

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΦΥΣΙΚΩΝ

ΕΠΙΔΡΑΣΕΩΝ ΣΕ ΕΙΚΟΝΙΚΗ

ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ

ΑΝΑΣΤΟΠΟΥΛΟΣ ΠΑΝΑΓΙΩΤΗΣ

ΒΙΤΤΕ ΣΤΕΦΑΝΟΣ-ΑΘΑΝΑΣΙΟΣ

 ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΥΠΕΥΘΥΝΟΣ

Κολομβάτσος Κωνσταντίνος

Αναπληρωτής Καθηγητής

Λαμία ………………………… έτος 2025

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΦΥΣΙΚΩΝ

ΕΠΙΔΡΑΣΕΩΝ ΣΕ ΕΙΚΟΝΙΚΗ

ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ

ΑΝΑΣΤΟΠΟΥΛΟΣ ΠΑΝΑΓΙΩΤΗΣ

ΒΙΤΤΕ ΣΤΕΦΑΝΟΣ-ΑΘΑΝΑΣΙΟΣ

 ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΥΠΕΥΘΥΝΟΣ

Κολομβάτσος Κωνσταντίνος

Αναπληρωτής Καθηγητής

Λαμία ………………………… έτος 2025

SCHOOL OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE & TELECOMMUNICATIONS

EDUCATIONAL SIMULATION OF PHYSICAL

EFFECTS IN VIRTUAL REALITY

ANASTOPOULOS PANAGIOTIS

WITTE STEFANOS-ATHANASIOS

FINAL THESIS

ADVISOR

Kolomvatsos Konstantinos

Associate Professor

Lamia ………………………… year 2025

Ημερομηνία: ……/..…/20……

Ο – Η Δηλ.

(1) «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά με
έγγραφη υπεύθυνη δήλωση
του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση τουλάχιστον τριών μηνών. Εάν ο
υπαίτιος αυτών των πράξεων
σκόπευε να προσπορίσει στον εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή
σκόπευε να βλάψει άλλον, τιμωρείται με κάθειρξη μέχρι 10 ετών.»

«Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της διατάξεις
της παρ. 6 του άρθρου 22 του Ν. 1599/1986, δηλώνω ότι:

1. Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να τα
περικλείω σε εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη σελίδα. Η
αυτολεξεί παράθεση χωρίς εισαγωγικά χωρίς αναφορά στην πηγή, είναι λογοκλοπή. Πέραν της
αυτολεξεί παράθεσης, λογοκλοπή θεωρείται και η παράφραση εδαφίων από έργα άλλων,
συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς και η παράθεση στοιχείων που άλλοι
συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά στην πηγή. Αναφέρω πάντοτε με πληρότητα την
πηγή κάτω από τον πίνακα ή σχέδιο, όπως στα παραθέματα.
2. Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται από
αναφορά στην πηγή σε κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι αντιγραφή. Η
αναφορά στην πηγή στο τέλος π.χ. μιας παραγράφου ή μιας σελίδας, δεν δικαιολογεί συρραφή
εδαφίων έργου άλλου συγγραφέα, έστω και παραφρασμένων, και παρουσίασή τους ως δική μου
εργασία.
3. Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των παραθεμάτων
που μπορώ να εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε μεγάλο παράθεμα (π.χ. σε
πίνακα ή πλαίσιο, κλπ), προϋποθέτει ειδικές ρυθμίσεις, και όταν δημοσιεύεται προϋποθέτει την
άδεια του συγγραφέα ή του εκδότη. Το ίδιο και οι πίνακες και τα σχέδια
4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής.

ΠΕΡΙΛΗΨΗ

Το έργο «Προσομοίωση Φυσικών Φαινομένων» αναπτύσσει μια

διαδραστική διδακτική εφαρμογή, συναρμολογημένη στο Unity, με στόχο να

καταστήσει την οπτική πιο προσιτή μέσω προσομοιώσεων σε πραγματικό

χρόνο της διάθλασης, διασποράς και ολικής εσωτερικής ανάκλασης.

Αξιοποιώντας τους αλγορίθμους 3 -Δ διανυσματικού raycasting του Unity,

το σύστημα παρέχει δύο παιδαγωγικές επιδείξεις: έναν κόσμο διασποράς με

τριγωνικό πρίσμα και έναν κόσμο διάθλασης αντικειμένου σε νερό, όπου ο

χρήστης μπορεί να ρυθμίζει γωνίες, δείκτες διάθλασης και γεωμετρικές

ρυθμίσεις και να παρατηρεί τόσο τα οπτικά αποτελέσματα όσο και τον

αριθμητικό έλεγχο. Ένας δάσκαλος τεχνητής νοημοσύνης (Hugging Face

Llama-3.1-8B-Instruct) παρέχει επεξηγήσεις κατάλληλες για το πλαίσιο

των ρυθμίσεων της προσομοίωσης, υποστηρίζοντας τη μάθηση βασισμένη

στην ανακάλυψη. Το έργο διατίθεται ως δύο συνταγμένες εφαρμογές που

συνοδεύουν την παρούσα διπλωματική -μια έκδοση για υπολογιστή

(πληκτρολόγιο & ποντίκι) και μια έκδοση VR για τρισδιάστατες

ολογραφικές οθόνες -και οι δύο συναρμολογημένες από τον ίδιο βασικό

πυρήνα προσομοίωσης και αριθμητικής μηχανής. Η έκδοση VR προσθέτει

στερεοσκοπικές διεπαφές απόδοσης και αλληλεπίδραση μέσω χειριστηρίων

κατά προεπιλογή, καθώς και διεπαφή χρήστη στον χώρο του κόσμου,

διατηρώντας την ίδια αριθμητική σημασιολογία. Οι μελέτες περίπτωσης

επικυρώνουν την φυσική ακρίβεια των προσομοιώσεων (συμφωνία στο

επίπεδο των 0,1° ή καλύτερα σύμφωνα με τον νόμο του Snell) και δείχνουν

σημάδια παιδαγωγικής αποτελεσματικότητας μέσω εργασιών βασισμέν ων στη

μοντελοποίηση και τη λογική επεξεργασία. Με την ενσωμάτωση της VR

λειτουργίας, τα επόμενα βήματα περιλαμβάνουν επεκτάσεις της συσκευής

στη κυματική οπτική, ελεγχόμενες μελέτες με ανθρώπινα δείγματα κατά

λειτουργία για σύγκριση των μαθησιακών αποτελεσμάτων, καθώς και

βελτιστοποιήσεις επιδόσεων και χρηστικότητας για αναπτύξεις σε

τρισδιάστατες ολογραφικές οθόνες.

ABSTRACT

The Physical Phenomena Simulation project builds an interactive

teaching device assembled in Unity in order to make optics more

accessible by real-time simulations of refraction, dispersion, and total

internal reflection. Availing the 3-D vector-based raycasting algorithms

in Unity, the system provides two pedagogic demonstrations: a triangular -

prism dispersion world and an object -in-water refraction world in which

the user modulates angles, refractive indices, and geometrical setups and

observes both visual outcomes and numerical verification. An artificial -

intelligence tutor (Hugging Face Llama-3.1-8B-Instruct) provides context-

appropriate explanations of simulation settings for supporting inquiry -

based learning. The project is released as two compiled app lications

accompanying the current thesis -a desktop (keyboard & mouse) build and

a VR build for volumetric displays -both assembled from the same base

simulation and numerical engine; the VR build adds stereoscopic render

passes and interaction by control lers by default and world-space UI while

having the same numerical semantics. The case studies validate the

physical fidelity of the simulations (agreement at the 0.1° level or better

by Snell's law) and reveal signs of pedagogic efficacy by tasks of model -

based reasoning. With the VR modality in place, the next steps are wave -

optics extensions of the package, controlled studies of human subjects by

modality for comparisons of the learning outcomes, and more performance

and usability optimizations for volumetric display deployments.

Table of Contents

ΠΕΡΙΛΗΨΗ .. I
ABSTRACT .. IV

CHAPTER 1: INTRODUCTION.. 2

1.1: BACKGROUND AND MOTIVATION .. 3
1.1.A: OVERVIEW OF PHYSICAL PHENOMENA IN OPTICS EDUCATION 3
1.2: PROJECT OBJECTIVES AND SCOPE .. 4
1.2.A: WHAT WE AIM TO ACHIEVE – PRACTICAL LEARNING GOALS 6
1.2.B: MOTIVATION FOR IMPLEMENTATION – PEDAGOGICAL AND TECHNICAL RATIONALE

 ... 7
1.3: THESIS STRUCTURE ... 7

CHAPTER 2 BIBLIOGRAPHIC OVERVIEW .. 9

2.1: LITERATURE REVIEW ON EDUCATIONAL SIMULATIONS .. 9
2.1.A: HISTORICAL DEVELOPMENT OF PHYSICS SIMULATIONS FOR TEACHING 9
2.1.B: ROLE OF GAME ENGINES LIKE UNITY IN EDUCATIONAL TOOLS 10
2.2: AUGMENTED AND VIRTUAL REALITY IN PHYSICS EDUCATION........................... 10
2.2.A: APPLICATIONS OF AR/VR FOR VISUALIZING OPTICAL PHENOMENA....................... 10
2.2.B: CASE STUDIES OF AR/VR-BASED SIMULATIONS IN REFRACTIVE AND DISPERSIVE

OPTICS ... 11
2.3: RELATED TECHNOLOGIES AND FRAMEWORKS ... 11
2.3.A: INTEGRATION OF AI ASSISTANTS IN EDUCATIONAL SOFTWARE 11
2.3.B: EXISTING UNITY-BASED PROJECTS FOR PHYSICS PHENOMENA 12

CHAPTER 3: SYSTEM DESIGN AND METHODOLOGY 13

3.1: OVERALL ARCHITECTURE AND SCENE LAYOUT ... 13
3.2: DESIGN PRINCIPLES .. 14
3.3: MATHEMATICAL FOUNDATIONS .. 14
3.3.A: DISPERSION MODEL (DISCRETE SAMPLING) ... 15
3.4: SHADER GRAPHS FOR VISUAL REFRACTION ... 16
3.4.A: GLASS SHADER ... 16
3.4.B: PRISM SHADER .. 17
3.4.C: WATER SHADER .. 18
3.5: PRISM IMPLEMENTATION AND VISUALIZATION ... 19
3.6: WATER, OBJECT AND BUOYANCY MODEL ... 20
3.7: UI, CAMERA, AND AI ASSISTANT INTEGRATION .. 21
3.8: DEBUGGING, VISUALIZATION AND VALIDATION AIDS ... 24
3.9: TESTING STRATEGY (CONCEPTUAL) .. 25
3.10: CHAPTER SUMMARY ... 25

CHAPTER 4: IMPLEMENTATION AND CASE STUDY 26

4.1: SCENE COMPOSITION AND RESPONSIBILITIES .. 26

1

4.2: KEY SCRIPTS AND SHADER ROLES .. 27
4.3: CASE STUDY 1 – PRISM DISPERSION AND TIR.. 31
4.4: CASE STUDY 2 – OBJECT-IN-WATER REFRACTION ... 33
4.5: TESTS, VALIDATION CHECKLIST AND CLASSROOM ACTIVITIES 34
4.6: PROJECT MATERIALS AND IMPLEMENTATION ARTIFACTS................................... 35
4.7: CHAPTER SUMMARY ... 35

CHAPTER 5: CONCLUSION & FUTURE DIRECTIONS 36

5.1: SUMMARY OF ACHIEVEMENTS... 36
5.2: DISCUSSION OF LIMITATIONS ... 37
5.3: RECOMMENDATIONS FOR FUTURE ADVANCES ... 38
5.3.A: INTEGRATION OF EXTENDED REALITY (XR) .. 38
5.3.B: EXPANSION TO WAVE OPTICS AND ADDITIONAL PHENOMENA 39
5.3.C: METHODICAL PEDAGOGICAL EVALUATIONS AND USER STUDIES 39
5.3.D: TECHNICAL ENHANCEMENTS AND BROADER DEPLOYMENT 39

BIBLIOGRAPHY ... 41

OTHER SOURCES .. 41

2

Chapter 1: Introduction

 Studies of light and of interactions of light and matter are a core

emphasis in the classic and in the current literature of physics. Familiar

demonstrations one finds in the teaching environment-like an object

appearing warped upon submersion in a liquid, refraction at flat surfaces,

or a beam of white light split by a prism-serve as powerful representatives

of the inherent first principles at work; they also indicate a chronic difficulty

in teaching: algebraic proofs and line drawings often prove unsuccessful in

conveying how repeatedly fluctuating variables (incident angle, refracting

index, wavelength, and geometrical considerations) relate in order to

produce the phenomena the student is asked to predict and explain. To

achieve this shortage, the Simulation of Physical Phenomena offers a highly

interactive and dynamic real-time environment in which the students can

carry out virtual experiments and visualize instant outcomes while

qualitatively exploring measurements in alignment with the fundamental

ideals of optics. The system offers the same controllable variables as

textbooks in the experiment mode-students manipulate the angles and the

indices of the materials and the locations of objects and instantaneously see

ray visualizations and numerical outputs-while an embedded artificial

intelligence tutor provides contextually relevant explanations for

facilitation of inquiry and reflection.

 Notably, the project is offered in two modal forms extracted from a

common codebase: a standard desktop version (using mouse and keyboard)

and a special-purpose VR version for stand-alone headsets. The VR version

includes stereoscopic perception of depth, world-space menus, and

interaction by controllers, and they in turn encourage embodied exploration

and development of spatial reasoning, while the desktop version provides

access in standard classrooms. Both versions share the same simulation and

numerical engine, so comparisons across modalities are meaningful; in the

end, the project aims at shifting the learner from the receptive mode of

passive acceptance to the active one of formulation of hypotheses,

measurement, and conceptual understanding by way of immersive virtual

experiments.

3

1.1: Background and Motivation

 More recent work in the physical sciences teaching and learning community

points up active engagement and participation, use of multiple representations,

and routine formative assessment as the elements indispensable for effective

conceptual change. Simulations that are interactive integrate visual, numerical,

and manipulative representations in a unified framework in which the mental

models of the learner can be constructed and tested. Applets and highly

investigated collections such as the PhET simulations show how individually

designed virtual experiments can enhance conceptual understanding, especially

when embedded in planned activities or inquiry projects. Geometric relationships

in the subject of optics are characterized by their spatial and directional nature;

the fact of the addition of immersion and the possibility of real-time manipulation

of angles, indices, and positions adds a powerful stimulus for the learning of

correct intuitions.

 Recent advancements in low-cost, real-time, three-dimensional engines-

driven by Unity-along with ubiquitous access to managed natural-language

inference application programming interface (API) packages, has lowered the

barrier associated with the development of context-sensitive and highly

interactive educational software. This work capitalizes upon such advancements

in presenting two basic optical phenomena: a dispersion exercise utilizing a prism

of triangles and a refraction exercise utilizing an underwater object facilitated by

a conversational artificial intelligence (AI) assistant providing voice for the

current simulation state in educationally desirable terms. The assistant is

accompanied by a managed inference API (Hugging Face employing the Llama-

3.1-8B-Instruct model) providing real-time explanations in contextually helpful

terms triggered by a collection of simulation parameters spanning the likes of

angles and refractive indices and points of intersection. Combinations of high-

fidelity geometric simulations, discrete numeric overlays, and a contextualizing AI

assistant should enhance self-paced learning and also accommodate instructor-led

laboratory work.

1.1.a: Overview of Physical Phenomena in Optics Education

The current project studies three core phenomena:

• Refraction. The light is deflected while passing through the interaction

surface of two media having different refractive indices according to the law

of Snell. The law can also be represented in a scalar way by the equation

𝑛1𝑠𝑖𝑛𝑖1 = 𝑛2𝑠𝑖𝑛𝑟1, or better in a vector system by the vector refraction

equation used in this work. The refraction is responsible for the easily

observable phenomena such as the water depth and forms the basis of many

optical devices.

4

• Dispersion. The refractive indices for the majority of the transparent

materials are wavelength-dependent. In passing through a prism the white

light therefore gets dispersed in a spectrum: short waves (violet) being

refracted more intensively than longer waves (red). An attempt at

explaining dispersion in a teaching context is a balance of physical fidelity

and teaching efficacy and a discrete sampling method by wavelength is

typically the best understandable and computationally effective approach.

• Total internal reflection (TIR). This is the phenomenon in which light

attempts to move from a denser medium to a less dense one at angles

exceeding some critical value for which refraction is not feasible and total

internal reflection of the incident light occurs. TIR is very sensitive to the

changes in the refractive index ratio and the angle of the incident medium

and hence forms a perfect candidate for an interactive demonstration

indicating how qualitative gross changes in the behavior can emerge due to

small variations in the parameters.

Particularly, the use of the prism and object experiments is a deliberate

pedagogic method: both procedures are highly pictorial, briefly encapsulate

concepts, and enable the use of instant numerical verification in suitable effective

illustration accompanied by graphics. Thus, this selection enables the students to

measure and check the same parameters and hence immensely enhance their

model-based reasoning.

1.2: Project Objectives and Scope

 The primary objective here is the development of a tutorial simulation

software package such that (a) the package combines effectively elementary

aspects of geometric optics for the demonstration of refraction and dispersion, (b)

the package contains adjustable parameters by which cause-and-effect

relationships can be explored by the user, and (c) the package provides

quantitative diagnostic outputs along with short explanations useful for the

interpretation of the associated equations and their computations.
Specifically, the scope of the project comprises:

• A Prism dispersion simulation by per-wavelength ray tracing of a triangle

prism, interacting with a discretely sampled visual spectrum. This

simulation outlines the entry and exit positions, normals, angles, and

refractive indices, all of which are obtained from a simple linear dispersion

mapping. Additionally, the simulation depicts the emergent rays by color-

coded LineRenderer tracing and identifies the bins subject to complete

internal reflection (TIR).

5

• A water-and-object experiment describing plane refraction and apparent

displacement. This exercise, furthermore, introduces a simple and steady

buoyancy model where interactive experiments on light (throwing small

rigid bodies and studying their settling and damping behaviors) may be

conducted.

• A User interface, Camera functionality such as a main menu, a pause,

the ability to choose and manipulate things, and a cross-hair mode improve

usability in situations where instructors are in control or a lone viewer.

• An AI assistant interface is intended to receive a brief representation of

the simulation state (such as refractive indices, angles, and intersection

points) and, in turn, presents contextual explanations via a real-time

connection with a Hugging Face inference API. This assistant uses a

structured prompt to ensure that the explanations are clear and

instructional, especially focusing on optics principles. Responses are further

delivered with a typewriter effect for better readability. The interface

accepts user input via a text input field and a submit button, with a chat

history retention ensuring contextual relevance.

• Three Custom Shaders - prism, water, and glass cup effects - have been

created in an effort to increase the visual realism of the simulations. These

shaders increase visual realism and facilitate educational discourse by the

inclusion of colored refraction impacts within the prism, significant

refractive distortions along the surface of the water, and real attributes of

the glass forming the cup in a manner controlled by appropriate calculations

carefully embedded in the simulation's coding. The shader for the glass cup

might instead be used onto the one for the prism and hence display the

internally refracted rays and provide an alternative perception regarding

the light's behavior.

The design constraints were purposefully pedagogically motivated: the

simulator enforces determinism, numerical fidelity, and control repeatability at

the expense of photo-realistic light transport. It makes numerical overlays reliable

for the right kind of measurement during interaction by the students and activities

in the class.

6

1.2.a: What We Aim to Achieve – Practical Learning Goals

The simulation is designed to enable the following specific learning outcomes:

1. Understand and apply Snell’s law. The students should be able to

estimate refracted angles for given incidence angles and refractive indices

and verify such estimates numerically by the use of the overlay.

2. Observe and explain dispersion qualitatively and quantitatively.

Students should see that different wavelengths exit at different angles,

understand the index-wavelength relationship implemented, and use per-

bin critical angles to explain why some colors escape while others are

trapped by TIR.

3. Anticipate and determine total internal reflection. The students will

experimentally identify under what circumstances total internal reflection

takes place for individual wavelengths by altering the tilt of the prism and

the amount of dispersion.

4. Connect geometric optics with everyday perceptual experiences.

The object experiment links perceived position of objects and geometric

refraction and allows the calculation of apparent displacement for a wide

range of viewing angles.

5. Practice measurement and scientific reporting. Laboratory standard

worksheets assist in recording numerical results obtained from overlays,

enabling comparisons of the results with calculations from analyses, and

prompting reflection upon the range of variations seen (e.g., error in

measurement, rounding, and approximations in modeling).

The specificity of such objectives has been designed carefully so that the

teachers and the students can gauge proficiency in terms of short reusable tasks

in a simulation.

7

1.2.b: Motivation for Implementation – Pedagogical and technical

rationale

 The decision regarding the use of the Unity platform was motivated by both

teaching objectives and pragmatic considerations: Unity provides a user-friendly

editing interface, allows for deployment across a wide variety of platforms,

provides the fundamental physics primitives necessary in water simulation, and

possesses a programmable render pipe which allows for the possibility of adding

in shaders, and these factors enhance understanding. Ray sampling, binned by

wavelength, strikes a balance between giving a qualitative account of dispersion

and giving efficient, manageable computation on standard student equipment.

The chat assistant is designed to mimic the facilitating structure normally

provided by the instructor in the laboratory setting; the assistant may direct the

students to the correct numerical checks, explain the phenomenon of color

extinction (Total Internal Reflection), or make slight adjustments. What is

important here is the point the assistant functions as a learning tool and not a

definitive testing tool: the hints and the solutions are accompanied by a notation

of the numerical diagnostics provided and can be checked by the students.

 Lastly, considerable emphasis has been placed in deterministic and

precisely quantized actions like clearly defined overlays, predictable pseudo-

random seeds operating upon stochastic elements, and constant buoyancy

evaluations. This deliberate emphasis facilitates ease in classroom

demonstrations and evaluation strategies. Particular care has been taken in

eliminating complex volume calculations like precise displacement-volume

integrals relating to buoyancy, thereby keeping computations simple and ensuring

constant, realistic interactions for educational scenarios. In this way, facilitated

by scripts like WaterPhysics.cs, which employs a linear buoyancy model, and

PrismRaycaster cs, employing discrete ray sampling, ease of access and

reproducing using common equipment is preferred. This allows instructors,

therefore, to concentrate upon the teaching of the fundamentals of optics rather

than having to contend with complex simulations.

1.3: Thesis Structure

8

 The dissertation is organized to first situate the research within relevant

literature, second, explain system design and its mathematical foundations, a

discussion of implementation details and empirical verification, and finally,

combine findings and recommend directions of future research.

• Chapter 2 - Bibliographic Overview. Literature survey across

educational simulations, the use of game engines and XR teaching physics

and prior work in the application of AI in educational software.

• Chapter 3 - System Design and Methodology. Descriptions of the three-

scene architecture, the mathematical models (vector refraction, TIR

criterion, discrete dispersion mapping and simple buoyancy),

implementation decisions and the three custom shaders.

• Chapter 4 - Implementation and Case Studies. The chapter contains

in-depth scene descriptions, details of the principal script and shader

functions, and two case studies (prism total internal reflection and

refraction by objects) thorough numerical verification and recommended

class activities.

• Chapter 5 - Conclusions and Future Directions. Comprehensive

summary of results, discussion of the limitations, and suggestions for the

future breakthroughs (potential applications of XR, studies of more

phenomena, development of complex wave-optics devices, and systematic

assessment of teaching techniques).

9

Chapter 2 Bibliographic Overview

2.1: Literature Review on Educational Simulations

 Educational simulations have been thoroughly investigated and optimized

within the science educational arena because they can make abstract phenomena

specific, allow variables testing in a risk-free setting, and yield expedient feedback

mechanisms allowing for inquiry-based learning. The prime example for such a

trend is the University of Colorado Boulder's PhET initiative which in the course

of development took a research-informed approach towards design by utilizing

iterative student interviews and classroom testing in feeding the interface and

instruction design choices; papers and studies developed by PhET record that

appropriately designed interactive simulations have the potential for improving

students' conceptual knowledge and motivation towards the discipline of physics

(1, 2).

 Traditionally, physics instruction was based upon static visual images,

analytical equations, and a restricted set of lab experiments. But in the past thirty

years, improved computational technology, web access, and mobile phone apps

have enabled more sophisticated simulation techniques to emerge: pioneering

applets have given way to research-proven, pedagogically informed frameworks

offering several related representations (graphic, numeric, and symbolic).

Systematic reviews and meta-analyses indicate the educational efficacy of

simulations is maximized if the activity possesses clear and specified learning

targets, concise but focused guidance, and the possibility of measurement and

testing of hypotheses-design parameters having significant implications for

interface design and debugging overlays in this project (3, 4).

2.1.a: Historical Development of Physics Simulations for Teaching

The transition from classic graphical presentations through sophisticated,

research-based simulations came with the availability of inexpensive multimedia

and scripting tools during the 1990s and early 2000s; PhET emerged as a National

Science Foundation- and university-sponsored project established specifically for

developing research-based, publicly available simulations suitable for K–12 and

post-secondary education (5). Follow-up studies on related topics entailed

empirical validations-measuring outcomes from computer-based simulations

against those obtained from classic instruction or experiential laboratory work-

finding that high-quality, virtual laboratories reliably match or excel outcomes

from conventional laboratory work involving narrowly defined conceptual

measures, thus presenting secondary benefits in terms of cost-efficiency, safety,

and reproduction (4). Such findings complement the project's focus on numerical

overlays, test log reproducibility, and structured activity, allowing pupils to see

and verify the equations they meet during their course of learning.

10

2.1.b: Role of Game Engines like Unity in Educational Tools

Over the past decade, general-purpose game engines, and in particular the

Unity platform, have also been widely adopted for the development of interactive

educational experiences. Unity also offers several important advantages in the

form of a mature editor and a tried-and-true rendering pipe-line along with

integrated physics and strong support for desktop and XR platforms and

consequently lowers the cost of engineering and the iteration cycles for developers

and instructors equally. Commercial virtual lab vendors and numerous academic

programs also prefer the use of Unity for prototype and production deployments

due to the ease of rapidly generating the contents and the reuse of the assets and

providing stable performance across a wide variety of platforms; the current work

employs Unity for the same reasons along with taking advantage of the rendering

and the facilities for script programming for real-time ray-based renderings of the

optical phenomena (6).

2.2: Augmented and Virtual Reality in Physics Education

Virtual and augmented reality technologies enhance desktop simulation

capabilities by providing heightened immersion, possibilities for stereoscopic

perception of depth, and natural variations of scale and perspective-the latter

especially useful in subject areas in which a strong geometrical component exists,

i.e., optics. Thorough reviews of the use of post-secondary university or college

studies in immersive virtual reality consistently show promising outcomes in

student engagement and understanding of the situation and are contingent upon

the design of the components of the experience of VR in individual instructional

outcomes and pedagogic context (7, 8). From the reviews, the use of extended

reality (XR) is not feasible across the board, but XR can very effectively support

activity in spatial reasoning and permit the student more natural interaction in a

directional mode-this element being important in design for the use of XR in the

current project.

2.2.a: Applications of AR/VR for Visualizing Optical Phenomena

The tailored XR implementations deliver sets of optical visualizations

representing measurable physical interrelations. For example, femtoPro offers a

training system in virtual reality on ultra-fast optics, utilizing Gaussian-beam

propagation and ultrashort-pulse dynamics in a virtual laboratory environment.

The system offers precise measurements and alignment, which are difficult or

impossible in conventional training laboratories (9). Likewise, VisionaryVR offers

a platform for performing vision-science simulations and optical experiments in a

virtual reality environment, utilizing simulations of different defocus and

aberrations both for research and education (10). Such projects demonstrate the

possibility of blending ray-based and wave-informed simulations into immersive

presentations, which not only deliver educational benefits but define design

11

guidelines providing numerical accuracy in converting desktop worlds into XR

applications.

2.2.b: Case Studies of AR/VR-Based Simulations in Refractive and

Dispersive Optics

Recurring case studies of XR optics tools consistently reveal three general

results having straightforward design implications for this project. First,

quantitative fidelity emerges as a necessity: students can make XR measurements

corresponding to analytical predictions under the assumption that the simulation

respects fundamental principles (e.g., the law of Snell and relationships for the

critical angle). Secondly, interactivity is shown to be essential: the permission for

students themselves to set incidence angles, refractive index, and geometrical

parameters enhances conceptual understanding by forging causal relationships.

Thirdly, the value for learning outcomes of scaffolding is manifest: tutored tasks

and in-built tests (e.g., numeric overlays, displays of angles and test logs) yield

more learning advancement than solo unaided exploration (2, 7, 9). These results

endorse the use in this project of debug overlays showing displays of angles and

expressions for the Snell check along with prominent indicators for total internal

reflection for the various wavelength classes.

2.3: Related Technologies and Frameworks

A teaching simulation's effectiveness relies upon a seamless aggregate of

technologies including a real-time engine (Unity), numerically exact refraction

and ray module, overlay-level user interface tool-kits, and optionally a set of cloud-

based artificial intelligence services capable of facilitating conversational

interaction. The choice of each component requires a subtle balance of fidelity,

interactivity, and reproducibility. The base scene is the Unity engine, offering

rendering and scripting support for this project; a discrete ray-sampling method

for each wavelength accurately simulates dispersion in a loss of photo-realism for

the sake of interactive stability-this design is justified, as teaching demonstrations

value consistency and repeatability more than photo-realism (6).

2.3.a: Integration of AI Assistants in Educational Software

Existing literature and in-practice applications document that AI-assisted

tutors and assistants have the potential to enhance the learning experience

significantly when employed judiciously. Inference management services, such as

the Hugging Face Inference API, enable developers to detail concise contextual

information from an application, which can include a snapshot comprising

numerical diagnostics and a collection of state variables and then retrieving

12

pertinent explanation text; such a design distinctly segregates the architecture of

the AI assistant employed in this project work (11). Media analysis and real-world

evidencing validate the fact that custom-made AI-based tutoring systems,

employed along with traditional instructors and designed in concomitant

alignment with teaching frameworks such as scaffolding and formative feedback,

stand a good chance of facilitating the effectiveness of learning as well as student

engagement in post-school contexts; yet existing scholarship underlines the

necessity for effective evaluation, transparency, and caution regarding blind

reliance upon AI as a final decision-making entity (12).

2.3.b: Existing Unity-Based Projects for Physics Phenomena

Various proven initiatives demonstrate the potential of Unity and related

engines to enable wide-scale education in physics. Labster is one such

commercialized virtual lab platform utilizing high-fidelity worlds developed

within Unity for simulating lab procedures within the biological, chemical, and

physical sciences; the Labster-provided materials alongside their corresponding

assessment guides argue that virtual laboratory efficacy is increased when

combined with evaluative and pedagogical approaches (13). Pedagogical

frameworks utilizing Unity-based lab systems intended for optics and advanced

lab uses, such as the femtoPro VR lab, demonstrate the ability of real-time engines

to maintain high-fidelity ray and pulse simulations within training scenarios,

subsequently verifying the viability of the techniques utilized in the present

project's per-wavelength tracing and numerical verification schemes (9, 13).

13

Chapter 3: System Design and Methodology

This chapter includes the architecture, design principles,

mathematical fundamentals, and implementation decisions employed while

building the project of Physical Phenomena Simulation. The chapter

describes the establishment of the environment of the three scenes by

employing the use of Unity objects and scripts, describes the numerical

simulation employed for refraction, dispersion, and buoyancy, sketches the

project's three specially designed shaders for prism, glass and water, and

describes the user interface, the integration of the AI assistant, and the

debugging and verification tools employed for teaching.

3.1: Overall architecture and scene layout

 The project comprises three variously different Unity scenes, which, while

possibly self-standing, are managed by an overlord system: a simplified Main

Menu scene for simulator selection, Simulation 1 (Prism Dispersion), in line for

the examination of ray-based optics, and Simulation 2 (Water & object), enabling

the examination of plane-interface refraction and conducting simple buoyancy

experiments. Commonly shared resources include a common AI-Assistant prefab

offering context-sensitive guidance and a lowly set of utility scripts (which help in

vector refraction, color mapping into refraction bins, and pooled management of

the LineRenderer). The project also comprises an EditorCameraController

component for camera control and selection along with access specifically for the

build for the keyboard-and-mouse application build's pause screen; the script

remains intact and unused in the build for the VR. The build for the VR comprises

XR-specific input and UI prefabs (such as world-space canvases, controller ray

interactors, and XR rig prefabs) offering equivalent user-facing functionalities in

an immersiveness setting.

 Each scene comprises a generic simulation object, scene-specific prefabs

(e.g., a prism mesh for Simulation 1 and a water cup prefab with object pivot for

Simulation 2), and a Canvas-based implementation for UI elements for controls,

overlays, and assistant activity. The simulation loop for each scene is utterly

transparent and student-friendly: user inputs (including camera and UI controls

appropriate for the current build) manipulate the inspector-visible parameters;

the core simulation controllers-PrismRaycaster.cs for the prism and

ObjectRefraction.cs and WaterPhysics.cs for the water scene-solve ray

intersections and physical interactions using numerically exact equations; the

visual output is calculated by making use of LineRenderer objects, meshes, and

two custom-made shaders (prism and water) in an attempt to render refracted

light and underwater objects; and lastly the AI-Assistant is able to take a short

screenshot of the current simulation state and create context-appropriate

explanations. The project repository contains a README of the details of the

version of the version of the Unity editor needed, packages needed, and build/run

14

instructions for the desktop and the VR builds such that reproduction is discussed

in the supplemental materials and not repeated in the main document.

3.2: Design Principles

 A set of clear design principles underlies the implementation process. First,

the simulation employs the approximation of the geometric optics, in which the

light is described as rays tracing along linear segments along the interaction

points. The reasoning behind this effectively decouples phenomena such as

refraction, dispersion, and total internal reflection from wave-related phenomena

such as diffraction and interference falling outside the educational objectives of

this project. Secondly, dispersion is simulated by discrete wavelength sampling:

rather than attempting to continuously render the spectrum, the system samples

the visible spectrum by a finite number of rays (the default uses 21 bins) and

calculates a refractive index for each sample via a simple linear mapping based

upon a parameter. Finally, numerical transparency and verifiability were a

priority: the system possesses numeric overlays which render the entry and exit

points, surface normals, incidence and refraction angles, and checks which abide

by Snell's law such that the student may check the underlying equation upon

which the visualizations are based. Lastly, interactivity and safety influenced

physical model design: water buoyancy representation sacrifices volumetric

accuracy for stability and predictable behavior such that, in the context of the

interactive framework of the classroom setting, is assessed as a desirable trade-

off in terms of pedagogy.

3.3: Mathematical Foundations

 All computations involving refraction and total internal reflection (TIR) are

carried out using conventional, vector-based expressions of Snell's law. A

normalized direction of incidence 𝑑𝑖𝑛𝑐 approaches in, and a unit surface normal

vector n projects out of, the medium. Cosine of the angle of incidence relative to

the normal is found by:

𝑐𝑜𝑠𝜃𝑖 = −(𝑑𝑖𝑛𝑐 ⋅ 𝑛)

When moving from a medium of refractive index 𝑛1 into another medium of

refractive index 𝑛2, the refracted direction is computed via the ratio:

𝜂 = 𝑛1 𝑛2⁄

coordinated with the squared sine identity:

𝑠𝑖𝑛2𝜃𝑡 = 𝜂2(1 − 𝑐𝑜𝑠2𝜃𝑖).

15

If 𝑠𝑖𝑛2𝜃𝑡 > 1, the angle of refraction becomes imaginary, meaning there is

no refracted ray; such a situation clearly exhibits the TIR condition. When, in a

particular situation, there can be refraction, the refracted direction vector 𝑑𝑜𝑢𝑡 is

found by:

𝑑𝑜𝑢𝑡 = 𝜂𝑑𝑖𝑛𝑐 + (𝜂𝑐𝑜𝑠𝜃𝑖 −√1 − 𝜂2(1 − 𝑐𝑜𝑠2𝜃𝑖)) 𝑛

The implementation encapsulates this routine in a small utility function

(e.g., RefractionUtils.TryRefract) that returns a boolean indicating success and

the output vector when successful. The critical angle for an internally incident

interface is computed as 𝜃𝑐 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑛𝑜𝑢𝑡 𝑛𝑖𝑛𝑐⁄) when 𝑛𝑖𝑛𝑐 > 𝑛𝑜𝑢𝑡, and the

code uses this to produce TIR flags and explanations visible in the overlay.

3.3.a: Dispersion model (discrete sampling)

Dispersion is realized by linking a normalized bin parameter t ∈ [0,1] to a

wavelength-sensitive refractive index n(t) using linear interpolation around an

index 𝑛𝑐𝑒𝑛𝑡𝑒𝑟. A standard value of 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 0.1 is used for the

purposes of this research. Internally the per-bin offset 𝑛𝛥 is computed as:

𝑛𝛥 = 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ × 0.5,

which yields 𝑛𝛥 = 0.05 with the chosen value. For a typical central index

of 𝑛𝑐𝑒𝑛𝑡𝑒𝑟 = 1.500, the range of indices per bin is bounded by [1.450, 1.550]. The

mapping can thus be represented by:

𝑛(𝑡) = 𝑛𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑛𝛥 + 2𝑛𝛥𝑡,

where t = 0 is the red-most, low-index bin, and t = 1 is the violet-most, high-

index bin. This simple linear method has instructional advantages: it yields

qualitative insight into the effects of normal dispersion (shorter wavelengths being

refracted more) without sacrificing computational efficiency or instructional

simplicity.

16

3.4: Shader Graphs for Visual Refraction

 In order to achieve a clear line of separation between numerical ray optics

and rendering computation, the project contains three designated Shader Graph

materials for visual rendering reserved for use: a glass shader material, a prism

shader material, and a water shader material. Each of the shader materials

performs scene sampling in screen space and adjusts the color sampled in a

manner simulating refraction and related effects. Since such shader materials

compute based upon screen-space samples instead of the ray traced by the physics

engine's geometry, their visual outputs are kept aesthetically suitable such that

the numerical ray direction accuracy and the simulator's debugging output are

also retained.

3.4.a: Glass Shader

This shader for a glass emits a classic appearance common in screen-space

refraction:

• The system calculates a view direction and employs a Refraction node to

create a refracted direction or a UV offset based on a one-IOR input.

• Offset functions for the display task showing the Scene Color (screen

buffer) at refracted UV coordinates and thus giving the optical illusion of

objects outside the glass appearing misaligned as seen through.

• Reflection Probe, aided by a small Fresnel add-on, blends in the specular

reflections and background refraction, providing a gloss look. Variable

parameters such as smoothness and alpha transparency are employed to

alter the glass surface so it changes everything from a dull finish to a highly

shiny finish.

Since it employs screen-space sampling this technique successfully

represents foreground objects in motion across the surface of the glass at a range

of angles but refracts no information off the screen buffer such as reflections need

multi-sample ray-marching.

17

Figure 3.4.1: Glass shadergraph.

3.4.b: Prism Shader

Prism shader captures the reality of color-separation appearance faithfully

but, importantly in this context, achieves this not by wavelength-dependent

geometric refraction but by screen-space chromatic aberration.

• The graph calculates the output in several Refraction nodes (wherein

each one would represent a various channel group). The various Refraction

nodes are given different IOR values (or an IOR modulated by a marginal

Dispersion Strength), and this produces relatively different UV offsets of

the red, green, and blue channels. The shader then samples the Scene Color

by itself in each one of these offset UVs and combines the resulting samples

into the final color in the output.

• Per-channel sampling technique generates a characterized laterally-

shifted color, a case supported by the background cube indicating the color

channel distortion introduced by the prism presenting in readily-

identifiable forms of dispersion. But not having the shader simply modify

pixels in-screen sampled and not changing geometry or accurately

computing resulting ray directions-thus introducing no changes of the

numerical ray exit computed by the Prism's Raycaster-this effect is to be

reckoned in optical terms not as physical dispersion but rather as chromatic

aberration.

• The shader uses a combination of a Fresnel term and reflection probe data

in a way to preserve specular highlights for steeply angled surfaces.

18

Figure 3.4.2: Prism shadergraph.

3.4.c: Water Shader

The water shader highlights a vibrant water surface and muted refractive

characteristics:

• It produces dynamic ripples across a surface. It is calculated in tangent

space about the normal map and whose value becomes an input parameter

for establishing the desired amount of such ripples. The view direction is

also included along with the normal data for the computation of a refraction

offset.

• The shader also employs a Refraction or any similar mathematical

technique for displacement of the UV for the sampling of Scene Color at

offset UV coordinates in the development of a distorted view of objects

viewed through the water. As the water surface employs a normal map for

thickness and absorption input, the shader can attain subtle color

attenuation by depth in line with the settings of the transmittance color and

the absorption distance. A parameter is also given for the refractive index

so it may be tweaked based upon empirical measurements of how much the

object appears to distort upon submersion.

19

Figure 3.4.3: Water shadergraph.

3.5: Prism implementation and visualization

 The prism simulation is managed by "PrismRaycaster.cs" associated with

the LightBeamEmitter GameObject. The emitter projects a base ray and, upon

collision with the prism collider, calculates entry point and normal and calls

TryRefract to acquire the internal direction. The internal ray is traced for the exit

face. For a wavelength-specific IOR a given dispersion bin calculates and calls

TryRefract at the exit face; upon successful refraction a pooled LineRenderer plots

the exiting ray and upon failure the renderer for the bin is disabled and the

override counts a TIR event. To make it easy for students to visually discern

adjacent rays the DrawDispersion routine offsets the line renderers' start

locations slightly in the local incidence plane; this lateral fan is a pure

visualization aid and does not influence the physical calculations.

 The aesthetic look of the prism is supported by the combination of two

distinct shaders. The prism shader is designed carefully to mimic a semi-

transmissive appearance mimicking the real-life caustic behaviors of prisms and

hence providing a bright-looking appearance characterized by muted tones

dispersed in specific wavelength groups. The shader operates similarly to a base

surface (or fragment) shader in the render pipeline of Unity by utilizing a

composite lookup table (or uniform array) of the chromatic colors associated with

the dispersionRayCount groups. It consists of a debug mode showing high-contrast

spots of incidence and the surface normals useful during the development of

overlays for training. Significantly, the Prism shader does not require the

20

numerical raycasting calculation specified in the PrismRaycaster.cs and does not

carry any directional calculations. The prism shader also can be replaced by the

glass cup shader, a customized water cup scene implementation, thereby enabling

the visualization of the internally refracting rays during the presentation of

training.

 Prism shader is also complemented by a simple screen-space overlay shader

providing a "caustic" view by summing inputs at different wavelength together as

a blurry projected pattern onto surfaces beneath the prism. The effect is purely for

illustration and is disabled by default in the interests of preserving measurement

accuracy and does not affect physical calculations.

 The computation parameters in the Prism scene are prismMeshFilter,

prismLayerMask, indexOfRefraction (center), dispersionStrength,

dispersionRayCount, lineRendererPrefab, and maxDistance in the exit ray

casting. The operations for enabling the prism shader debug mode and the caustic

overlay are also in the script.

3.6: Water, object and buoyancy model

 The water simulation integrates a geometric refraction mechanism

(ObjectRefraction.cs) and a simple yet effective buoyancy management system

(WaterPhysics.cs), which is assigned to the Cup GameObject. The WaterPhysics

script determines the water surface height based on constraints set by the

renderer and exposes a public property, WaterSurfaceY, which is accessed by any

other scripts (e.g., the object script) in order to move the water plane. Buoyancy

forces are simulated for any rigid objects through the OnTriggerStay method,

which calculates an upward acceleration proportional to buoyancyStrength times

depth, the depth being the vertical distance between the water plane position and

the rigidbody's center of mass. The model employs smooth linear interpolation by

way of Mathf.Lerp in order to smooth sudden movement during collision detection

and incorporates a fraction of counterforce of gravity in the downward axis and

thus in favor of natural interaction rather than precise displacement and

volumetric computation. ObjectRefraction.cs takes a query of WaterSurfaceY and

calculates the intersection of an object-local geometric ray and the horizontal

plane. It determines AOI and employs the common utility TryRefract in shared

mode in order to calculate the refracted underwater direction under the

assumption of 𝑛𝑎𝑖𝑟 = 1.000 and 𝑛𝑤𝑎𝑡𝑒𝑟 = 1.33. The script renders the

underwater part by a use of a LineRenderer and optionally instantiates an

"apparent object" mesh whose transform is set according to the refracted geometry

and allows a visual comparison of physical and apparent locations.

21

 The water cup employs two shaders in making the cup more realistic. The

glass cup shader achieves a realistic glass material with high refractive

distortions, adding to the cup's realistic appearance and allowing the cup to be

employed as a prism for viewing internal rays. The water shader displays a

stylized liquid surface with distortion effect, utilizing a perturbation driven by a

texture along with a screen-space grab-pass in order to subtly displace content

beneath and thereby replicate bending on surfaces. It does not achieve physical

refraction but rather operates to supplement numerical accuracy of ray lines in

view in the ObjectRefraction.cs. Inspector-controllable parameters consist of

surface wave amplitude and normal scale and the same can be tweaked in terms

of clarity appropriate for the task of measurement.

3.7: UI, camera, and AI assistant integration

 The EditorCameraController (as used by the keyboard-mouse program)

includes camera control, rotation, picking of objects, dragging/rotation of objects,

locking and a cursor crosshair in camera control mode. It also links the Pause

Menu Canvas (Resume, Reset, Options, Main Menu, Quit) by the

TogglePauseMenu() which disables camera control and freezes time of simulation.

The desktop build also includes a safe system of dragging objects by disabling

gravity and freezing rigibody momentum for a short time interval of dragging, as

well as individual cursor textures for the idle/drag/release states and a few quality-

of-life functions.

 For the build in VR, corresponding user interactions are presented by XR-

specific widgets: the numeric overlays and the AI assistant appear as world-space

canvases; presentation and input appear as a set of controller ray interactors and

grab/teleport affordances suitable for the target headset. The build simulation

does not alter the simulation logic-the input and presentation layers differ-so the

students view the same numeric diagnostics and simulation activity whether they

work at the keyboard/mouse or by controllers in the VR.

 The UI environment includes an Options panel with two tabs: Controls

(help and hotkey bindings) and Settings (scene-dependent simulation

parameters). The Options panel does exist and is in use in Simulation 1 (Prism

Dispersion). In the Main Menu and in Simulation 2 (Water & object) the Settings

tab intentionally shows the message "No Settings Available for this Scene"

wherever the case may be. In Simulation 1, the OptionsMenu prefab controls the

Settings panel and reveals inspector variables for the prism materials and a

dispersionSlider hard-wired at run-time to the scene's PrismRaycaster object; the

changes cause PrismRaycaster.dispersionStrength to be updated at once and the

UI shows the value rounded to 2 decimal places for run-time experiment without

access to the editor.

22

 The AI assistant is embedded as a chat-like interface in the user interface.

It asks for a short summary of the current simulation status upon request for the

following: identification of the scene, significant numerical diagnostics such as

entry and exit angles and normals, the current n_center and index range, total

internal reflection counts, and a short debug message. This information is then

communicated to the designated inference endpoint; the results are then

integrated back in the user interface as short, actionable explanations or

suggestions (e.g.: "rotate the prism by 5° and see the exit angles change"). The

assistant can only perform purely descriptive and support tasks-proposing

experiments and interpreting diagnostics-without participating in evaluation or

providing instructor feedback replacement. Error management mechanisms and

simple request limiting by rate are in effect at the client side in an attempt to

prevent the occurrence of fast, repetitive questions. Also, API credentials for

external services must be furnished securely during deployment and are not under

source control.

Figure 3.7.1: Main Menu (Prism Image & Glass Image – Main Menu)

23

Figure 3.7.2: Pause Menu

Figure 3.7.3: Options Menu for PC version (Simulation_1) (Options Menu)

24

Figure 3.7.3: Options Menu for VR version (Simulation_1) (Options Menu)

3.8: Debugging, visualization and validation aids

 Besides facilitating learning and in enabling graders to check numerical

accuracy, the project includes several runtime diagnostics. The following are

shown in an on-screen display: entry and exit points, surface normals, incidence

and refraction angles in degrees and the numeric form of the Snell law:

𝑛1 ∗ 𝑠𝑖𝑛(𝑖1) ≈ 𝑛2 ∗ 𝑠𝑖𝑛(𝑟1)

Color-coded "LineRenderers," in increasing wavelength order, are pooled

during the Awake() process and run from red through violet. In the editor view,

Gizmos plot normals, entry and exit points, and small-angle arcs useful in

visualizing the geometrical inter relationships. When a bin undergoes Total

Internal Reflection (TIR), the overlay is revealed showing a TIR and the related

"LineRenderer" is disabled; this system elegantly displays the escape condition

dependent upon wavelength, a theme not usually represented in instruction

lectures. The validation process is clear and simple: the same overlay values

utilized for teaching are employed in the numerical examples in the chapter. The

project also includes sample test setups and logs in the GitHub repository in an

attempt to make possible a replication by instructors and inspection of the flow of

execution. The numerical model was employed for the validation of the TIR case

covered elsewhere in the thesis: for 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 0.1 and 𝑛𝑐𝑒𝑛𝑡𝑒𝑟 =

25

1.500 the indices for the bins are [1.450, 1.550]. With an internal exit incidence

𝑖2 = 43.5° TIR in all bins except for the bins with indices near 1.450 occurs and

this is the reason for the appearance in the test snapshot of a single visible red

ray.

3.9: Testing Strategy (Conceptual)

 Concept Test aspect of the project targets two audiences: the developer

willing to verify numerical accuracy and the instructor in charge of devising class

activities. The tests for developers are of the unit-like nature for the "TryRefract()"

(with analytic inputs corresponding to the known escape and well-defined TIR

thresholds) and few automatic scripts reporting per-bin calculations across a set

of indices. The tests for instructors are a set of short reproducible lab assignments

the students can carry out in class: numerically validate Snell's law for three

different angles, determine a geometric configuration yielding violet TIR but red

escape, and check the apparent displacement of an object for three AOIs.

3.10: Chapter Summary

 Chapter 3 presents the structural template and methodological design for

the Physical Phenomena Simulation project, describes the mathematical theories

behind refraction and Total Internal Reflection (TIR), and describes the

combination of discrete dispersion sampling, prismatic effect, and water shaders,

in a short set of Unity scripts for the purpose of creating an interactive and

checkable visualization in a teaching environment. Implementation centers on

numerical exactitude and didactic clarity: the mathematical theories employed in

ray calculations are an exact representation of the input equations in the overlays,

the dispersion mapping is straightforward and readily expressible (giving a ±0.05

Index of Refraction range), and the shaders support qualitative understanding

with maintenance of the integrity of the underlying calculations. The next chapter

details the specific implementation artifacts, the case studies undertaken, and the

verification tables underpinning the operational correctness of the simulation in

terms of the theories of geometric optics.

26

CHAPTER 4: Implementation and Case Study

This chapter thoroughly analyzes implementation choices, outlines the

major aspects of the simulation experiments, and includes two definitive

case studies such that the system's performance can be comparatively

investigated against known analytical solutions. Purposely, the chapter

does not include code segments and lengthy listings in the text body but

rather places such materials, including lengthy debug output, in one of the

project repositories and appendices. In-line with this, I systematically lay

out the experiment setting up, significant script and shader behavior, and

then outline two reproducible case studies: the prism dispersion experiment

having total internal reflection on a wide wavelength base, and the object-

in-water refraction experiment. Both of the case studies include the

background scene settings, corresponding numerical verification derived

from vector Snell calculations, and descriptive text for the sake of a

grader/instructor readily confirming results in the interactive project.

4.1: Scene composition and responsibilities

 The overall project consists of three individual scenes: a Main Menu for

simulation choosing, Simulation 1 (Prism Dispersion), and Simulation 2 (Water &

object). The Main Menu scene contains a Canvas-based UI for choosing and

playing simulations, which is managed by the "SimSelect" and "MainMenu"

scripts. The simulations also use the same "EditorCameraController," managing

navigating and picking objects and pause actions along with instantiating a

common AI-Assistant prefab for explanation based on context.

 Simulation 1 contains an Options panel selectable from the Pause/Options

menu. The Options panel is divided into two primary sections: Controls, which

contains keybinds and contains guidance and instruction for navigating the user

interface and Settings, which contains scene-specific settings. The OptionsMenu

script is applied to a GameObject held in the Settings folder, enabling the inclusion

of inspector-notated UI elements (such as a material button, a dispersion slider,

and a numeric text input field) with run-time functionality. In Simulation 1, the

Settings tab is active and provides controls such as material selection and a slider

titled dispersionStrength; however, the Main Menu and Simulation 2 explicitly

declare "No Settings Available for this Scene," thereby indicating whether or not

adjustable simulation settings are present when they are not.

 Simulation 2 uses the "newwatercupscaled" prefab, scene-named Cup,

which contains the "WaterPhysics" script, and the object_Pivot prefab which

contains the "objectRefraction" component. The "WaterPhysics" script computes

the surface height of the water from the edges of the renderer and applies a

buoyancy force within the trigger volume to rigid bodies in proportion to depth,

smoothly combined with damping in a way not to induce jerky physical responses.

27

The "objectRefraction" component computes the surface height of the water and

computes the intersection of the geometry by applying the law of Snell in a way to

create the refracted ray under the surface of the water and create an optional

visual image of the object. The underwater scene is accompanied by a proprietary

water shader utilizing a stylized optical perturbation and surface distortion; the

shader is cosmetic and doesn't change the numerically solved ray trajectories.

 Both scenarios show a synthesized presentation of significant numerical

diagnostics like entry and exit coordinates, surface normals and incidence and

refraction angles in degrees. Numerical analysis also includes the equation of

Snell's law and binned TIR counts for each bin in dispersion. These diagnostics

are optimal for quantities corresponding in use in later analytical verification and

for verbal report or for output within verification or training scenarios.

4.2: Key scripts and shader roles

 The following subsection provides details about the background scripts and

visual shader resources employed during the simulation executions. All the

mentioned scripts detail their run-time working functions, primary fields within

the inspector, and how they communicate with the rest of the components, such

as primary numerical parameters and degrees of resilience for use in educational

illustration. The employed shader materials are custom Shader Graph assets

whose sole responsibility is the production of refractive visual outcomes; they serve

a purely aesthetic goal and not one for altering the numercially computed

trajectories of rays.

PrismRaycaster.cs (Prism dispersion controller):

 PrismRaycaster is the main script for Simulation 1. It sets up the first beam

from the LightBeamEmitter, the GameObject the script is attached to. It then

performs an initial raycast through the physics engine of Unity in an effort to find

the intersection point for the prism collider. The script then computes the refracted

internal direction using the common refraction utility and then traverses the

internal ray in an attempt to find the exit face by a mesh-based BVH intersection

(per-triangle accuracy). At the exit point, the script attempts a secondary

refraction from the inside medium outward; in the event the secondary refraction

is a success, it displays a bright path (entry → inside → exit) and upon trigger

shows a per-wavelength dispersion fan.

 For the purpose of dispersion testing, the script samples a tiny finite set of

wavelength bins (hardcoded as constant 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑎𝑦𝐶𝑜𝑢𝑛𝑡 = 21) and maps

each bin to a very slightly different index of refraction, in a symmetric spectrum

around the indexOfRefraction, controlled by the dispersionStrength slider. The

script for each index of refraction sample invokes the common

RefractionUtils.TryRefract method; bins refracting by total internal reflection at

the exit surface are not visible (are skipped). The script supplies many debugging

28

fields (entry and exit points, normals, incidence and refraction angles, a boolean

total internal reflection indicator for this frame, and the critical angle), which are

stored in a runtime-accessible debug panel so the students can verify Snell's law

by hand.

 Inspector properties include: prismLayer, as the initial hit layer mask;

prismMeshFilter, saved for the mesh used in BVH; indexOfRefraction;

dispersionStrength; enableDispersion; dispersionMaterial; and lineRenderer

settings. Implementation details show that the script pre-allocates a pool of child

objects for the LineRenderer of the dispersion fan in order to minimize the number

of updates, applies a small RAY_OFFSET for the purpose of not intersecting self

during internal ray issuance, constrains the numerical inputs as needed, and fills

in the runtime labels for build-safe overlay use.

RefractionUtils (numerical refraction & debug helpers):

 The whole computation flow for vector refraction is covered by the

RefractionUtils. The utility by itself is a static one and holds a TryRefract method

utilizing vectorized versions of Snell's law (with a check for Total Internal

Reflection) yielding a boolean success indicator and, in case it is relevant, the

transmitted direction. The utility also includes support functions used by the other

scripts: vectorized variants of the type of Snell's law appropriate for the debug

interface, safe-per-runtime world label rendering, and in-editor-only gizmo

support for the angel arcs. The refraction code is structured collectively so it

employs the same numerical accuracy across the whole length of the prism, the

object, and any potential optical elements.

ObjectRefraction.cs (object-in-water refraction demo):

 ObjectRefraction is the script for the demonstration of planar refraction in

the second simulation. The script gets the horizontal coordinate for WaterSurfacey

by way of Y from WaterPhysics.WaterSurfaceY, instantiates a plane, tests the

local ray for potential intersection of the plane along the length of the object within

the object, and computes the refracted direction by employing

RefractionUtils.TryRefract using indexOfRefractionAir and

indexOfRefractionWater. In the event of intersection, the component plots the

incident and the refracted line segments using Gizmos and run-time labels, while

exposing IntersectionPoint, IncidentAngle, and RefractedAngle debugging fields -

these quantities are shown to the students and harvested by the Al assistant's

snapshot. The script takes care not to associate the visual representation

(lines/Gizmos) with the numerical ray outcomes so as to make the measurement

repeatable.

WaterPhysics.cs (predictable buoyancy & water surface):

29

 WaterPhysics is a supporting behaviour script of the water Cup

GameObject. It reveals WaterSurfaceY, computed from the renderer bounds' size,

and provides a stable proportionally scaled model for buoyancy for interactive

experiments. In the OnTriggerStay phase, it enhances linear damping, adds

depth-dependent upwards acceleration, and optionally decreases downward

gravity in descent. The inspector fields enable teachers to adjust

buoyancyStrength, waterLinearDamping, and gravityReductionInWater. The

collider is a trigger in the OnValidate() method in order not to create unwanted

physics collisions.

EditorCameraController.cs (camera, selection, pause/options):

 This aspect of functionality offers a first-person mode of traversal for the

instructors and students alike, alongside object selection and dragging and

rotation capabilities for objects within the scene. It allows for a workflow of pause

and options management, cursor lock management, contextual crosshair texture

display, and safe interaction of objects by momentarily disabling rigid body gravity

and momentum. The pause menu includes Resume, Options (with the Settings

and Controls tabs), Main Menu, and Quit. EditorCameraController also prohibits

camera logic execution while UI input fields are in focus in a bid to maintain the

responsiveness for UI interactions.

OptionsMenu.cs (Settings tab bindings - Simulation 1 only):

 OptionsMenu is affiliated with the Options panel used in Simulation 1. It

links two material options (material1, material2) and the targetRenderer for real-

time visual alteration of the face of the prism, and sets a linkage with a slider

(dispersionSlider) to the PrismRaycaster.dispersionStrength field, thus allowing

real-time alteration. The UI representation of a TextMeshProUGUI is updated by

the slider by rounding at 2 decimal points. In the Main Menu and Simulation 2,

the Settings pane shows the message "No Settings Available for this Scene," but

in Simulation 1, the UI is active and the controls are visible. The script contains

null checks and UI state initialization in the Start() method as a precautionary

measure for keeping the runtime in sync with the user interface.

MainMenu.cs and SimSelect.cs (scene selection & UI affordances):

 MainMenu facilitates effortless scene selection and asynchronous content

loading. SimSelect offers visual indication through a highlighted panel when a

student selects a simulation. The design intentionally employs a two-step process

(select and initiate) in an effort not to inadvertently move the student from one

scene to another in a classroom environment.

AI Assistant (AIAssistant.cs - chat UI & contextual snapshots):

30

 The assistant provides a short chat interface. When you submit a question,

it generates a short simulation snapshot with the scene type and a short set of

numerical debug values taken from either PrismRaycaster or objectRefraction.

This data, along with the user's question, is posted to a designated Hugging Face

endpoint. The assistant responds in a typewritten mode, complete with typewriter

animation and a short chat transcript. The assistant puts a strong emphasis on

some necessary error handling, request rates, and kindly fallback messages in the

event of network failure or missing data. The development of the assistant is

extraordinarily facilitative: teaching physical priciples, providing guidance, and

providing numerical verification-however, no grading of student submissions..

Custom Shader Graphs (prism, water, and glass cup - visual/refractive effects):

 Prism custom elements and water surface and glass cup are created through

the use of Shader Graph capabilities embedded in the Unity engine. In order for

the refractive and physically realistic result to emerge, a total of three various

Shader Graphs are employed: the prism Shader Graph focuses on the use of semi-

translucency and a caustic-like effect by employing colorful yet muted variations

according to a spectral color lookup texture and therefore highlighting the optical

implications related to ray-mesh interaction; the water Shader Graph uses screen-

space displacements and surface roughness in order for refraction to emerge by

employing a texture-based perturbation of normals and a grab-pass; and the glass

cup Shader Graph forms a realistic glass material characterized by high refractive

distortions and therefore highlighting the real visual properties of the cup.

 Notable is the fact that the Shader Graphs for the development of novel

visualizations alter aesthetic attributes and distortion parameter assignments but

not the numerically computed ray directions used in the research and in the

educational projects. Such functions are managed by scripts such as

PrismRaycaster.cs and ObjectRefraction.cs. Such deliberate distinction allows

numerical precision-with the use of TryRefract during scientific computations-yet

facilitates tailoring of visual elements by the educator. Such tailoring promotes

the instruction of optical principles, optimizes teaching approaches, and adheres

to educational objectives by allowing visually rich dynamic models for

accompaniments of the measurable outputs generated by the simulation.

Cross-script coordination and robustness practices:

 Scripts work by explicit reference and not by relying upon a global state:

OptionsMenu accesses a Prism Raycaster component and objectRefraction

accesses WaterPhysics. WaterSurfaceY sees all of the refraction calculations taken

care of by RefractionUtils. Defensive programming practices are employed

wherever necessary: this includes constraining numeric ranges, checking array

and property bounds, pre-allocating in the LineRenderer pool in the hopes of

eliminating unnecessary allocations, and providing at runtime debug fields in the

hopes of allowing for definitive numeric judgments. UI elements (such as Shader

Graphs and screen-space water distortion) are made toggleable such that

31

instructors may turn off visual distortion during the time students are making

precise numeric judgments.

4.3: Case Study 1 – Prism Dispersion and TIR

 This case study documents and explains a snapshot in which the system

simulates a triangular prism with 𝑖𝑛𝑑𝑒𝑥𝑂𝑓𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1.500 and

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 0.1 sampled with 21 discrete wavelength bins. Under

these parameters the project’s linear dispersion mapping yields 𝑛𝛥 =

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ × 0.5 = 0.05, so the sampled refractive-index range is

[1.450, 1.550], corresponding to red = 1.450, central (green) ≈ 1.500 and violet =

1.550. The observed behavior in the snapshot (Figure 4.3.2) is that only the reddest

ray exits the prism while the remaining bins are subject to TIR at the prism’s exit

face. This behavior is the expected physical consequence of the measured internal

incidence angle and the wavelength-dependent critical angle.

To explain the result numerically, first recall that the critical angle for an interface

from index 𝑛𝑖𝑛𝑐 to 𝑛𝑜𝑢𝑡 (with 𝑛𝑖𝑛𝑐 > 𝑛𝑜𝑢𝑡) is 𝜃𝑐 = 𝑎𝑟𝑐𝑠𝑖𝑛⁡(𝑛𝑜𝑢𝑡 𝑛𝑖𝑛𝑐⁄). For the

prism-to-air interface (𝑛𝑜𝑢𝑡 = 1.0), the critical angles for the three representative

indices are:

• For n = 1.450, 𝜃𝑐 ≈ 𝑎𝑟𝑐𝑠𝑖𝑛⁡(1 1.450⁄) ≈ 43.603.

• For n = 1.500, 𝜃𝑐 ≈ 𝑎𝑟𝑐𝑠𝑖𝑛⁡(1 1.500⁄) ≈ 41.810.

• For n = 1.550, 𝜃𝑐 ≈ 𝑎𝑟𝑐𝑠𝑖𝑛⁡(1 1.550⁄) ≈ 40.178.

 In the debug snapshot the prism’s internal exit incidence angle is measured

as 𝑖2 = 43.5°. Comparing 𝑖2 to the critical angles above shows that 𝑖2 >
𝜃𝑐(1.500) and 𝑖2 > 𝜃𝑐(1.550), but 𝑖2 < 𝜃𝑐(1.450). Thus, only bins with indices

close to 1.450 (i.e., the lowest-index red bins) can satisfy 𝑖2 < 𝜃𝑐(𝑛) and therefore

refract out of the prism; higher-index bins will meet the TIR condition and thus

no exiting ray is produced. This direct inequality demonstrates precisely why the

snapshot shows a single visible red ray while other colors are absent.

 To further validate the internal refraction calculation, the same debug

captured an entry Snell-check for the initial surface: an externally incident angle

of approximately 46.6° refracts to 29.0° inside the prism under 𝑛𝑎𝑖𝑟 = 1.0 and

𝑛𝑝𝑟𝑖𝑠𝑚 = 1.5.

Numerically:

1.0 × 𝑠𝑖𝑛⁡(46.6°) ≈ 0.726575, 1.5 × 𝑠𝑖𝑛⁡(29.0°) ≈ 0.727214,

32

the relative difference is on the order of 6.4 × 10(−4), which is within

expected printed-rounding tolerances for debug overlays. This agreement confirms

that the code’s vector Snell implementation reproduces the analytical Snell

relation to machine-precision limits for the sampled geometry.

Pedagogically, this case study is valuable because it demonstrates that

dispersion can produce a wavelength-dependent escape condition: by modifying

either the prism orientation (which changes the internal incidence angle) or the

dispersion band (which changes bin indices), students can observe transitions

where additional colors begin to exit or vanish due to TIR. A typical lab exercise

that directly follows this case study invites students to increase or decrease the

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ parameter and predict which colors will escape, then

confirm their prediction numerically using the overlayed critical-angle values.

Figure 4.3.1: Prism Dispersion - Triangular prism with 𝑛𝑐𝑒𝑛𝑡𝑒𝑟 = 1.500,

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 0.1, 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑎𝑦𝐶𝑜𝑢𝑛𝑡 = 21. The color-coded line

renderers show exiting rays per wavelength bin (red → violet).

33

Figure 4.3.2: Prism TIR - View of the prism exit face where most wavelength bins

undergo total internal reflection; only the reddest bin (𝑖𝑛𝑑𝑒𝑥 ≈ 1.450) exits.

Annotated arcs show the internal incidence angle 𝑖2 and the representative critical

angle values for red/green/violet shown in the text.

4.4: Case Study 2 – object-in-water refraction

 The object demonstration highlights planar refraction and apparent

displacement. In the representative snapshot used for validation the overlay

reports an air-side Angle Of Incidence (AOI) near 21.6° and an underwater Angle

Of Refraction (AOR) near 16.1°. Using 𝑛𝑎𝑖𝑟 = 1.000 and 𝑛𝑤𝑎𝑡𝑒𝑟 ≈ 1.33, Snell’s

law predicts the relationship:

1.000 × 𝑠𝑖𝑛(21.6°) ≈ 0.3683, 1.33 × 𝑠𝑖𝑛(16.1°) ≈ 0.3688,

and the two sides agree to within roughly 5 × 10(−4) absolute difference,

again within numerical and display rounding tolerances. The close numerical

agreement demonstrates that the “objectRefraction“ logic is computing refracted

directions in a way that satisfies Snell’s law for plane interfaces. In practice, the

script computes the intersection point with the horizontal water plane, derives the

local surface normal (vertical), computes 𝑐𝑜𝑠𝜃𝑖 via the dot product of the incident

direction and surface normal and invokes the shared “TryRefract“ routine with the

appropriate index pair.

 The object scene is pedagogically effective because it links everyday

observation with precise numerical validation. Students can rotate the object to

produce different AOI values and observe the corresponding AOR, read the

numeric values from the overlay, and verify the Snell identity directly. An

extension exercise asks students to place a small token near the object and observe

34

both the apparent and actual positions, connecting refractive geometry with

perceptual effects such as apparent depth.

Figure 4.4.1: Water-object Refraction - Water cup and object snapshot with 𝑛𝑎𝑖𝑟 =
1.000, 𝑛𝑤𝑎𝑡𝑒𝑟 ≈ 1.33. The blue line is the incident air ray; the green line is the

refracted underwater ray. Overlay shows measured 𝐴𝑂𝐼 ≈ 21.6° and 𝐴𝑂𝑅 ≈
16.1° used in the Snell check.

4.5: Tests, validation checklist and classroom activities

 Instructors and examiners prize short exercises which not simply test but

validate the accuracy of the simulation. A standard short lab exercise commences

by asking the students to start the Prism simulation, navigate the Pause →

Options panel and click Settings and then set the dispersion strength and the

central index equal to the respective values used in the case study (the latter

having been varied by the dispersionStrength slider). The students then set the

emitter such that it emulates the snapshot conditions in which numerous

dispersion bins experience total internal reflection, then view the quantities in the

overlay in terms of the entry and exit angles, work out bin-specific critical angles

as a function of index range shown and make a qualitative estimate about which

bins will facilitate particle escape. After running the simulation and inspecting

the enabled and disabled renderers of lines, the students document the accuracy

of their predictions and inspect how variations in geometry or index range

influence the colours which successfully escape. Simulation 2 and the water labs

and the object lab are all similarly accessible and disclose variability in the scene

35

rather than by the Settings panel (Simulation 2 announces "No Settings Available

for this Scene").

4.6: Project materials and implementation artifacts

 All the implementation and evaluation artifacts are thoroughly presented

in this thesis under supplementary project documents. These include the full

source coding for the necessary scripts, shader files for the prism, water, and glass

cup interactions, high-definition screenshots displaying contents related to the

case studies, and raw debug logs collected during the validation exercise. To the

degree that the focus of the thesis is the conceptual framework, experimental

setup, and validation results, the project materials are prepared in a way such

that the reviewers and instructors in the panel are provided the full set of

necessary resources for viewing, running, and validating the scenes, analyzing

numerical results of special interest, and reviewing the shader and scripting codes

as needed. The presentation of implementation artifacts in the thesis is prepared

such that they provide the readers with clarity and ease the readers in reproducing

the thorough experiments presented in the course of verification of numerical

claims in the case studies.

4.7: Chapter summary

 Chapter 4 has explained the connection between the application of Unity

and observable physical measures using two specific case studies: the wavelength-

dependent total internal reflection demonstration by the prism dispersion

experiment and the demonstration by the object-in-water experiment of plane-

interface refraction and apparent displacement. The numerical validations

contained in the case studies abide by Snell's law and critical-angle inequations

and hence validate the analytical predictions in a complete manner. The chapter

also emphasized important roles of shader and script and student-centered

activities in interaction with the simulations while characterizing implementation

artifacts related to the current study and hence enabling the readership in

critiquing and reproducing the precise scenes. The next chapter will incorporate

the conclusion, analysis of the limitations and teaching implications, and the

recommendation for the improvement potential in the forms of XR usage or

extensions encompassing the advanced wave optics.

36

CHAPTER 5: Conclusion & Future Directions

The last chapter contains a summary of the general principal outcomes and

research contributions of the Physical Phenomena Simulation project and a

technical evaluation and educational value of the work. The chapter begins

by providing a very brief summary of the outcomes, proceeds through a

frank assessment of the design constraints inherent in the intentional

design choices, and concludes by sketching a few areas for potential future

refinement. As appropriate, the evaluation points the way towards the

related complementary materials for the project-the source code, shader

graphs, desktop and VR builds, logs, and screenshots-that complete this

thesis and document the implementation in detail.

5.1: Summary of Achievements

 Physical Phenomena Simulation successfully develops effective teaching

platform in Unity connecting core optics fundamentals and experiential and

inquiry-based explorations. The system provides students controlled parameter

manipulation for the needed parameters such as incidence angle, refractive index,

wavelength sampling, and layout geometry while providing instant visualizations

with numerical overlays facilitating concretization of abstract relationships. Two

teaching demonstrations-triangular prism dispersion and water-object refraction-

have been developed centered around instructional effectiveness. The prism demo

employs discrete wavelength sampling and vector ray propagation for a

demonstration of the spectral splitting and the wavelength-dependent character

of total internal reflection; the water demo employs a simplified yet effective

routine for buoyancy demonstration and demonstration of apparent displacement

and perceptual phenomenon. The essential simulation components -

PrismRaycaster.cs, ObjectRefraction.cs, and WaterPhysics.cs-function in

accordance with mathematically sound formulations (vector version of the law of

Snell and computation for the critical angle at incidence), and the numerical

verification presented in the case studies exhibits compliance by the law of Snell

by a margin not exceeding 0.1° for the layouts under analysis.

 One notable innovation is the integration of an AI-based tutor (Hugging

Face Llama-3.1-8B-Instruct) as a contextual scaffolding system: this tutor receives

short state snapshots from the simulation, offers pedagogically formalized

guidance, suggests experimental activities, and performs simple diagnostic tests

to support model-based reasoning without usurping the instructor's judgment.

From an engineering and reproducibility point of view, it is also important that

the initiative appears in two modality-specific variants taken from a common

codebase: a desktop version (keyboard & mouse) that retains the native

EditorCameraController for camera and object control and a VR version for

standalone headsets that uses XR input translators and world-space user

interfaces in order to preserve equivalent user-facing capabilities. The use of the

37

EditorCameraController in the desktop version preserve editor-style interactions

appropriate for more traditional classrooms, while the VR version presents

stereoscopic depth cues and affordances based upon controllers which support the

perception of relationships in space.

 From a teaching point of view, the initiative aligns with empiricism-based

practices favoring active participation, varied representation, and timely

feedback. The case studies illustrate the instrument's power for the development

of model-based reasoning; for example, students may predict and confirm total

internal reflection thresholds for a variety of wavelengths in the prism analysis

and determine apparent depths in the water experiment in ways closely analogous

to the application of Snell's law in real-life observations. The design-level

deliberate choices such as the inclusion of seed experiments and simplified

buoyancy modeling favor reproducibility and cohesion in the setting of classrooms

allowing for both self-directed exploration and teacher-guided inquiries. Finally,

by making use of readily accessible resources (such as the use of Unity, shader

graphs, and a cloud or locally sited inference endpoints) and making

implementation artifacts a part of the supplementary materials, the initiative

lowers technical barriers for instructors and developers considering taking or

adding to the project.

5.2: Discussion of Limitations

 Despite these benefits, the project intentionally trades full physical realism

for didactic clarity and computationally tractable computation and these trade-

offs define the boundaries for the instrument. The system is ultimately a simulator

of geometric optics: light is simulated ray by ray and hence does not include wave

phenomena such as diffraction, interference and polarization in its current

abilities for representation. Inasmuch as this omission is unavoidable for a wide

range of introductory educational applications, the omission does create

limitations for the use of the system in educational applications requiring

consideration about wave-optics. The dispersion rendering is educational in

conception: wavelengths are binned to discrete color bins rather than computed

from material-specific dispersion relations (e.g. a Sellmeier fit) or a continuum.

This strategy sacrifices performance and facilitates learner interpretation but

induces small quantitative faults relative to precise material behavior and may

need calibrating for subtle laboratory-style comparisons. Shader Graphs and

screen-space imagery, while successful visually, induce recognized artifacts at

scene edges and for off-scene geometry; stereo render in VR also disclosed

additional shader considerations (single-pass instancing limitations, grab-pass

restrictions) which must be handled carefully not to cause visual inconsistency.

Performance limitations in VR have forced safe defaults-lowered dispersion ray

counts and selective optional disabling of optional screen-space caustics-to achieve

interactive frame rates in constrained devices and this in turn lowers visual

fidelity relative to a high-end desktop build. From an evaluation foundation, the

thesis includes qualitative case studies and numeric validation; however, it does

38

not include formalized, randomized studies upon the user which would gauge

improvement in learning, retention or transfer relative to traditional teaching

regimes.

 Similarly, while the AI assistant provides contextually relevant scaffolding,

this current study does not examine the effect of the assistant upon learning

outcomes or student cognitive load and related ethical matters for the use of AI in

the educational environment (privacy implications, handling of data, and secure

management of API credentials) a current administrative concern covered in the

complementary deployment document. Finally, limitations inherent in virtual

reality -e.g., user comfort level, the risk of motion sickness, ergonomics of the

controller, and the mobility of the head-mounted displays- limit the near-term

scalability of this modality for immersive experience within specific educational

settings.

5.3: Recommendations for Future Advances

 There are a number of different avenues for development which enhance its

depth, width and effectiveness and the groundwork set by the project. They are

categorized in terms of their feasibility and usefulness in newer technologies and

possibilities for fulfilling current needs in the teaching of physics.

5.3.a: Integration of Extended Reality (XR)

The VR build was integrated and is packaged with the project and

demonstrates how the same simulation and numerical engine used by the desktop

build may be paired with world-space UIs and controller interaction. Future work

should make this implementation more solid by systematically investigating

under what conditions and how the leveraging of immersion benefits learning

outcomes. Comparative studies should monitor spatial reasoning, accuracy in the

measurement of angles tasks, and conceptual transfer across modalities and also

account for ergonomics of the VR interface-optimal world-space HUD positioning,

controller affordances aligned with the educational goal, and design patterns for

combating simulator sickness. Technically, stereo shader robustness increase (of

the same grain as single-pass instancing wherever possible and avoiding grab-

pass constructions fraught in VR) and profiling-directed performance optimization

in the interests of enabling larger dispersion-ray counts capable devices will make

the immersive modality more realistic and more widely deployable. Finally,

optional inclusion of haptic or hand-tracking affordances may facilitate embodied

exploration but should await the associated ergonomic and safety challenges being

resolved.

39

5.3.b: Expansion to Wave Optics and Additional Phenomena

Extending the system by incorporating wave-based phenomena would reveal

high-level teaching potential and increase the wealth of curricular applications.

Demonstrations such as Young's double-slit experiment, diffraction gratings and

simplified polarization experiments subject to Malus's law could be facilitated by

the introduction of compute-shader wave propagation or interference

visualizations. These should be integrated in a modular way-as optional scenes or

toggles-so they do not make the fundamentals of the geometric-optics experience

more complicated. The discrete bin sampling being converted to a continuous or a

high-resolution spectral representation, possibly by use of GPU compute

capabilities, would enable more realistic dispersion comparisons and facilitate

sensitive-to-spectral-behavior experiments such as rainbows and spectrometry-

like activities or fiber-optic demonstrations. Numerical stability and presentation

clarity should be approached carefully not to make the advanced modules too

challenging for students not yet comfortable with wave concepts.

5.3.c: Methodical Pedagogical Evaluations and User Studies

To empirically validate inferences about educational effectiveness and

refinement of instructional design, the tool should also be subject to rigorous

validation. Well-controlled randomized comparisons of simulator-supported

instruction and traditional teaching practices and involving pre-/post-testing and

delayed retention and transfer testing will afford quantitative demonstrations of

effectiveness. Qualitative studies-that involve think-aloud protocols and semi-

structured interviews and educator commentary and in-class observation-will

elaborate usability and implementation issues. Working closely with instructors

in the integration of the simulator in existing lab activities and in defining

matching assessment questions and activity work sheets will also afford

evaluation and curriculum matching. Additionally, these studies should also

investigate the AI assistant's contribution in the learning process: whether and

how the differences in scaffolded dialogue influence student strategies and

cognitive burden and metacognitive reflection.

5.3.d: Technical Enhancements and Broader Deployment

Technical advancements for fidelity increment and access will boost adoption.

GPU-ray tracing or compute-bound rendering can enhance dispersion fidelity

without paying the price in interactivity; profiling-guided presets and dynamic

LOD would also permit smooth scaling across hardware. Distribution formats -

WebGL for browser access, mobile builds and local inference runtimes (ONNX or

equivalent) for offline or security-focused deployments- would enhance reach but

require judicious balancing of the size of the model, license and security of the

data. AI add-ins such as voice interaction, adaptively-tuned difficulty and deeper

contextual diagnostics can enhance usability and personalization, subject to the

concomitant use of strong safeguards around privacy, credential provisioning

40

guidance and clear technical instructions for instructors. Finally, a published

compendium of known bugs, tested workarounds and reproducible profiles of

performance will permit instructors to select appropriate deployment settings for

their environment.

In conclusion, the Physical Phenomena Simulation project provides a solid and

repeatable foundation for the practice of interactive learning of optics: it integrates

real-time simulation and numerical accuracy and a smart agent for scaffolding

and is released in two operational formats covering both classic desktop

applications and use of the headset. The installed virtual reality configuration

constitutes a proof demonstration of the technical possibility of providing and

offering immersion as an addition to instruction, while the source coding, shader

elements and supporting documentations give examiners and instructors the

materials necessary for reproducing and generalizing the work. In overcoming the

revealed limitations by targeted technical improvement, extending the physical

models wherever pedagogically appropriate and conducting systematic tests and

measurement in the field, this tool can graduate from a demonstration of proof to

a general-purpose teaching asset capable of significantly enhancing students'

conceptual grasp of light. Later refinements, guided by the experience of the class

implementation and the maturation of real-time rendering and artificial

intelligence software technologies, will increasingly draw the project nearer.

41

BIBLIOGRAPHY

(1): https://phet.colorado.edu/en/research

(2): https://phet.colorado.edu/publications/PhET_Interviews_I.pdf

(3):

https://phet.colorado.edu/publications/Simulation%20Design%20AAPT%2004.pdf

(4): https://pmc.ncbi.nlm.nih.gov/articles/PMC9761040/

(5): https://www.per-central.org/items/detail.cfm?ID=14288

(6): https://unity.com/solutions/education

(7): https://www.sciencedirect.com/science/article/pii/S0360131519303276

(8): https://dl.acm.org/doi/10.1016/J.COMPEDU.2019.103778

(9): https://pubmed.ncbi.nlm.nih.gov/37152905/

(10): https://www.mdpi.com/1424-8220/24/8/2458

(11): https://huggingface.co/docs/huggingface_hub/v0.13.2/en/guides/inference

(12): https://www.axios.com/2024/10/29/ai-tutors-college-students-efficiency

(13): https://www.labster.com/

OTHER SOURCES

(Git-Link): https://github.com/Apoph3nia/Physical-Phenomena-Simulation

(Options Menu): http://orcz.com/File:Miasmatacontrols.jpg

(Prism Image – Main Menu): https://cdn.britannica.com/78/149178-050-

F2421B64/light-prism-color-angle-colors-wavelength-wavelengths.jpg

(Glass Image – Main Menu):

https://www.physics.smu.edu/rguarino/emmanual/refraction/refractionbigpicture.

html

(Wiki - Refraction): https://en.wikipedia.org/wiki/Refraction

(Wiki - Dispersion): https://en.wikipedia.org/wiki/Dispersive_prism

(Wiki - TIR): https://en.wikipedia.org/wiki/Total_internal_reflection

(BVH Algorithm - 1): https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-

part-1-basics/

(BVH Algorithm - 2): https://jacco.ompf2.com/2022/04/18/how-to-build-a-bvh-

part-2-faster-rays/

https://dl.acm.org/doi/10.1016/J.COMPEDU.2019.103778
https://www.labster.com/
https://github.com/Apoph3nia/Physical-Phenomena-Simulation
http://orcz.com/File:Miasmatacontrols.jpg
https://www.physics.smu.edu/rguarino/emmanual/refraction/refractionbigpicture.html
https://www.physics.smu.edu/rguarino/emmanual/refraction/refractionbigpicture.html
https://en.wikipedia.org/wiki/Refraction
https://en.wikipedia.org/wiki/Dispersive_prism
https://en.wikipedia.org/wiki/Total_internal_reflection
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
https://jacco.ompf2.com/2022/04/18/how-to-build-a-bvh-part-2-faster-rays/
https://jacco.ompf2.com/2022/04/18/how-to-build-a-bvh-part-2-faster-rays/

