
Intelligent Pervasive Systems Research Group

Dept. of Informatics and Telecommunications

A QoS-aware,

Proactive Tasks

Offloading Model

for Pervasive

Applications
▪ Georgios Boulougaris

gboulougar@uth.gr
▪ Kostas Kolomvatsos

kostasks@uth.gr

1

Outline

▪ Introduction

▪ Preliminaries

▪ Proposed Approach

▪ Experimental Evaluation

▪Conclusion & Future Work

2

Introduction

▪ Become the hosts and ‘administrators’ of the collected data, while interacting

with end users and their environment.

▪ The goal is to have services and data processing mechanisms fully adaptive to

users’ demands especially in Pervasive Computing applications.

IoT

Numerous Devices

▪Data are transferred across the network to be processed in remote data centers.

▪ Significant obstacles: increased latency, limited processing control, unnecessary

resource consumption, safety and privacy vulnerabilities.

▪Difficulties arise in maintaining the desired levels of Quality of Service (QoS).

Centralized

Legacy Systems

(Cloud)

▪ EC nodes can be transformed to intelligent, autonomous entities that process

the available data and provide responses.

▪ EC nodes should apply a selective strategy concerning the tasks that will be

executed locally or offloaded.

Edge Computing

(EC) Nodes

3

Contribution

▪We provide a distributed decision-making
mechanism for PC tasks scheduling, taking into
consideration multiple criteria/parameters.

▪We propose a QoS-aware, proactive tasks
offloading model upon the continuous
monitoring of the performance of EC nodes.

4

Preliminaries

▪ We consider a set of edge nodes N = {n1, n2, .

. ., n|N|} which are interconnected and form a

graph G = (N, E), where E is the set of edges

between them.

▪ Each eik ∈ E connects two nodes and is

subject to a communication cost ccik > 0.

01

▪ Nodes are also connected with a number of

IoT devices that report data to them.

▪ In this ecosystem, nodes exchange the

statistical information of the local datasets to

inform their peers and facilitate their

decision-making.

02

▪ Apart from vectorial data, nodes receive a

number of different, independent, single core

and interference free tasks requested by end

users or applications.

▪ Another source that feeds the stream of tasks

deals with tasks offloaded from peer nodes.

▪ All tasks are placed in a queue.

03

5

Preliminaries

04

▪ Nodes should repeatedly follow a set of very

simple high level steps and take specific

decisions, i.e.,

Decision A: Select the tasks that will be

offloaded

Decision B: Select the appropriate peer to

host every task.

▪ Decisions A and B are made on condition that

QoS is not at acceptable levels.

▪ The decisions are made based on:

▪ the statistical information of local

datasets and

▪ the communication cost.

05

▪ Assume now that k tasks are present in the

queue.

▪ The 1st task in the queue is going to be

executed and ‘gets’ the resources of the

corresponding node.

▪ The node monitors QoS levels upon multiple

parameters and, if needed, decides to select

a subset from the k-1 tasks to be offloaded in

peer nodes.

▪ When offloading tasks, the remaining ones

will enjoy more quickly the local resources,

reducing their total response time.

6

Preliminaries

In order to quantitatively measure QoS, we study

two aspects of node performance, namely

▪ response time (RT) and

▪ throughput (TP).

▪ QoS = f(RT, TP), QoS ∈ [0, 1].

06

▪ Nodes are capable of executing a variable set

of tasks T = {t1, t2, . . . } depending on the

dynamic networked environment and their

resource constraints.

▪ Every task is described by a tuple of

characteristics Ch = {dd, l, dl} where

▪ dd is the data dependency,

▪ l is the load that the task will cause on

the host node and

▪ dl is the task deadline.

07

▪ Each task is also accompanied by β indicating

the offloading hops in the EC ecosystem, till it

is finally executed.

▪ A maximum hops number B is imposed to

avoid tasks starvation.

08

7

Preliminaries

▪ When an offloading action should be present,

the nodes check their queues and apply the

proposed mechanism for selecting the

appropriate tasks.

▪ They feed an ANN with the values of the

characteristics and in turn it infers the Degree

of Execution – DoE ∈ [0, 1].

▪ DoE is a measure that depicts the necessity of

local execution.

▪ The higher the DoE, the more imperative

it is to execute the corresponding task

locally.

▪ The opposite denotes that local

execution is not so critical.

▪ DoE = y(dd, l, dl)

09

▪ Once the DoE has been estimated for each of

the enqueued tasks, they, thereafter, are

sorted in a descending order.

▪ The EC node, then, decides which of the tasks

will be executed locally and which of them

should be offloaded.

▪ It makes use of a suitable mechanism (i.e., the

solution of a 0-1 Knapsack problem) which

ensures that the resource requirements will be

fulfilled, while simultaneously the sum of the

DoE is maximized.

10

8

Proposed Approach

▪ ni, estimates the probability of having the

QoS less than a pre-defined threshold Th, i.e.,

P(QoS ≤ Th).

▪ ni tries to calculate the following probabilities:

▪ In fact, both RT and TP are continuous

random variables and we have to estimate

their probability density function (pdf) and

cumulative distribution function (cdf).

QoS Modeling and Monitoring

▪ We rely on the widely known Kernel Density

Estimation (KDE).

▪ The probabilities produced are then

combined with the adoption of the Geometric

Mean. The following equation holds true:

where wRT and wTP are the weights for QoS

parameter.

9

Proposed Approach

▪ In case the QoS probability estimation

approaches or falls below a certain threshold

an evaluation step of the enqueued tasks

takes place.

▪ DoE ∈ [0, 1] is estimated for each task making

use of an ANN.

▪ We utilize a three-layered feed forward ANN

with small needs for computing resources

where data related to the realization of dd, l

and dl feed the (first) input layer, penetrate

the (second) hidden layer and end up in the

(third) output layer with the DoE estimation

form.

Estimating the Degree of Execution

10

Proposed Approach

▪ After the tasks’ DoE estimation, our

mechanism concludes the enqueued tasks’

execution destination, whether the tasks will

be locally executed or will be offloaded.

▪ The decision-making process is directed by

the solution of a 0-1 Knapsack problem.

▪ The solution of the following optimization

problem illustrates the tasks that are

preferable to be executed locally.

Tasks Offloading and Allocation

▪ xj depicts the number (restricted to a binary

value) of instances of task j to be included in

the knapsack.

▪ If a task is finally included in the knapsack (xj

= 1), its local execution is recommended.

Otherwise (xj = 0), the task should be

offloaded to a neighboring node or in the

Cloud.

▪ CL is an upper limit for the total

communication cost for all the offloaded tasks

and ccis is the communication cost between ni

and the selected (s) node.

11

Experimental Evaluation

Accuracy A Precision P Recall R F-measure F

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝐹 =

2 ∗ 𝑃 ∗ 𝑅

(𝑃 + 𝑅)

Local Execution Cost

𝑙𝑐𝑡𝑖 = 𝑏 ∗ 𝑙

𝑜𝑐𝑡𝑖 = 𝑏 ∗ 𝑙 + 2 ∗ 𝑐𝑐𝑖𝑘

Offloading Cost

task offloading

is correctly chosen

when lc > oc

TN

task local execution

is correctly chosen

when lc ≤ oc

TP

task offloading

is incorrectly chosen

when lc ≤ oc

FN

task local execution

is incorrectly chosen

when lc > oc

FP

12

Experimental Evaluation

Selection of

Appropriate Peer

Lowest Work Load

Lowest Task’s

Offloading Cost

Offloading Method

Model

Random

Last

Greedy

Parameters Values

b 0.5

cc [0, 1]

dd [0, 1]

dl [0, 1]

E 100

itrs {100, 200}

l [0, 1]

L [5, 10]

N {5, 10, 20, 50, 100}

RT [0, 1]

Th 0.3

TP [0, 1]

wRT 0.5

wTP 0.5

Comparative Analysis

13

Experimental Evaluation

Selection of Appropriate Peer

100 itrs 200 itrs

N A P R F A P R F

5 0.789 0.915 0.849 0.881 0.887 0.926 0.954 0.940

10 0.820 0.934 0.868 0.900 0.824 0.873 0.929 0.901

20 0.853 0.903 0.938 0.920 0.860 0.900 0.945 0.922

50 0.851 0.898 0.941 0.919 0.803 0.871 0.903 0.887

100 0.850 0.887 0.952 0.918 0.826 0.861 0.947 0.902

100 itrs 200 itrs

N A P R F A P R F

5 0.812 0.888 0.870 0.879 0.744 0.868 0.817 0.841

10 0.786 0.794 0.956 0.868 0.814 0.829 0.953 0.887

20 0.738 0.735 0.957 0.832 0.722 0.731 0.905 0.809

50 0.629 0.596 0.945 0.731 0.601 0.559 0.971 0.710

100 0.547 0.478 0.938 0.633 0.492 0.433 0.984 0.602

Lowest Task’s

Offloading Cost

Lowest Work

Load

▪ The majority of the enqueued tasks are locally executed.

▪ Metrics values show a remarkable stability in case the necessary task offloading is carried out

at the peer node with the lowest load. Our model seems to achieve high levels of efficiency.

▪ The opposite holds true when the pursuit of the lowest task offloading cost is the criterion.

14

Experimental Evaluation

Offloading Method

Model

N A P R F

5 0.789 0.915 0.849 0.881

10 0.820 0.934 0.868 0.900

20 0.853 0.903 0.938 0.920

50 0.851 0.898 0.941 0.919

100 0.850 0.887 0.952 0.918

Random (10%) Last (10%) Greedy (10%)

N A P R F A P R F A P R F

5 0.823 0.948 0.861 0.903 0.848 0.953 0.883 0.917 0.847 0.968 0.871 0.917

10 0.793 0.916 0.851 0.882 0.851 0.942 0.896 0.919 0.810 0.933 0.857 0.894

20 0.807 0.906 0.876 0.891 0.794 0.917 0.852 0.883 0.822 0.913 0.890 0.901

50 0.817 0.903 0.893 0.898 0.820 0.903 0.896 0.899 0.823 0.923 0.882 0.902

100 0.819 0.906 0.892 0.899 0.790 0.910 0.853 0.881 0.812 0.915 0.876 0.895

Random (5%) Last (5%) Greedy (5%)

N A P R F A P R F A P R F

5 0.874 0.897 0.970 0.932 0.900 0.926 0.970 0.947 0.891 0.921 0.964 0.942

10 0.835 0.848 0.980 0.909 0.881 0.899 0.976 0.936 0.836 0.859 0.968 0.910

20 0.832 0.855 0.966 0.907 0.847 0.864 0.975 0.916 0.855 0.878 0.969 0.921

50 0.839 0.849 0.984 0.912 0.836 0.854 0.973 0.910 0.845 0.863 0.974 0.915

100 0.846 0.858 0.982 0.916 0.825 0.838 0.980 0.903 0.839 0.859 0.972 0.912

N Offloaded Tasks (%)

5 14.65%

10 13.22%

20 6.45%

50 6.15%

100 5.19%

Average Improvement (10%)

A P R F

-6.047% -4.360% -2.564% -3.425%

0.202% 0.430% -0.045% 0.189%

5.677% -1.025% 7.505% 3.168%

3.794% -1.255% 5.657% 2.127%

5.401% -2.609% 9.024% 3.010%

▪ The percentage is getting smaller and smaller

as the number of nodes increases.

▪ The metrics values support the claim that our model constitutes an effective classification method.

▪ The proposed model seems to achieve similarly good results compared to the alternative approaches.

15

Conclusion & Future Work

▪ We propose a distributed and intelligent tasks offloading
model which aims to eliminate the tasks migration to the
Cloud, while satisfying high QoS levels.

▪ Each EC node, operating autonomously, systematically
observes its performance and it is proactively possible to
select some tasks to be offloaded to neighbors or to
Cloud, based on their multiple characteristics.

▪ The experimental evaluation shows that the proposed
model effectively concludes the right decision-making
which ensures that resource constraints are met.

▪ Future research involves the estimation of the overhead
for task monitoring, decision-making and comparison
with some ‘task level’ models.

16

THANK YOU

http://www.iprism.eu

Georgios Boulougaris

gboulougar@uth.gr

17

