An Ensemble Interpretable Machine Learning Scheme for Securing Data Quality at the Edge

Anna Karanika1, Panagiotis Oikonomou1, Kostas Kolomvatsos1, Christos Anagnostopoulos2

1Dept. of Informatics and Telecommunications. University of Thessaly, Lamia, Greece
2School of Computing Science. University of Glasgow, Glasgow, UK
Introduction

- Nowadays we are witnessing the advent of Internet of Things
 - humongous volumes of data

- Perform processing at the edge of the network
 - heterogeneous nodes
 - Close to IoT devices / end users

- Data collection is a key aspect of Edge Computing (EC) nodes
 - multivariate data
 - Data validation
Motivation

- Data quality is significant for any application
- Secure data quality at the edge
 - Accuracy and separation algorithms
- The ‘curse’ of dimensionality demands new solutions
 - features → samples
 - poor performance of ML models
- Avoid over fitting
- Data quality and integrity
Motivation

Our goal:

is to provide a decision making model for securing data quality based on an ML scheme that will produce the relevant knowledge about the domain relationships

ensemble scheme

1. Permutation Feature Importance (PFI)
2. Shapley Values
3. Feature Interaction Technique (FIT)

Artificial Neural Network (ANN)

Secure data quality
Contributions

1) Prepare the data before the actual processing is applied
2) Interpretable ML scheme
 for satisfying the meaningful knowledge extraction
3) Ensemble scheme
 for aggregating multiple interpretable ML
4) Artificial Neural Network
 for judging the significance of every feature
5) Data exclusion
 that may lead to an increased error
6) minimum overlapping of the available datasets
System Model (1)

- We assume an EC scenario with computational resources spanning across different geographically distributed locations.

- Local datasets $D_l, l = 1, 2, ..., N$
 - $x = <x_1, x_2, ..., x_M>$

- Detect the most significant features

Processing at the edge decrease latency
System Model (2)

- Local datasets are characterized by specific statistical information
 - Mean
 - Standard Deviation

Accuracy is affected by the error between D and x

x deviates $D \rightarrow$ reject x
Architecture of an edge node

Local Dataset

Interpretable Models

<x_1, x_2, x_3, ..., x_M>
<x_1, x_2, x_3, ..., x_M>
<x_1, x_2, x_3, ..., x_M>
...

Novelty Detection

W vectors

<x_1, x_2, x_3, ..., x_M>
<x_1, x_2, x_3, ..., x_M>
<x_1, x_2, x_3, ..., x_M>
...

IoT Devices

<x_1, x_2, x_3, ..., x_M> <x_1, x_2, x_3, ..., x_M> <x_1, x_2, x_3, ..., x_M>
Performance Indicators

- Metric 1) Percentage of correct decisions Δ

$$\Delta = \frac{|CD|}{|DS|} \times 100$$

$\Delta \rightarrow 100\%$ high accuracy
$\Delta \rightarrow 0\%$ low accuracy

CD
the set of correct decisions related to the storage of the appropriate data locally

DS
represents the set of decisions taken in our experimental evaluation
Performance Indicators

- Metric 1) Percentage of correct decisions Δ

- Metric 2) standard deviation of data σ

 $\sigma \downarrow \rightarrow$ solid dataset

 $\sigma \uparrow \rightarrow$ unreliable dataset
Performance Indicators

- Metric 1) Percentage of correct decisions Δ
- Metric 2) Standard deviation of data σ
- Metric 3) Average time τ required to take a decision
Performance Indicators

- Metric 1) Percentage of correct decisions Δ
- Metric 2) standard deviation of data σ
- Metric 3) average time τ required to take a decision

Experimental Setup

WS-DREAM datasets
- Response time
- Throughput
- 339 users
- 5,825 Web services.

$M \in \{20, 50, 100\}$

$W \in \{10\%, 20\%, 50\\%\}$
Performance Assessment

![Performance Assessment Diagram]

Fig. 1. Performance evaluation for the correct decisions derived by our model compared with the baseline solution (Naïve Bayes Classifier)
Performance Assessment

Fig. 2. Data solidity as delivered by the proposed model in comparison with other models found in the respective literature (i.e., the OS and the BNS models).
Performance Assessment

Fig. 3. Performance evaluation related to τ, i.e., the time requirements for concluding the final sun-set of features
Performance Assessment

Table 1. Comparative results for the Δ metric.

<table>
<thead>
<tr>
<th>M</th>
<th>w</th>
<th>wCD</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>91</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>89</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>91</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>90</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>87</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>87</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>83</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>79</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>77</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>
Future Work

- Cover the uncertainty around the significance of each feature
- Sliding window approach

Thank you!