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Introduction

▪ Become the hosts and ‘administrators’ of the collected data, while interacting 

with end users and their environment.

▪ The goal is to have services and data processing mechanisms fully adaptive to 

users’ demands especially in Pervasive Computing applications.

IoT

Numerous Devices

▪Data are transferred across the network to be processed in remote data centers.

▪ Significant obstacles: increased latency, limited processing control, unnecessary 

resource consumption, safety and privacy vulnerabilities.

▪Difficulties arise in maintaining the desired levels of Quality of Service (QoS). 

Centralized 

Legacy Systems 

(Cloud)

▪ EC nodes can be transformed to intelligent, autonomous entities that process 

the available data and provide responses. 

▪ EC nodes should apply a selective strategy concerning the tasks that will be 

executed locally or offloaded.

Edge Computing 

(EC) Nodes
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Contribution

▪We provide a distributed decision-making 
mechanism for PC tasks scheduling, taking into 
consideration multiple criteria/parameters.

▪We propose a QoS-aware, proactive tasks 
offloading model upon the continuous 
monitoring of the performance of EC nodes. 
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Preliminaries

▪ We consider a set of edge nodes N = {n1, n2, . 

. ., n|N|} which are interconnected and form a 

graph G = (N, E), where E is the set of edges 

between them.

▪ Each eik ∈ E connects two nodes and is 

subject to a communication cost ccik > 0.
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▪ Nodes are also connected with a number of 

IoT devices that report data to them. 

▪ In this ecosystem, nodes exchange the 

statistical information of the local datasets to 

inform their peers and facilitate their 

decision-making. 
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▪ Apart from vectorial data, nodes receive a

number of different, independent, single core 

and interference free tasks requested by end 

users or applications. 

▪ Another source that feeds the stream of tasks 

deals with tasks offloaded from peer nodes. 

▪ All tasks are placed in a queue. 
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Preliminaries
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▪ Nodes should repeatedly follow a set of very 

simple high level steps and take specific 

decisions, i.e.,

Decision A: Select the tasks that will be 

offloaded

Decision B: Select the appropriate peer to 

host every task.

▪ Decisions A and B are made on condition that 

QoS is not at acceptable levels. 

▪ The decisions are made based on:

▪ the statistical information of local 

datasets and 

▪ the communication cost. 
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▪ Assume now that k tasks are present in the 

queue. 

▪ The 1st task in the queue is going to be 

executed and ‘gets’ the resources of the 

corresponding node. 

▪ The node monitors QoS levels upon multiple 

parameters and, if needed, decides to select 

a subset from the k-1 tasks to be offloaded in 

peer nodes.

▪ When offloading tasks, the remaining ones

will enjoy more quickly the local resources, 

reducing their total response time.
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Preliminaries

In order to quantitatively measure QoS, we study 

two aspects of node performance, namely

▪ response time (RT) and 

▪ throughput (TP).

▪ QoS = f(RT, TP), QoS ∈ [0, 1].
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▪ Nodes are capable of executing a variable set 

of tasks T = {t1, t2, . . . } depending on the 

dynamic networked environment and their 

resource constraints.

▪ Every task is described by a tuple of 

characteristics Ch = {dd, l, dl} where

▪ dd is the data dependency, 

▪ l is the load that the task will cause on 

the host node and 

▪ dl is the task deadline.
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▪ Each task is also accompanied by β indicating 

the offloading hops in the EC ecosystem, till it 

is finally executed. 

▪ A maximum hops number B is imposed to 

avoid tasks starvation.
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Preliminaries

▪ When an offloading action should be present, 

the nodes check their queues and apply the 

proposed mechanism for selecting the 

appropriate tasks.

▪ They feed an ANN with the values of the 

characteristics and in turn it infers the Degree 

of Execution – DoE ∈ [0, 1].

▪ DoE is a measure that depicts the necessity of 

local execution. 

▪ The higher the DoE, the more imperative 

it is to execute the corresponding task 

locally. 

▪ The opposite denotes that local 

execution is not so critical. 

▪ DoE = y(dd, l, dl)
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▪ Once the DoE has been estimated for each of 

the enqueued tasks, they, thereafter, are 

sorted in a descending order. 

▪ The EC node, then, decides which of the tasks 

will be executed locally and which of them 

should be offloaded.

▪ It makes use of a suitable mechanism (i.e., the 

solution of a 0-1 Knapsack problem) which 

ensures that the resource requirements will be 

fulfilled, while simultaneously the sum of the 

DoE is maximized.
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Proposed Approach

▪ ni, estimates the probability of having the 

QoS less than a pre-defined threshold Th, i.e., 

P(QoS ≤ Th).

▪ ni  tries to calculate the following probabilities:

▪ In fact, both RT and TP are continuous 

random variables and we have to estimate 

their probability density function (pdf) and 

cumulative distribution function (cdf).

QoS Modeling and Monitoring

▪ We rely on the widely known Kernel Density 

Estimation (KDE).

▪ The probabilities produced are then 

combined with the adoption of the Geometric 

Mean. The following equation holds true:

where wRT and wTP are the weights for QoS 

parameter.
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Proposed Approach

▪ In case the QoS probability estimation 

approaches or falls below a certain threshold 

an evaluation step of the enqueued tasks 

takes place.

▪ DoE ∈ [0, 1] is estimated for each task making 

use of an ANN.

▪ We utilize a three-layered feed forward ANN 

with small needs for computing resources 

where data related to the realization of dd, l

and dl feed the (first) input layer, penetrate 

the (second) hidden layer and end up in the 

(third) output layer with the DoE estimation 

form.

Estimating the Degree of Execution
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Proposed Approach

▪ After the tasks’ DoE estimation, our 

mechanism concludes the enqueued tasks’ 

execution destination, whether the tasks will 

be locally executed or will be offloaded. 

▪ The decision-making process is directed by 

the solution of a 0-1 Knapsack problem.

▪ The solution of the following optimization 

problem illustrates the tasks that are 

preferable to be executed locally.

Tasks Offloading and Allocation

▪ xj depicts the number (restricted to a binary 

value) of instances of task j to be included in 

the knapsack. 

▪ If a task is finally included in the knapsack (xj

= 1), its local execution is recommended. 

Otherwise (xj = 0), the task should be 

offloaded to a neighboring node or in the 

Cloud. 

▪ CL is an upper limit for the total 

communication cost for all the offloaded tasks 

and ccis is the communication cost between ni

and the selected (s) node. 
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Experimental Evaluation

Accuracy A Precision P Recall R F-measure F

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝐹 =

2 ∗ 𝑃 ∗ 𝑅

(𝑃 + 𝑅)

Local Execution Cost

𝑙𝑐𝑡𝑖 = 𝑏 ∗ 𝑙

𝑜𝑐𝑡𝑖 = 𝑏 ∗ 𝑙 + 2 ∗ 𝑐𝑐𝑖𝑘

Offloading Cost

task offloading

is correctly chosen 

when lc > oc

TN

task local execution 

is correctly chosen 

when lc ≤ oc

TP

task offloading

is incorrectly chosen 

when lc ≤ oc

FN

task local execution

is incorrectly chosen 

when lc > oc

FP
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Experimental Evaluation

Selection of 

Appropriate Peer

Lowest Work Load

Lowest Task’s 

Offloading Cost

Offloading Method

Model

Random

Last

Greedy

Parameters Values

b 0.5

cc [0, 1]

dd [0, 1]

dl [0, 1]

E 100

itrs {100, 200}

l [0, 1]

L [5, 10]

N {5, 10, 20, 50, 100}

RT [0, 1]

Th 0.3

TP [0, 1]

wRT 0.5

wTP 0.5

Comparative Analysis
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Experimental Evaluation

Selection of Appropriate Peer

100 itrs 200 itrs

N A P R F A P R F

5 0.789 0.915 0.849 0.881 0.887 0.926 0.954 0.940

10 0.820 0.934 0.868 0.900 0.824 0.873 0.929 0.901

20 0.853 0.903 0.938 0.920 0.860 0.900 0.945 0.922

50 0.851 0.898 0.941 0.919 0.803 0.871 0.903 0.887

100 0.850 0.887 0.952 0.918 0.826 0.861 0.947 0.902

100 itrs 200 itrs

N A P R F A P R F

5 0.812 0.888 0.870 0.879 0.744 0.868 0.817 0.841

10 0.786 0.794 0.956 0.868 0.814 0.829 0.953 0.887

20 0.738 0.735 0.957 0.832 0.722 0.731 0.905 0.809

50 0.629 0.596 0.945 0.731 0.601 0.559 0.971 0.710

100 0.547 0.478 0.938 0.633 0.492 0.433 0.984 0.602

Lowest Task’s 

Offloading Cost

Lowest Work 

Load

▪ The majority of the enqueued tasks are locally executed.

▪ Metrics values show a remarkable stability in case the necessary task offloading is carried out 

at the peer node with the lowest load. Our model seems to achieve high levels of efficiency. 

▪ The opposite holds true when the pursuit of the lowest task offloading cost is the criterion. 
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Experimental Evaluation

Offloading Method

Model

N A P R F

5 0.789 0.915 0.849 0.881

10 0.820 0.934 0.868 0.900

20 0.853 0.903 0.938 0.920

50 0.851 0.898 0.941 0.919

100 0.850 0.887 0.952 0.918

Random (10%) Last (10%) Greedy (10%)

N A P R F A P R F A P R F

5 0.823 0.948 0.861 0.903 0.848 0.953 0.883 0.917 0.847 0.968 0.871 0.917

10 0.793 0.916 0.851 0.882 0.851 0.942 0.896 0.919 0.810 0.933 0.857 0.894

20 0.807 0.906 0.876 0.891 0.794 0.917 0.852 0.883 0.822 0.913 0.890 0.901

50 0.817 0.903 0.893 0.898 0.820 0.903 0.896 0.899 0.823 0.923 0.882 0.902

100 0.819 0.906 0.892 0.899 0.790 0.910 0.853 0.881 0.812 0.915 0.876 0.895

Random (5%) Last (5%) Greedy (5%)

N A P R F A P R F A P R F

5 0.874 0.897 0.970 0.932 0.900 0.926 0.970 0.947 0.891 0.921 0.964 0.942

10 0.835 0.848 0.980 0.909 0.881 0.899 0.976 0.936 0.836 0.859 0.968 0.910

20 0.832 0.855 0.966 0.907 0.847 0.864 0.975 0.916 0.855 0.878 0.969 0.921

50 0.839 0.849 0.984 0.912 0.836 0.854 0.973 0.910 0.845 0.863 0.974 0.915

100 0.846 0.858 0.982 0.916 0.825 0.838 0.980 0.903 0.839 0.859 0.972 0.912

N Offloaded Tasks (%)

5 14.65%

10 13.22%

20 6.45%

50 6.15%

100 5.19%

Average Improvement (10%)

A P R F

-6.047% -4.360% -2.564% -3.425%

0.202% 0.430% -0.045% 0.189%

5.677% -1.025% 7.505% 3.168%

3.794% -1.255% 5.657% 2.127%

5.401% -2.609% 9.024% 3.010%

▪ The percentage is getting smaller and smaller 

as the number of nodes increases.

▪ The metrics values support the claim that our model constitutes an effective classification method. 

▪ The proposed model seems to achieve similarly good results compared to the alternative approaches. 
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Conclusion & Future Work 

▪ We propose a distributed and intelligent tasks offloading 
model which aims to eliminate the tasks migration to the 
Cloud, while satisfying high QoS levels.

▪ Each EC node, operating autonomously, systematically 
observes its performance and it is proactively possible to 
select some tasks to be offloaded to neighbors or to 
Cloud, based on their multiple characteristics.

▪ The experimental evaluation shows that the proposed 
model effectively concludes the right decision-making 
which ensures that resource constraints are met.

▪ Future research involves the estimation of the overhead 
for task monitoring, decision-making and comparison 
with some ‘task level’ models.
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