to achieve better accuracy and loss than 

their counterparts. As mentioned before, the loss function of choice for these layers’ 

tasks was a custom written negative log likehood. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As shown above, Bayesian Linear Layers can also be combined with basic 

PyTorch Linear Layers, and can be used with activation functions such as ReLU 

with no problems.  
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CHAPTER 5 Multi-Task Learning 

5.1 Neural Networks for multiple Tasks 

There are many tasks in this project that require neural networks (crossroad 

detection, road edge detection and path planning), while in real world self-driving 

cars, companies like Tesla have about 1000 distinct predictions/tasks. But having 

a single neural network for each and every one of those tasks can be quite 

expensive computationally, which is sub-optimal for real world deployment since 

high speed performance of the deep learning stack is required for safety and 

practicality. 

Suppose our three tasks have a single neural network each (which has been 

implemented in code). This allows for training individual networks separately, 

which results in better team workflow for each task (every person responsible for 

each task has to worry only about their job, since it doesn’t affect others), better 

focus on each task and easier optimizations. Retraining and improving a single 

task will not have an impact on the rest of the deep learning stack and there is not 

need to re-evaluate all of the tasks. However, the performance cost can be quite 

expensive and training each task separately might result in the overfitting of some 

networks, since they might lack some data for their specific task. 
 
 

 
 
Single-Task neural networks for each individual task (from Andrej Karpathy’s presentation on 

multi-task learning). 
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In such a small project like this, where the tasks are just 3 this might not be 

noticeable, but in large scale production this can prove problematic. Even 

Comma.ai, whose autonomy solution does not require so many predictions for 

deciding the driving policy of the car, does not use a single network for their tasks 

(lane lines detection, road edge detection, stop sign and traffic lights detection and 

path planning among others). 

So the cons of using a neural network for each separate task outweigh the 

pros for achieving combined real-time predictions while maintaining performance. 

Another approach is to use a single neural network for all tasks, where only the 

output vectors are different to match each task’s needs. This would surely increase 

the overall performance speed for all predictions due to the fact that only one 

network is being used, making it cheaper at test time and deployment, however 

the various tasks will “fight” for the networks capacity. This does not happen all 

the time since their “relationships” can be quite complex, some tasks work well 

together, resulting in a synergy of accuracy (meaning that while one task improves 

the other does so as well, not necessarily at the same rate), while others are 

counterproductive to each other. This is because some predictions require some 

specific values from the network’s learnable parameters (weights and biases), 

which can either benefit or work against others’ requirements. Another problem 

would be the network’s maintenance and optimization. A team of developers, each 

one working on a task or a set of tasks, would find it difficult to retrain and 

finetune the network, because one simple change for one prediction will affect all 

the others. 
 
 
 

 
A single neural network that outputs tensors for multiple tasks (from Andrej Karpathy’s Multi-

Task learning presentation). 
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The head of Tesla’s Autopilot AI team, Andrej Karpathy, gave a really 

interesting presentation on how the company uses multitask neural network 

architectures for their many predictions and how the whole team works on 

multiple tasks in the same models. In addition, some recent papers have shown 

research on the different relationships between various deep learning tasks, and 

how they affect each other in the same network. So, a solution to the above 

problems lies somewhere in the middle, where synergizing tasks share parts of the 

same network and then branch on their own. This creates another problem: the 

choice of grouping of the various tasks and what capacity of the networks they 

share. This is more of a trial and error problem, so one can experiment with many 

model architecture and, depending on the metrics, change them to better suit the 

tasks. There has also been some research on Neural Architecture Search for multi-

task learning, which allows the automation of the models’ architecture selection, 

however it is in an early state.  
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5.2  The ComboModel 

Multi-task learning has proven quite useful for self-driving cars since it saves 

some computational resources, increasing performance, while in some scenarios 

even increases the accuracy of some tasks. Thus, if done right, so that the 

relationships between grouped tasks not only are not damaging to each other, but 

help improve each other’s performance, multi-task learning could provide an 

optimal solution not only for autonomous vehicles but for many other complex deep 

learning problems as well. So, this makes it really interesting regarding this 

thesis’ area of study, which is why it was explored. 

The idea was to check if crossroad detection can help improve other tasks 

such as road edge detection. Comma.ai uses multi-task learning in a much more 

simple but almost equally effective manner than Tesla. Their SuperCombo model, 

which is responsible for driving the car, outputs multiple predictions for lane lines, 

road edges, lead car detection and ofcourse path planning, by providing the tasks 

with one shared backbone of a large network. That backbone is the convolutional 

neural network part, that is responsible for detecting features from the video data. 

The rest of the network is separate for each task, meaning that linear and other 

types of layers are handled by each task individually. This is the approach that 

was followed in this project. 

There are three tasks (road edge detection, crossroad detection and path 

planning) that share the same convolutional backbone, i.e. a ResNet18, but then 

split to their separate linear and Bayesian layers that classify or regress the 

training data. The main idea was that if a human was to detect whether there is 

a crossroad or not, they would check the same visual features they would for the 

edges of the road (maybe traffic lights, stop signs as well among others), and vice 

versa. Naturally, many tasks that seemingly should work together in synergy due 

to their similarities, improving the performance of each other, might not do so in 

practice. That’s why experimentation and statistics from metrics are really 

important for deciding the final architecture of a multi-task neural network. The 

variables are too many to consider, such as which tasks to group together, how 

much of the network should they share, etc, so for the sake of this thesis it was 

important to keep it simple. Thus, simple tasks theoretically similar to each other 

were picked and have just the convolutional backbone in common. Ofcourse there 

could be more optimal architectures for this problem, but for the sake of simplicity 

the key idea of the ComboModel (as it was named due to it’s inspiration from 

Comma.ai) is “Put crossroad and road edge detection together so that they focus 

on the same visual features and add some basic path planning along with them, 

in order to see if overall performance is improved”. When referring to performance 

for multi-task learning, one must take into account that it should be the ratio of 

computational resource required, the speed of execution in real-world data and the 

accuracy of the network on that same data. Thus, there are too many variables to 

take into consideration, this is one reason why the concept of multi-task learning 

is currently under research, along with many other aspects of deep learning. 

For the loss function, the most basic solution would be to add the losses of 

each task together and backpropagate the summary. This can give some satisfying 

results, however there are better ways to achieve more optimal results. Another 

idea would be to weight the losses depending on the importance of each task. This 
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will result in the task whose loss has the highest weight to dictate how much the 

network should change at a higher capacity. The choice of the weights depends on 

experience and experimentation. There are some considerations one must take 

into account when deciding the loss function in a multi-task model, such as the 

fact that some tasks have loss functions on different scales (classification vs 

regression), some tasks are more important, much easier than others and/or have 

more data and noise in their data than others.  
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5.3  Multi-task Learning in PyTorch 

PyTorch makes defining and using a multi-task neural network simple, since 

it gives the developers more control over the code execution and it is natural to the 

Python programming language. The following is an explanation of the definition 

of the ComboModel, which takes a 320x160 image and the desire (where the driver 

wants to go in the crossroad, 0: forward, 1: right, 2: left, note that desire is not fed 

into the network from the beginning since it is not required for all the tasks) as 

it’s input and outputs it’s crossroad detection (binary classification), the road edges 

it “sees” and the path it believes the car should follow (both of these tasks require 

regression of the curve point’s coordinates). As mentioned before, these tasks share 

a ResNet34 convolutional backbone and then proceed to their own linear and 

Bayesian layers. Note that the number of layers for ResNet may change during 

optimization. 

 

 
Here, some useful variables are defined. First, the code checks if the number 

of layers for the ResNet backbone is valid (it is 18 by default but a user can change 

it, the hardware used was not capable of training with more layers efficiently). 

Then some variables for the outputs of road edge detection and path planning are 

defined (the number of curves, the number of points every curve has and the 

number of coordinates of each point). The cnn_output_shape variable determines 

the shape of the output of ResNet34, which is used by the first linear layer of each 

task. 
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After that, the actual layers of the whole network are defined (in PyTorch the 

network’s architecture is always defined in the constructor __init__ of the class). 

Each ResNet layer represents a block (ResBlock) which is defined in another class 

(note that a ResNet34 is provided by PyTorch and the whole code was not really 

necessary for the network’s definition, however for the purposes of studying the 

actual architecture, it was manually coded). Each ResBlock is basically a Residual 

Block that performs a few convolutions and batch normalizations, while adding 

the block’s input to it’s output, as explained in previous chapters. The make_layers 

function creates the residual blocks with 18 (by default) layers of specific 

intermediate channels and stride. In ResNet18, the number of residual block in 

each of the 4 main layers is 2. 

 

 
This architecture relies on the Sequential() function to save some 

unnecessary code for forward(self, x). For a visual representation of the network’s 

whole architecture, one can open the .onnx model file with specialized software 

such as Netron. 

The functions get_cr_head(), get_re_head() and get_path_head() define the 

layers for each task (same way they are defined in their single-task neural 

networks) and return them using Sequential() 
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The above code is the forward function of the whole network. The input image 

x goes through the ReNet18 layers and gets flattened into a 1D tensor. It then is 

passed to the crossroad and road edge detection heads (as their separate set of 

layers is called in such models) as it is. For path planning, x is concatenated with 

desire (which is one-hot vector encoded instead of a single value) and fed to the 

path head. After that, the predictions for each task are returned in a list, 

representing the outputs for each task of the ComboModel. 
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CHAPTER 6 Training Code Overview 

6.1 Training for Crossroad Detection 

The training process of the neural networks is pretty straight forward. In 

general, any training script includes acquiring the training dataset, preprocessing 

the given data and training the model with it, by feeding the whole data through 

the network (forwards and backwards) multiple times. Each iteration of the whole 

training data is called an epoch. Multiple epochs can take place during training, 

it is up to the developer’s experience and experimentation. The goal of the whole 

process is for the network to learn how to match the given data as accurately as 

possible by optimizing it’s parameters, while also being able to make accurate 

predictions on new data similar to the one it has been given. This is why data and 

the model’s power so important, since one needs a model powerful enough to fit 

the given data (but not too powerful to avoid overfitting) and needs a lot of data 

with lots of variety (for example many images of different crossroads) in order to 

accurately describe what the model should do. 

All of the data consists of .mp4 video files, therefore all the frames from each 

file need to be extracted, preprocessed and put in a big array of all frames from all 

videos. The corresponding labels need to be loaded as well, while keeping the 

matching indexes with the frames they describe. For crossroad detection, the label 

of each frame can be 0 or 1 (no-crossroad, crossroad). This happens in the function 

get_data(), which opens the log file for the binary labels of each frame (each line is 

the frame index from the corresponding video file). The naming of data files plays 

an important role, since the videos and their log files containing annotations, 

labels, etc have similar names in their beginning. They are opened together, using 

some python string processing functions. The frames are extracted from the videos 

using the PIMS library, in order to create a frames object that returns all frames 

without consuming too much memory. HD frames cannot be processed since they 

require a lot of memory, so using them as they are would be ineffective. They need 

to be scaled down to a new more manageable resolution (320x160), that consumes 

a lot less RAM, allowing the developer to add more data. In general, memory plays 

a big role when training deep learning models, since it determines how much data 

can be loaded and passed to the neural network in one session. Fortunately, 32GB 

of RAM was available during the implementation of this project (about 20GB were 

used by the training scripts, since frame arrays are expensive in memory). PIMS 

has also one more problem, it loads the images in BGR while OpenCV processes 

RGB frames mostly, so another convertion is also needed. This happens in the 

function conv_frames(), which takes the PIMS frames object, parses it’s items and 

converts the frames properly while appending them to a list and then returning a 

numpy array of that same list. 

To save a lot of time, training was done using a GPU (RTX 2060 6GB). The 

model used has a ResNet18 convolutional backbone, with 4 linear layers, each one 

followed by a batch normalization layer. The activation function for each linear 

layer was ReLU, while for the last one was sigmoid (since we need the output to 

be clamped between 0 and 1, for the binary classification task). For the 

convolutional layers of ResNet, the activation function used was ELU. The results 

of this architecture were more than good enough, meaning the model was actually 
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really powerful, so to avoid overfitting the number of epochs was kept low and the 

data high, resulting in high accuracy on training and evaluation data. 

For the actual training process, the model needs all of the frames and their 

corresponding labels with their specific indices in order to train properly, so after 

using get_data(), the frames and their labels are appended/concatenated with the 

ones from all the other video files. The loss function of choice was Binary Cross 

Entropy Loss, since we are dealing with a binary classification problem. The 

optimizer used was Adam, since it has shown great results for the majority of deep 

learning tasks. In general, optimizers are various algorithms that aim to minimize 

the loss during training, thus being responsible for the actual learning of the 

model’s parameters. The learning rate used was lr=0.001, which is chosen through 

experimentation. In general, one needs a learning rate high enough so that the 

model learns in a realistic rate, but not too high, because that could cause the 

network’s loss to decrease rapidly at first, but remain the same after some time, 

making the learning stagnant. Only 11 epochs were required, due to the power of 

the model and the simplicity of the task, with a Batch Size of 128 frames. 

Generally, training a network by feeding it one image at a time is highly 

impractical and time demanding. Training in batches of images not only saves a 

lot of  training time, but also allows the model to get better results, depending on 

the batch’s variety of images and labels. Thus, random batches were sampled from 

the training data. Those samples are converted to PyTorch tensors, and are later 

on fed into the network. But before that, for every mini-batch we need to set the 

gradients to zero before backpropagation since PyTorch accumulates the gradients 

on subsequent backward passes. This is done using optim.zero_grad() (optim = 

Adam()). Then the input tensor X is fed to the model using out = model(X), the 

category predicted is extracted by rounding up the output (using a custom 

threshold of 0.8 to ensure that the network is more confident in it’s predictions, 

thus accepting only it’s most confident ones). Then, the accuracy and loss are 

calculated, and backpropagation is done by calling loss.backward() and 

optim.set(). After that, some functions are used for keeping the stats of each epoch, 

so that we can monitor the network’s performance and make adjustments 

accordingly. 

Evaluation is pretty straightforward. First, load the evaluation data into 

tensors (using batches). Then, feed them to the network, just like in training. 

Instead of backpropagating the data, we just keep the statistics of the model’s 

performance on the newly seen data. 

After that, the model is saved for later use, either to retrain it on more data 

or use it for deployment in an application.  
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6.2 Training for Road Edge Detection 

Road edge detection is a slightly different kind of task. At it’s core, it belongs 

to the category of regression deep learning tasks, however the challenge was 

processing the output tensor into 2D curves and defining a model powerful enough 

in order to learn the complex data. The second problem was dealt with by using 

Bayesian linear layers, as discussed in previous chapters in more detail. Ofcourse, 

the labeling of road edges could have been done in a better way, but it should 

suffice for some basic functionality. 

As for the training script, first the necessary data is collected and stored into 

memory, specifically in NumPy arrays. The frames are extracted the same way as 

in the crossroad detection training script. The road edge curve annotations were a 

bit trickier to manage however. They are stored in .xml files and require a lot of 

preprocessing to be usable by the various scripts, either for training or 

deployment. At first, they are extracted from the xml file using an ElementTree 

from the xml library provided in python. This happens in the extract_polylines() 

function, which returns all the lines detected in a random way (they are sorted for 

easier processing by other functions) along with the index of the frame they belong 

to. Then, since for each frame we multiple polylines, the extract_frame_lines() 

returns an array whose indices represent each frame (the same way each 

index/line represents a frame index in crossroad detection log files). This ensures 

that for every frame[idx] we can get all the curves that correspond to it by using 

polylines[idx]. All annotations were drawn using CVAT (Computer Vision 

Annotation Tool) on 480x320 video files. The network requires them to match a 

320x160 resolution. Resolution is important, because the network needs to learn 

the curve’s coordinates for it’s specific image parameters. They are later upscaled 

to a higher resolution along with the image (1920/2, 1080/2), for display in the 

deployment application. This conversion of the resolution for the annotations 

happens in convert_annotations(), by doing the following for each point’s 

coordinates: 

x_new = (x * new_W) / curr_W 

y_new = (x * new_H) / curr_H 

The frames and annotations are appended/concatenated to bigger arrays 

called all_frames and all_annotations, as they were in the crossroad detection 

training script, to ensure that all of the data from each video is passed at once to 

train(). 

The actual training process is simple, just like the previous script, however 

the annotations first need to be serialized into a vector in order to match the output 

tensor shape of the network. This is done by calling serialize_polylines(). The loss 

function used here is a custom version of negative log likelihood, which is 

explained in previous chapters. PyTorch’s NLLLoss gave some errors since it is 

designed for classification tasks instead of regression. Training was done in 50 

epochs with a batch size of 64. Note that in PyTorch models, each input image 

needs to have the shape of [batch_size, number of channels, height, width], which 

is ensured by using numpy.moveaxis(image, -1, 0), since the number of channels 

is at the end when opening the frames with PIMS and OpenCV. 

At the end of the script, various stats, such as the loss for every epoch, are 

calculated and printed.  
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6.3 Training for Path Planning 

For path planning, the training script is very similar to the one for road edge 

detection. That is because the two tasks are almost identical, the goal is to regress 

the coordinates of the points that belong to some curves, therefore the curves 

themselves. Here the difference is that there is only one curve, even though there 

is some support for multiple paths to be outputted by the model, as mentioned 

earlier. 

The thing that makes path planning a little bit more unique than the other 

tasks is the fact that the input is not just an image. Since we are dealing with 

crossroads, and there are many directions the user might want to drive to, the 

decision was made to add another input vector called desire. Supposedly, the 

driver could use his blinkers when a crossroad is detected by the crossroad detector 

model (or the ComboModel, depending on which one is being used), in order to 

show the application in which direction they desire to go. Had this been 

implemented in a real world application, when no blinker is active while detecting 

a crossroad the desire will be assumed as “forward”, otherwise it would be the 

direction the blinkers indicate. Ofcourse, since the whole project is based on 

monocular computer vision, it wouldn’t be practical or safe for the path planner to 

fully drive the car, since there are other factors other than the road layout that 

play a big role in intersections, such as other cars, pedestrians, signs, etc. 

However, for this project the only focus was deciding the right path the car should 

follow with a somewhat end-to-end solution, based just on an input image and the 

desire of the car’s direction. 

Since desire can only include 3 main directions (there could be more ofcourse 

depending on the situation), forward, right and left, it can only have 3 different 

values. We need this input to make a higher impact to the network, so instead of 

just adding it as a single neuron of values 0, 1 or 2, desire is one-hot vector encoded 

before being concatenated to the input of the Bayesian linear layers of the second 

part of the neural network. So instead of feeding the network a single numerical 

value for desire, the model is fed a vector of length 3 and values either [0, 0, 1], [0, 

1, 0] or [1, 0, 0]. 

The annotations for the actual path are extracted the exact same way the 

road edge curves are extracted from the corresponding .xml files. Desires are 

extracted similarly to crossroad labels (only here the values are not binary) from 

their log files. The same goes for the individual frames from video data. 

The loss function once again is Negative Log Likelihood, although an attempt 

was made by using Mean Squared Error Loss, but that choice proved to be sub-

optimal. The path planner neural network was trained on a GPU for 100 epochs 

in batches of size 64, using a random sample for each batch to ensure variety of 

images with or without crossroads. 

At the end of the training process, the model is once again saved either for 

retraining/finetuning or deployment in an application. 

Note that the number of epochs mentioned here for each task might have 

been changed during optimization of the models, and is not to be taken for granted 

as it is.  
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6.4 Training the ComboModel 

Training the multi-task model is not as complex as one might think. 

Basically, it is a combination of the previous training scripts. At first, all the files 

(videos, crossroad logs, curve .xml files, etc) are selected and their data is loaded. 

The get_data() function returns the individual frames of each videos and their 

corresponding crossroad labels, road edge and path curves as well as the desires, 

which are used only for path planning. Then, the data of all videos is concatenated 

into big arrays while maintaining it’s integrity and usability. 

Training is once again done using a GPU, by adding .to(device) after the 

model and input/output tensors definitions (where device is “cuda” if an Nvidia 

graphics card is available). The model is trained for 50 epochs (this number might 

change due to optimization) in batches of 16 (since the model in it of itself is 

memory demanding and only 6GB of VRAM were available) using the Adam 

optimizer with a learning rate of 0.001. The input tensor X which represents the 

image is forwarded to the large neural network while the labels for each task are 

converted into tensors (Y1, Y2 and Y3 for crossroad label, road edges and path 

curves respectively). Desire is also converted as a tensor and is forwarded to the 

model, but it is handled only by the path planner head of the Combo Model. 

The loss function used is a custom one called ComboLoss which is defined 

alongside the model in model.py. Details for the inner workings of the loss function 

are mentioned in previous chapters (note that it combines BCELoss with negative 

log likelihood loss by summing them up). After loss is calculated, it is propagated 

backwards into the neural network and optimizer.step() is called in order for the 

model to learn it’s parameters based on the error of its output compared to the 

individual given labels. The ComboLoss takes as parameters the output of the 

model and the three training labels for each task (loss = loss_function(out, Y1, Y2, 

Y3)). Eventually, stats for monitoring the training process are calculated and 

outputted via plots and the model itself is saved for further use. The main function 

of train_combo.py can be seen bellow.  
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CHAPTER 7 Deployment Application, Results 

and Conclusions 

For the purpose of testing out the results and performance of the different 

deep learning models that were trained in the scripts mentioned previously, a 

simple deployment application was written in app.py. What this application does 

is it loads either the individual models for each task, or the ComboModel and 

displays the various predictions on the frames it is given, while also giving 

information about the training labels, annotations, etc (if the video used by the 

app belongs in the training dataset). 

Note that the models run in the GPU even at deployment in order to boost 

the overall performance and frames per second of the display algorithm. As for 

path planning, desire is always set to forward (0), since all of the data consists of 

videos driving in a straight line, however controls can be easily implemented using 

some OpenCV functions, same as in the scripts for labeling crossroads and desires. 

First, the user specifies one of two modes for the network via environment 

variables. The variable MODE can either be combo or single-net, which dictates 

whether the large ComboModel or individual networks for each task will be used 

by the application. After that, the code checks if there are existing annotation files, 

so that it can display them alongside the network’s predictions. If they exist, they 

are loaded the same way as in the get_data() functions for each task. 

If the multi-task option is off, each model (cr_detector, re_detector and 

path_planner) is loaded into the GPU by first defining the model class from 

model.py and then loading the state dictionary from the corresponding .pth file 

(which is the format the networks are saved when training is done). Then, the 

models are set to evaluation mode by calling model.eval(), which is used for 

optimization and informs the algorithms that no parameters will be learned. If the 

multi-task parameter is set, however, only the multi-task model is loaded, the 

same way mentioned above. 

When done with data and model preparations, the application code runs a 

loop that reads each frame from the video, preprocesses it the same way it was 

done for training and forwards it to the model(s) (note that since the networks use 

batch normalization layers, they need to be fed more than one frame at a time, 

here they are fed 2 just to avoid errors and only the second frame is displayed). If 

the ComboModel is used then the output of the model is handled like an array of 

predictions, one for each task, otherwise each model’s output is stored to the 

corresponding variable. In order to display the curves for either road edges or the 

path, the polylines’ points are deserialized (the opposite way that was used for 

serialization into a vector during training) back to their multidimensional 

matrices and are upscaled from their network’s resolution (320x160) to the one of 

the display. 

After that, all that remains is to show the actual display for the user to see 

the annotations along with the deep learning predictions. OpenCV provides some 

very useful functions for image processing, making the process of drawing on each 

frame simple. The frame that was used as input for the networks is upscaled to 

the resolution of the display and then the various curves are drawn using the 

custom coded function called draw_polylines() that iterate the curves’ points’ 
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coordinates and call OpenCV’s function cv2.polylines(). That is done for both 

annotations and predictions for road edge detection and path planning. The 

predicted road edges and shown in orange, the predicted path in green and their 

corresponding annotations in red and blue respectively. On the top left corner, the 

predicted label for crossroad detection (crossroad, no-crossroad) is displayed along 

with the current value for desire. On the top right corner of the displayed image, 

the frames per second (FPS) are displayed (which are calculated by using python’s 

time() function) in green color. At the bottom of the loop’s code, the processed frame 

is displayed. OpenCV then proceeds to process the next frame in the video file 

using cv2.waitKey(1), or simply breaks the loop if the key “q” is pressed by the 

user. When the loop is over, the video capture is released and all OpenCV windows 

are destroyed (cap.release(); cv2.destroyAllWindows()). Some more information 

about the networks’ predictions’ values are printed on the terminal, in case they 

are needed for debugging. 
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The performance and results of the various deep learning tasks were quite 

mixed. Crossroad detection in it of itself worked almost perfectly. The model 

learned the whole training dataset accurately with just a few epochs, achieving 
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minimal loss and without overfitting. It performed well enough on roads it had 

never seen before, however not that well since the data used for it’s training was 

not all that good. Crossroad detection’s single neural network was the only model 

that was trained on more than 3 videos, however it was not enough to make it 

truly robust and highly accurate for real-world deployment. 

As for the path planning task, the single net model was able to regress the 

given curves very well, even though the loss function’s value was seemingly high. 

This could be due to the simplicity of the data, since the cars in the videos were 

driving in a straight line, so the path curve was not all that  complex. Note that 

the path planning data was annotated by hand, meaning that the path curves were 

manually drawn on the frames of the video file, which is suboptimal and can be 

inaccurate, especially when the model is deployed in the real world. A great 

solution would be to create an auto-labeling stack, which takes in data from videos 

as well as the data of GPS, IMU (like a gyroscope to determine the vehicle’s pose), 

RADAR and visual odometry sensors (along with others as well) that most modern 

cars have with the same timestamps, combines them using Kalman filters, 

performs accurate localization and creates a path in the 3D world. Then, it can 

always be projected back to the 2D frame by using various algorithms. This might 

seem complex, but the training data for the path planner would be highly accurate 

(will match the human driver’s behavior almost perfectly), allowing the model to 

truly learn to drive like a human, while also greatly improving the scalability of 

the data stack. If the path planning data does not require manual labeling, more 

hours of driving videos can be fed to the networks without hesitation, which is 

great for deep learning models since they require tons of data with variety in order 

to perform for real-world deployment. However, any other type of data besides 

video frames was not available and for the sake of simplicity, manual labeling was 

chosen. This resulted in less data being used, which is the reason why the models 

did not perform as good as they possibly could. 

Road edge detection in it of itself did not perform that good. It proved that 

this task requires a powerful model to achieve accuracy, because it needs to regress 

a variable number of complex curves. Given the complexity of the data and the 

limitations of the hardware, the results were not optimal. The loss value was quite 

high, however when the model was tested in the custom application on the training 

data itself, the predictions were not far from the actual annotations. Although, the 

neural network needs to be highly accurate with almost zero loss on it’s training 

data in order for it to stand a chance on real world deployment. Even so, the model 

performed decently considering the limitations and scale of the project, and given 

some optimization it could prove to be a great asset for real-world self-driving. 

Finally, the multi-task model called ComboModel performed quite well on 

some tasks while not that good on others. Crossroad detection was good enough, 

considering the fact that in the multi-task model this task was trained in less data 

(more data was labeled for crossroad detection but not for road edge detection and 

path planning). The model did well on the training data for this specific task, but 

for the other two the performance was questionable. Path planning was quite 

decent due to it’s simplicity (note that currently the number of training epochs is 

fairly low, so the reason for this problem might be the fact that the whole 

ComboModel was undertrained). However, road edge detection did not match the 

performance of it’s corresponding single-task network, which again might be due 
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to the number of training epochs. Another problem might be the weight of the 

task’s loss function in ComboLoss. Currently, all tasks’ loss-weights are equal to 

1, as if they were not weighted at all, thus weighting the loss function for road 

edge detection (which was negative log likelihood) more than the other ones should 

force the network to learn it’s parameters by focusing more on it’s most demanding 

task. This whole training phase though requires a lot of experimentation due to 

it’s scale, in order for it to be viable for real world deployment. Even so, the concept 

of this project can benefit a lot of self-driving car agents (i.e. deep learning models), 

depending on the relationships of the various tasks that can be trained together. 

In conclusion, the whole idea was to help some basic tasks of end-to-end 

models (such as Comma.ai’s Openpilot) focus on other more specific features by 

training them alongside other more specific tasks. Tesla’s Autopilot takes this 

concept to the edge by crafting huge multi-task models in order to create an 

accurate 3D map of the environment, something that beats the scale of this project 

by a lot. One last thing one should take into consideration is the fact that the whole 

deployment application runs at about 30 FPS, which is viable for real-world 

driving especially if the app itself was to be implemented in a more practical 

language such as C++. Thus, the performance of the deep neural networks used 

here is very satisfying in terms on speed and responsiveness.  



51 
 

 

BIBLIOGRAPHY 

- End-to-End Motion Planning With Deep Learning 

[https://mankaran32.medium.com/end-to-end-motion-planning-with-deep-

learning-comma-ais-approach-5886268515d3] 
 

- End to End Learning for Self-Driving Cars 

[https://arxiv.org/abs/1604.07316] 
 

- Which Tasks Should Be Learned Together in Multi-Task Learning? 

[https://arxiv.org/abs/1905.07553] 
 

- Andrej Karpathy: Tesla Autopilot and Multi-Task Learning for Perception and 

Prediction 

[https://www.youtube.com/watch?v=IHH47nZ7FZU&t=367s&ab_channel=LexCli

ps] 

 

- Tesla Autonomy Day 

[https://www.youtube.com/watch?v=Ucp0TTmvqOE&ab_channel=Tesla] 
 

- PyTorch at Tesla – Andrej Karpathy, Tesla 

[https://www.youtube.com/watch?v=oBklltKXtDE&t=496s&ab_channel=PyTorch

] 
 

- Comma.AI’s blog 

[https://blog.comma.ai/] 

 

-modeld 

[https://github.com/littlemountainman/modeld/tree/3340d7f86c1e5258e890af0298

9eb72ae39a208f ] 

 

 

 
- Project Code Link 
[https://github.com/pAplakidis/OpenCRD] 

https://mankaran32.medium.com/end-to-end-motion-planning-with-deep-learning-comma-ais-approach-5886268515d3
https://mankaran32.medium.com/end-to-end-motion-planning-with-deep-learning-comma-ais-approach-5886268515d3
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1905.07553
https://www.youtube.com/watch?v=IHH47nZ7FZU&t=367s&ab_channel=LexClips
https://www.youtube.com/watch?v=IHH47nZ7FZU&t=367s&ab_channel=LexClips
https://www.youtube.com/watch?v=oBklltKXtDE&t=496s&ab_channel=PyTorch
https://www.youtube.com/watch?v=oBklltKXtDE&t=496s&ab_channel=PyTorch
https://blog.comma.ai/

